ACS Publications. Most Trusted. Most Cited. Most Read
Biotin[6]uril Esters: Chloride-Selective Transmembrane Anion Carriers Employing C—H···Anion Interactions
My Activity

Figure 1Loading Img
  • Open Access
Communication

Biotin[6]uril Esters: Chloride-Selective Transmembrane Anion Carriers Employing C—H···Anion Interactions
Click to copy article linkArticle link copied!

View Author Information
Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
Open PDFSupporting Information (1)

Journal of the American Chemical Society

Cite this: J. Am. Chem. Soc. 2015, 137, 15, 4948–4951
Click to copy citationCitation copied!
https://doi.org/10.1021/jacs.5b02306
Published April 8, 2015

Copyright © 2015 American Chemical Society. This publication is licensed under CC-BY.

Abstract

Click to copy section linkSection link copied!

Biotin[6]uril hexaesters represent a new class of anionophores which operate solely through C—H···anion interactions. The use of soft H-bond donors favors the transport of less hydrophilic anions (e.g., Cl, NO3) over hard, stongly hydrated anions (e.g., HCO3 and SO42–). Especially relevant is the selectivity between chloride and bicarbonate, the major inorganic anions in biological systems.

Copyright © 2015 American Chemical Society

Transmembrane anion transport by synthetic agents presents new opportunities for biology and medicine. (1) By analogy with cation transporters (cationophores), (2) anionophores could be valuable as research tools and might find therapeutic applications. For example, there is evidence that some anionophores possess anti-cancer activity. (1d, 3) In addition there is hope that synthetic transporters might be used to replace the activity of endogenous anion channels which are missing or defective. (4, 1b) Such deficiencies underlie a number of conditions including the widespread genetic disease cystic fibrosis.

Recent research has yielded various structures which can transport anions through channel, (5) relay, (6) or mobile carrier mechanisms. (3, 7) High activities have been achieved in some cases, (7e, 7f) but the control of anion selectivity is still under-explored. (8) From a biological perspective the most relevant issue is the distinction between chloride and bicarbonate, the dominant inorganic anions in living systems. (9) Chloride/bicarbonate selectivity may not be required for all applications, (10) but for others it may be critical. Selective anionophores would be valuable as research tools, with potential to elicit new and specific biological effects.

Whatever their mechanism of action, anionophores must recognize their substrates through non-covalent interactions. The interaction most commonly applied is hydrogen bonding between anions and conventional donors (OH, NH). However, this may not be ideal for achieving Cl/HCO3 selectivity. Although bicarbonate is more strongly hydrated, it also binds well to O/NH in receptors. Thus, in studies of anion carriers employing NH···anion H-bonding, we and others have commonly observed transport of both substrates. (7b, 7c, 7f, 11) A promising alternative is the CH···anion hydrogen bond. (12) In contrast to OH and NH, CH is recognized as a soft H-bond donor. (13) It might therefore favor binding to softer, more polarizable anions (e.g., Cl) over hard anions such as HCO3. We now report the first anionophores which rely exclusively on CH···X interactions, without any contribution from conventional H-bonds or electrostatic interactions. (14) As predicted, we find that this system is effective for chloride transport but shows minimal activity for bicarbonate, demonstrating the potential of CH···anion interactions for moderating anionophore selectivity.

Scheme 1

Scheme 1. Synthetic Pathway to Biotin[6]Uril Hexaesters 2–4a

Scheme aEsterification of biotin[6]uril 1 to biotin[6]uril hexamethyl ester 2, hexaethyl ester 3, and hexabutyl ester 4 is catalyzed by HCl.

The design of the new anionophores is based on biotin[6]uril 1 (Scheme 1), a receptor for halide anions in water recently described by the Copenhagen group. (15) Macrocycle 1 is prepared in a single step from biotin and formaldehyde in aqueous hydrochloric acid. The hexameric product consists of six biotin monomers in alternating orientation, connected through methylene bridges. Each biotin unit has two hydrogens on the convex face, pointing toward the center of the macrocycle. This creates a cavity bounded by 12 CH groups, positioned to bind spherical anions by CH···X interactions (Figure 1). In aqueous solution 1 binds halides with affinities (Ka) ranging from ∼2000 M–1 for I to ∼60 M–1 for Cl. The mode of binding has been confirmed by an X-ray crystal structure of the 1·iodide complex. (15a)

Figure 1

Figure 1. Macrocyclic core of biotin[6]urils 14, with side chains replaced by Me groups, modeled binding Cl. CH···Cl distances range from 2.9 to 3.2 Å. For details of the calculation, see SI.

To create hydrophobic analogues for transport studies, receptor 1 was treated with methanol, ethanol or butanol, with catalytic HCl, to yield hexaesters 24. The binding of the hexaesters to Cl, NO3, HCO3, and SO42– in an organic medium (CD3CN) was first studied using 1H NMR spectroscopy. As shown in Table 1, the affinities for chloride were higher than those for nitrate and bicarbonate by roughly 2 orders of magnitude. No interaction with SO42– could be detected. The selectivity for chloride vs nitrate contrasts with the results for 1 in water, where the two anions were bound with similar Ka. (15) This solvent effect is not too surprising, as chloride is more hydrophilic than nitrate. (16) More notable, however, are the almost identical Ka values for NO3 and HCO3. The latter is by far the more basic, and therefore the better acceptor for conventional H-bonds. The similar affinities observed here, for similarly shaped anions, confirms the difference between conventional H-bonds and CH···anion binding. (13) The result supported our expectation that 24 would not transport bicarbonate. If affinities were low in a non-competitive medium, the prospects for extracting hydrophilic HCO3 from water seemed very poor indeed.

Affinities for chloride were also measured by isothermal titration calorimetry (ITC) (Table 1). The binding interactions were all shown to be enthalpically and entropically favorable. This is different from the trend observed for the biotin[6]uril hexaacid (1) in water where the entropy change is unfavorable. (15)

Table 1. Cl, NO3, and HCO3 Binding Affinities (1H NMR and ITC) in Acetonitrile
 log(Ka)
biotin[6]uril esterClNO3HCO3
methyl estera (2)4.3b, 4.5c2.3c2.1c
ethyl estera (3)4.6b2.4cd
butyl estera(4)4.5bdd
a

Job’s method and ITC indicated 1:1 binding stoichiometries for both Et4N+Cl and Bu4N+NO3. All data obtained had less than 11% error.

b

Ka obtained from ITC in CH3CN at 25 °C.

c

Ka obtained by 1H NMR titration in CD3CN at 25 °C.

d

Not measured.

Anion transport by esters 24 was studied in large unilamellar vesicles with a mean diameter of 200 nm, employing the previously reported “lucigenin assay” (Figure 2). (17) The vesicles were prepared from 1-palmitoyl-2-oleoyl-sn-glycero-phosphocholine (POPC) and cholesterol in a 7:3 ratio, with the biotin[6]uril hexaesters pre-incorporated at receptor:lipid ratios from 1:250 to 1:25 000. The vesicles enclosed NaNO3 (225 mM) with the halide-sensitive dye lucigenin (0.8 mM), and were suspended in NaNO3 (225 mM). After addition of sodium chloride (24 mM), the decay in lucigenin fluorescence caused by chloride influx was monitored. Traces from experiments at receptor:lipid = 1:1000 are shown in Figure 2c. All three hexaesters showed activity, but with substantial differences depending on the length of side chain (43 > 2). As with some other systems, (18) it seems that lipophilicity promotes anionophore effectiveness. This result might simply reflect different distributions between membrane and aqueous phases. However, leaching tests (19) confirmed that all carriers were exclusively located in the membrane (see Supporting Information (SI)). It thus seems that increased lipophilicity enhances the intrinsic rate of anion transport. (20) The most active transporter 4 promotes chloride influx with t1/2 = 180 s at transporter:lipid = 1:2500 (see SI). This rate is ∼100 times lower than the highest reported, (7e) but compares well with many published systems and is remarkable for a transporter which relies solely on CH···anion interactions.

Figure 2

Figure 2. (a) Schematic representation of the vesicles used in this study. The transport activity is monitored using the lucigenin assay. Biotin[6]uril hexaesters promote transport of Cl into the vesicles and NO3 out of the vesicle. This process is observed as the quenching of lucigenin fluorescence caused by the increasing amount of chloride inside the vesicle. (b) Part of the vesicle membrane illustrating the carrier mechanism employed by the biotin[6]uril hexaesters. (c) Chloride/nitrate exchange by 2, 3, and 4 at a transporter-to-lipid ratio of 1:1000.

Ion transport in vesicles can only take place if electroneutrality is maintained, either by counter-transport of an ion of similar charge (antiport) or co-transport of a counterion (symport). As implied by Figure 2a, the esters 24 were expected to act as antiporters, exchanging chloride for intravesicular nitrate. To confirm this hypothesis, the lucignenin assay on 4 was performed with nitrate replaced by hydrophilic sulfate. As shown in Figure 3, the rate of fluorescence decay was negligible after an initial small drop. The result implies that the inward flow of charge cannot be balanced under these conditions, and quickly stops due to the developing electrical potential. In common with many other anion carriers, it thus seems that 4 transports both chloride and nitrate, but neither sulfate nor Na+.

We next tested for bicarbonate transport by repeating the lucigenin assay with HCO3 as the background anion, available for counter-transport. In similar experiments with anionophores employing conventional H-bonds, we have previously observed two types of result. In some cases fluorescence decay profiles are similar to those for Cl/NO3 exchange, implying that HCO3 is freely transported. One such example is the bis-urea 5 (see Figure 3). (7c) In other cases, results for bicarbonate antiport have been intermediate between those for nitrate and sulfate, suggesting that bicarbonate is transported but only slowly. (7b, 7d) The result for biotin[6]uril 4 is shown in Figure 3 (blue solid line). The trace is almost indistiguishable from that for sulfate counter-transport (green solid line), implying that the membrane is impermeable to HCO3. As expected, it thus seems that 4 shows very high selectivity for chloride vs bicarbonate.

Figure 3

Figure 3. Exchange of chloride for different anions by biotin[6]uril ester (4, solid lines) and bis-urea 5 (dashed lines). Red = NO3; green = SO42–; blue = HCO3 (Na+ salts, 225 mM). Transporter-to-lipid ratios were 1:1000 for 4 and 1:25 000 for 5. Transport by compound 5 was assessed at a lower loading because it is ∼25 times more active than 4. At equilibrium (24 mM chloride both inside and outside of the vesicle), F/F0 ≈ 0.5 in NaNO3 and Na2SO4, but ≈ 0.7 in NaHCO3, due to the partial quenching of lucigenin by HCO3.

Finally, we performed experiments to confirm that transport was occurring via the “mobile carrier” mechanism (Figure 2b), and not by self-assembly into channels. (21) The lucigenin assay (Cl/NO3 exchange) was applied to 4 using vesicles prepared with different levels of cholesterol. The increase of cholesterol in a membrane decreases the fluidity, and thereby hampers the movement of carriers. In contrast, channels should be unaffected. (22) As expected, the transport rate fell dramatically when the proportion of cholesterol was raised to 40% (see SI). Assays were also conducted in vesicles composed of dipalmitoylphosphatidylcholine (DPPC), which exists as a gel phase at room temperature and a liquid crystalline (fluid) phase above 41 °C. (23) Transport was only observed at 45 °C and not at 25 °C, supporting the carrier mechanism. Further support was obtained from the dependence of transport rates on anionophore loading. The data suggested that aggregation was counter-productive, the opposite of that expected for self-assembling channels.

In conclusion, we have shown that receptors 24, employing only CH···X interactions, can serve as transmembrane anion carriers with remarkable Cl/HCO3 selectivity. We propose that this selectivity results from the “soft” nature of CH as a hydrogen bond donor, which should favor the polarizable, more hydrophobic anions (e.g., Cl, NO3) over harder, more basic anions (e.g., HCO3). (13) The exploitation of CH···anion interactions in anionophores has further advantages: donor CH groups are not hydrophilic, nor inclined to provoke aggregation. Thus, we believe this motif can make useful contributions to anionophore design, especially where chloride selectivity is a priority.

Supporting Information

Click to copy section linkSection link copied!

Binding studies, Job plots, and experimental details for the measurement of the chloride transport assays. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Authors
    • Anthony P. Davis - School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom Email: [email protected]
    • Michael Pittelkow - Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark Email: [email protected]
  • Authors
    • Micke Lisbjerg - Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, DenmarkSchool of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
    • Hennie Valkenier - School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
    • Bo M. Jessen - Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
    • Hana Al-Kerdi - Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
  • Notes
    The authors declare no competing financial interest.

Acknowledgment

Click to copy section linkSection link copied!

We acknowledge financial support from the Lundbeck Foundation for a Young Group Leader Fellowship (M.P.) and from the EPSRC (grant no. EP/F03623X/1). The support and sponsorship provided by COST Action CM1005, Augustinus Fonden and Oticon Fonden, is acknowledged. We thank Birgitte O. Milhøj for insightful discussions.

References

Click to copy section linkSection link copied!

This article references 24 other publications.

  1. 1
    (a) Ashcroft, F. M. Ion Channels and Disease; Academic Press: London, 2000.
    (b) Davis, A. P.; Sheppard, D. N.; Smith, B. D. Chem. Soc. Rev. 2007, 36, 348
    (c) Davis, J. T.; Okunola, O.; Quesada, R. Chem. Soc. Rev. 2010, 39, 3843
    (d) Busschaert, N.; Gale, P. A. Angew. Chem., Int. Ed. 2013, 52, 1374
    (e) Matile, S.; Fyles, T. Acc. Chem. Res. 2013, 46, 2741 2742
  2. 2
    (a) Pressman, B. C. Annu. Rev. Biochem. 1976, 45, 501 530
    (b) Fyles, T. M. In Inclusion Aspects of Membrane Chemistry; Osa, T.; Atwood, J., Eds.; Kluwer: Dordrecht, 1991; Vol. 2, pp 59 110.
  3. 3
    (a) Sessler, J. L.; Eller, L. R.; Cho, W. S.; Nicolaou, S.; Aguilar, A.; Lee, J. T.; Lynch, V. M.; Magda, D. J. Angew. Chem., Int. Ed. 2005, 44, 5989 5992
    (b) Gale, P. A.; Perez-Tomas, R.; Quesada, R. Acc. Chem. Res. 2013, 46, 2801 2813
    (c) Ko, S. K.; Kim, S. K.; Share, A.; Lynch, V. M.; Park, J.; Namkung, W.; Van Rossom, W.; Busschaert, N.; Gale, P. A.; Sessler, J. L.; Shin, I. Nat. Chem. 2014, 6, 885 892
  4. 4
    Wallace, D. P.; Tomich, J. M.; Eppler, J. W.; Iwamoto, T.; Grantham, J. J.; Sullivan, L. P. Biochim. Biophys. Acta 2000, 1464, 69 82
  5. 5
    (a) Gokel, G. W.; Negin, S. Acc. Chem. Res. 2013, 46, 2824 2833
    (b) Vargas Jentzsch, A.; Hennig, A.; Mareda, J.; Matile, S. Acc. Chem. Res. 2013, 46, 2791 2800
  6. 6
    (a) McNally, B. A.; O’Neil, E. J.; Nguyen, A.; Smith, B. D. J. Am. Chem. Soc. 2008, 130, 17274
    (b) Hennig, A.; Fischer, L.; Guichard, G.; Matile, S. J. Am. Chem. Soc. 2009, 131, 16889
  7. 7
    (a) Valkenier, H.; Davis, A. P. Acc. Chem. Res. 2013, 46, 2898
    (b) Koulov, A. V.; Lambert, T. N.; Shukla, R.; Jain, M.; Boon, J. M.; Smith, B. D.; Li, H. Y.; Sheppard, D. N.; Joos, J. B.; Clare, J. P.; Davis, A. P. Angew. Chem., Int. Ed. 2003, 42, 4931 4933
    (c) Hussain, S.; Brotherhood, P. R.; Judd, L. W.; Davis, A. P. J. Am. Chem. Soc. 2011, 133, 1614 1617
    (d) Cooper, J. A.; Street, S. T. G.; Davis, A. P. Angew. Chem., Int. Ed. 2014, 53, 5609
    (e) Valkenier, H.; Judd, L. W.; Li, H.; Hussain, S.; Sheppard, D. N.; Davis, A. P. J. Am. Chem. Soc. 2014, 136, 12507 12512
    (f) Moore, S. J.; Haynes, C. J. E.; Gonzalez, J.; Sutton, J. L.; Brooks, S. J.; Light, M. E.; Herniman, J.; Langley, G. J.; Soto-Cerrato, V.; Perez-Tomas, R.; Marques, I.; Costa, P. J.; Felix, V.; Gale, P. A. Chem. Sci. 2013, 4, 103 117
    (g) Busschaert, N.; Elmes, R. B. P.; Czech, D. D.; Wu, X.; Kirby, I. L.; Peck, E. M.; Hendzel, K. D.; Shaw, S. K.; Chan, B.; Smith, B. D.; Jolliffe, K. A.; Gale, P. A. Chem. Sci. 2014, 5, 3617
    (h) Vargas Jentzsch, A.; Emery, D.; Mareda, J.; Nayak, S. K.; Metrangolo, P.; Resnati, G.; Sakai, N.; Matile, S. Nat. Commun. 2012, 3, 905
  8. 8

    For notable exceptions see:

    (a) Santacroce, P. V.; Okunola, O. A.; Zavalij, P. Y.; Davis, J. T. Chem. Commun. 2006, 3246 3248
    (b) Busschaert, N.; Karagiannidis, L. E.; Wenzel, M.; Haynes, C. J. E.; Wells, N. J.; Young, P. G.; Makuc, D.; Plavec, J.; Jolliffe, K. A.; Gale, P. A. Chem. Sci. 2014, 5, 1118 1127
  9. 9
    Fahlke, C. Am. J. Physiol. Renal Physiol. 2001, 280, F748 F757
  10. 10

    Selectivity is not always observed for natural systems. See:

    Quinton, P. M. Am. J. Physiol. Cell Physiol. 2010, 299, C1222 C1233
  11. 11
    (a) Davis, J. T.; Gale, P. A.; Okunola, O. A.; Prados, P.; Iglesias-Sánchez, J. C.; Torroba, T.; Quesada, R. Nat. Chem. 2009, 1, 138
    (b) Harrel, W. A., Jr.; Bergmeyer, M. L.; Zavalij, P. Y.; Davis, J. T. Chem. Commun. 2010, 46, 3950
    (c) Gale, P. A.; Tong, C. C.; Haynes, C. J. E.; Adeosun, O.; Gross, D. E.; Karnas, E.; Sedenberg, E. M.; Quesada, R.; Sessler, J. L. J. Am. Chem. Soc. 2010, 132, 3240
    (d) Andrews, N. J.; Haynes, C. J. E.; Light, M. E.; Moore, S. J.; Tong, C. C.; Davis, J. T.; Harrell, W. A., Jr.; Gale, P. A. Chem. Sci. 2011, 2, 256
    (e) Busschaert, N.; Gale, P. A.; Haynes, C. J. E.; Light, M. E.; Moore, S. J.; Tong, C. C.; Davis, J. T.; Harrell, W. A., Jr. Chem. Commun. 2010, 46, 6252
  12. 12
    Cai, J.; Sessler, J. L. Chem. Soc. Rev. 2014, 43, 6198
  13. 13
    (a) Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond. In Structural Chemistry and Biology; Oxford University Press: Oxford, 1999; pp 86 89.
    (b) Nishio, M. Phys. Chem. Chem. Phys. 2011, 13, 13873 13900
  14. 14

    It is fairly common for CH···anion bonding to supplement stronger interactions in anionophores. For examples, see ref 12 and the following:

    (a) Yano, M.; Tong, C. C.; Light, M. E.; Schmidtchen, F. P.; Gale, P. A. Org. Biomol. Chem. 2010, 8, 4356
    (b) Fisher, M. G.; Gale, P. A.; Hiscock, J. R.; Hursthouse, M. B.; Light, M. E.; Schmidtchen, F. P.; Tong, C. C. Chem. Commun. 2009, 3017
  15. 15
    (a) Lisbjerg, M.; Jessen, B. M.; Rasmussen, B.; Nielsen, B. E.; Madsen, A. Ø.; Pittelkow, M. Chem. Sci. 2014, 5, 2647
    (b) Lisbjerg, M.; Nielsen, B. E.; Milhøj, B. O.; Sauer, S. P. A.; Pittelkow, M. Org. Biomol. Chem. 2015, 13, 369
  16. 16
    Sisson, A. L.; Clare, J. P.; Taylor, L. H.; Charmant, J. P. H.; Davis, A. P. Chem. Commun. 2003, 2246 2247
  17. 17
    McNally, B. A.; Koulov, A. V.; Smith, B. D.; Joos, J.; Davis, A. P. Chem. Commun. 2005, 1087
  18. 18
    (a) Haynes, C. J. E.; Busschaert, N.; Kirby, I. L.; Herniman, J.; Light, M. E.; Wells, N. J.; Marques, I.; Félix, V.; Gale, P. A. Org. Biomol. Chem. 2014, 12, 62
    (b) Saggiomo, V.; Otto, S.; Marques, I.; Félix, V.; Torroba, T.; Quesada, R. Chem. Commun. 2012, 48, 5274
    (c) Busschaert, N.; Bradberry, S. J.; Wenzel, M.; Haynes, C. J. E.; Hiscock, J. R.; Kirby, I. L.; Karagiannidis, L. E.; Moore, S. J.; Wells, N. J.; Herniman, J.; Langley, G. J.; Horton, P. N.; Light, M. E.; Marques, I.; Costa, P. J.; Félix, V.; Frey, J. G.; Gale, P. A. Chem. Sci. 2013, 4, 3036
  19. 19
    Valkenier, H.; Haynes, C. J. E.; Herniman, J.; Gale, P. A.; Davis, A. P. Chem. Sci. 2014, 5, 1128 1134
  20. 20

    For another example of this phenomenon, see ref 7c.

  21. 21

    The biotin[6]uril hexaesters are not large enough to form unimolecular channels. The height of the biotin[6]uril hexaacid measured from the crystal structures is 16.5–17.2 Å, (15a) while the vesicle membrane thickness is ∼3.4–4.0 nm. (24)

  22. 22
    (a) Moore, S. J.; Haynes, C. J. E.; González, J.; Sutton, J. L.; Brooks, S. J.; Light, M. E.; Herniman, J.; Langley, G. J.; Soto-Cerrato, V.; Pérez-Tomás, R.; Marques, I.; Costa, P. J.; Félix, V.; Gale, P. A. Chem. Sci. 2013, 4, 103
    (b) Busschaert, N.; Karagiannidis, L. E.; Wenzel, M.; Haynes, C. J. E.; Wells, N. J.; Young, P. G.; Makuc, D.; Plavec, J.; Jolliffe, K. A.; Gale, P. A. Chem. Sci. 2014, 5, 1118
  23. 23
    Deng, G.; Dewa, T.; Regen, S. L. J. Am. Chem. Soc. 1996, 118, 8975
  24. 24
    (a) Gullingsrud, J.; Schulten, K. Biophys. J. 2004, 86, 3496
    (b) Leekumjorn, S.; Sum, A. K. J. Phys. Chem. B 2007, 111, 6026

Cited By

Click to copy section linkSection link copied!

This article is cited by 130 publications.

  1. Jinya Du, Jiaxin Su, Yi Xing, Yanming Zhao, Meng Tian, Wenhao Dai, Haifeng Dong. Charge-Reversal NaCl/G-Quartets for Aggregation-Induced Mitochondrial MicroRNA Imaging and Ion-Interference Therapy. Analytical Chemistry 2024, 96 (15) , 5922-5930. https://doi.org/10.1021/acs.analchem.3c05977
  2. Joana Krämer, Rui Kang, Laura M. Grimm, Luisa De Cola, Pierre Picchetti, Frank Biedermann. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chemical Reviews 2022, 122 (3) , 3459-3636. https://doi.org/10.1021/acs.chemrev.1c00746
  3. Laura L. Kiessling, Roger C. Diehl. CH−π Interactions in Glycan Recognition. ACS Chemical Biology 2021, 16 (10) , 1884-1893. https://doi.org/10.1021/acschembio.1c00413
  4. Abhishek Mondal, Javid Ahmad Malla, Harshad Paithankar, Shilpy Sharma, Jeetender Chugh, Pinaki Talukdar. A Pyridyl-Linked Benzimidazolyl Tautomer Facilitates Prodigious H+/Cl– Symport through a Cooperative Protonation and Chloride Ion Recognition. Organic Letters 2021, 23 (15) , 6131-6136. https://doi.org/10.1021/acs.orglett.1c02235
  5. Martin Calvelo, Charlotte I. Lynch, Juan R. Granja, Mark S. P. Sansom, Rebeca Garcia-Fandiño. Effect of Water Models on Transmembrane Self-Assembled Cyclic Peptide Nanotubes. ACS Nano 2021, 15 (4) , 7053-7064. https://doi.org/10.1021/acsnano.1c00155
  6. Hao Zhang, Ruijuan Ye, Yuguang Mu, Tianhu Li, Huaqiang Zeng. Small Molecule-Based Highly Active and Selective K+ Transporters with Potent Anticancer Activities. Nano Letters 2021, 21 (3) , 1384-1391. https://doi.org/10.1021/acs.nanolett.0c04134
  7. Wenqi Liu, Leighton O. Jones, Huang Wu, Charlotte L. Stern, Rebecca A. Sponenburg, George C. Schatz, J. Fraser Stoddart. Supramolecular Gold Stripping from Activated Carbon Using α-Cyclodextrin. Journal of the American Chemical Society 2021, 143 (4) , 1984-1992. https://doi.org/10.1021/jacs.0c11769
  8. Tatsiana Dalidovich, Kamini A. Mishra, Tatsiana Shalima, Marina Kudrjašova, Dzmitry G. Kananovich, Riina Aav. Mechanochemical Synthesis of Amides with Uronium-Based Coupling Reagents: A Method for Hexa-amidation of Biotin[6]uril. ACS Sustainable Chemistry & Engineering 2020, 8 (41) , 15703-15715. https://doi.org/10.1021/acssuschemeng.0c05558
  9. Zaiwen Yang, Yiliang Wang, Xiangrong Liu, Ryan T. Vanderlinden, Ruidong Ni, Xiaopeng Li, Peter J. Stang. Hierarchical Self-Assembly of a Pyrene-Based Discrete Organoplatinum(II) Double-Metallacycle with Triflate Anions via Hydrogen Bonding and Its Tunable Fluorescence Emission. Journal of the American Chemical Society 2020, 142 (32) , 13689-13694. https://doi.org/10.1021/jacs.0c06666
  10. Goutam Kulsi, Achinta Sannigrahi, Snehasis Mishra, Krishna Das Saha, Sriparna Datta, Partha Chattopadhyay, Krishnananda Chattopadhyay. A Novel Cyclic Mobile Transporter Can Induce Apoptosis by Facilitating Chloride Anion Transport into Cells. ACS Omega 2020, 5 (27) , 16395-16405. https://doi.org/10.1021/acsomega.0c00438
  11. Gianni Klesse, Shanlin Rao, Stephen J. Tucker, Mark S.P. Sansom. Induced Polarization in Molecular Dynamics Simulations of the 5-HT3 Receptor Channel. Journal of the American Chemical Society 2020, 142 (20) , 9415-9427. https://doi.org/10.1021/jacs.0c02394
  12. Dawei Zhang, Tanya K. Ronson, Lin Xu, Jonathan R. Nitschke. Transformation Network Culminating in a Heteroleptic Cd6L6L′2 Twisted Trigonal Prism. Journal of the American Chemical Society 2020, 142 (20) , 9152-9157. https://doi.org/10.1021/jacs.0c03798
  13. Hazel A. Fargher, Nathanael Lau, H. Camille Richardson, Paul Ha-Yeon Cheong, Michael M. Haley, Michael D. Pluth, Darren W. Johnson. Tuning Supramolecular Selectivity for Hydrosulfide: Linear Free Energy Relationships Reveal Preferential C–H Hydrogen Bond Interactions. Journal of the American Chemical Society 2020, 142 (18) , 8243-8251. https://doi.org/10.1021/jacs.0c00441
  14. Oindrila Biswas, Nasim Akhtar, Yoya Vashi, Abhishek Saha, Vishnu Kumar, Sudipa Pal, Sachin Kumar, Debasis Manna. Chloride Ion Transport by PITENINs across the Phospholipid Bilayers of Vesicles and Cells. ACS Applied Bio Materials 2020, 3 (2) , 935-944. https://doi.org/10.1021/acsabm.9b00985
  15. Karolina Strakova, Lea Assies, Antoine Goujon, Francesca Piazzolla, Heorhii V. Humeniuk, Stefan Matile. Dithienothiophenes at Work: Access to Mechanosensitive Fluorescent Probes, Chalcogen-Bonding Catalysis, and Beyond. Chemical Reviews 2019, 119 (19) , 10977-11005. https://doi.org/10.1021/acs.chemrev.9b00279
  16. Arseni Borissov, Igor Marques, Jason Y. C. Lim, Vítor Félix, Martin D. Smith, Paul D. Beer. Anion Recognition in Water by Charge-Neutral Halogen and Chalcogen Bonding Foldamer Receptors. Journal of the American Chemical Society 2019, 141 (9) , 4119-4129. https://doi.org/10.1021/jacs.9b00148
  17. Nicolaj N. Andersen, Kristina Eriksen, Micke Lisbjerg, Mille E. Ottesen, Birgitte O. Milhøj, Stephan P. A. Sauer, Michael Pittelkow. Entropy/Enthalpy Compensation in Anion Binding: Biotin[6]uril and Biotin-l-sulfoxide[6]uril Reveal Strong Solvent Dependency. The Journal of Organic Chemistry 2019, 84 (5) , 2577-2584. https://doi.org/10.1021/acs.joc.8b02797
  18. Lucia M. Lee, Maria Tsemperouli, Amalia I. Poblador-Bahamonde, Sebastian Benz, Naomi Sakai, Kaori Sugihara, Stefan Matile. Anion Transport with Pnictogen Bonds in Direct Comparison with Chalcogen and Halogen Bonds. Journal of the American Chemical Society 2019, 141 (2) , 810-814. https://doi.org/10.1021/jacs.8b12554
  19. Nasim Akhtar, Abhishek Saha, Vishnu Kumar, Nirmalya Pradhan, Subhankar Panda, Sudhir Morla, Sachin Kumar, Debasis Manna. Diphenylethylenediamine-Based Potent Anionophores: Transmembrane Chloride Ion Transport and Apoptosis Inducing Activities. ACS Applied Materials & Interfaces 2018, 10 (40) , 33803-33813. https://doi.org/10.1021/acsami.8b06664
  20. Harekrushna Behera and Nandita Madhavan . Anion-Selective Cholesterol Decorated Macrocyclic Transmembrane Ion Carriers. Journal of the American Chemical Society 2017, 139 (37) , 12919-12922. https://doi.org/10.1021/jacs.7b07479
  21. Bahiru Punja Benke, Pulakesh Aich, Younghoon Kim, Kyung Lock Kim, Md Rumum Rohman, Soonsang Hong, In-Chul Hwang, Eun Hui Lee, Joon Ho Roh, and Kimoon Kim . Iodide-Selective Synthetic Ion Channels Based on Shape-Persistent Organic Cages. Journal of the American Chemical Society 2017, 139 (22) , 7432-7435. https://doi.org/10.1021/jacs.7b02708
  22. Dawei Zhang, Tanya K. Ronson, Jesús Mosquera, Alexandre Martinez, Laure Guy, and Jonathan R. Nitschke . Anion Binding in Water Drives Structural Adaptation in an Azaphosphatrane-Functionalized FeII4L4 Tetrahedron. Journal of the American Chemical Society 2017, 139 (19) , 6574-6577. https://doi.org/10.1021/jacs.7b02950
  23. Ye Rin Choi, Bom Lee, Jinhong Park, Wan Namkung, and Kyu-Sung Jeong . Enzyme-Responsive Procarriers Capable of Transporting Chloride Ions across Lipid and Cellular Membranes. Journal of the American Chemical Society 2016, 138 (47) , 15319-15322. https://doi.org/10.1021/jacs.6b10592
  24. Arundhati Roy, Debasis Saha, Arnab Mukherjee, and Pinaki Talukdar . One-Pot Synthesis and Transmembrane Chloride Transport Properties of C3-Symmetric Benzoxazine Urea. Organic Letters 2016, 18 (22) , 5864-5867. https://doi.org/10.1021/acs.orglett.6b02940
  25. Tanmoy Saha, Munshi Sahid Hossain, Debasis Saha, Mayurika Lahiri, and Pinaki Talukdar . Chloride-Mediated Apoptosis-Inducing Activity of Bis(sulfonamide) Anionophores. Journal of the American Chemical Society 2016, 138 (24) , 7558-7567. https://doi.org/10.1021/jacs.6b01723
  26. Blakely W. Tresca, Ryan J. Hansen, Calvin V. Chau, Benjamin P. Hay, Lev N. Zakharov, Michael M. Haley, and Darren W. Johnson . Substituent Effects in CH Hydrogen Bond Interactions: Linear Free Energy Relationships and Influence of Anions. Journal of the American Chemical Society 2015, 137 (47) , 14959-14967. https://doi.org/10.1021/jacs.5b08767
  27. Nicholas G. White and Mark J. MacLachlan . Anion and Cation Effects on Anion-Templated Assembly of Tetrahydroxytriptycene. Crystal Growth & Design 2015, 15 (11) , 5629-5636. https://doi.org/10.1021/acs.cgd.5b01342
  28. Brittany Vinciguerra, Peter Y. Zavalij, and Lyle Isaacs . Synthesis and Recognition Properties of Cucurbit[8]uril Derivatives. Organic Letters 2015, 17 (20) , 5068-5071. https://doi.org/10.1021/acs.orglett.5b02558
  29. Xiaoyong Lu and Lyle Isaacs . Synthesis and Recognition Properties of Enantiomerically Pure Acyclic Cucurbit[n]uril-Type Molecular Containers. Organic Letters 2015, 17 (16) , 4038-4041. https://doi.org/10.1021/acs.orglett.5b01948
  30. Channi Cheng, Zhengxiang Li, Dezhi Zhao, Chengyou Han. Facile synthesis and anion binding properties of a preorganized macrocyclic receptor. Organic & Biomolecular Chemistry 2025, 115 https://doi.org/10.1039/D4OB01760A
  31. Nasim Akhtar, Udyogi N. K. Conthagamage, Sara P. Bucher, Zuliah A. Abdulsalam, Macallister L. Davis, William N. Beavers, Víctor García-López. Thiourea-based rotaxanes: anion transport across synthetic lipid bilayers and antibacterial activity against Staphylococcus aureus. Materials Advances 2024, 5 (21) , 8534-8545. https://doi.org/10.1039/D4MA00794H
  32. Farhad Ali Mohammed, Tangxin Xiao, Leyong Wang, Robert B. P. Elmes. Macrocyclic receptors for anion recognition. Chemical Communications 2024, 60 (83) , 11812-11836. https://doi.org/10.1039/D4CC04521A
  33. Zhao Zhang, Edward G. Sheetz, Maren Pink, Nobuyuki Yamamoto, Amar H. Flood. Cone Angles Quantify and Predict the Affinity and Reactivity of Anion Complexes between Trifluoroborates and Rigid Macrocycles. Angewandte Chemie 2024, 136 (39) https://doi.org/10.1002/ange.202409070
  34. Zhao Zhang, Edward G. Sheetz, Maren Pink, Nobuyuki Yamamoto, Amar H. Flood. Cone Angles Quantify and Predict the Affinity and Reactivity of Anion Complexes between Trifluoroborates and Rigid Macrocycles. Angewandte Chemie International Edition 2024, https://doi.org/10.1002/anie.202409070
  35. Victor Carré, Pascale Godard, Raphaël Méreau, Henri‐Pierre Jacquot de Rouville, Gediminas Jonusauskas, Nathan McClenaghan, Thierry Tassaing, Jean‐Marc Vincent. Photogeneration of Chlorine Radical from a Self‐Assembled Fluorous 4CzIPN•Chloride Complex: Application in C−H Bond Functionalization. Angewandte Chemie 2024, 136 (26) https://doi.org/10.1002/ange.202402964
  36. Victor Carré, Pascale Godard, Raphaël Méreau, Henri‐Pierre Jacquot de Rouville, Gediminas Jonusauskas, Nathan McClenaghan, Thierry Tassaing, Jean‐Marc Vincent. Photogeneration of Chlorine Radical from a Self‐Assembled Fluorous 4CzIPN•Chloride Complex: Application in C−H Bond Functionalization. Angewandte Chemie International Edition 2024, 63 (26) https://doi.org/10.1002/anie.202402964
  37. Esma R. Abdurakhmanova, Debashis Mondal, Hanna Jędrzejewska, Piotr Cmoch, Oksana Danylyuk, Michał J. Chmielewski, Agnieszka Szumna. Supramolecular umpolung: Converting electron-rich resorcin[4]arenes into potent CH-bonding anion receptors and transporters. Chem 2024, 10 (6) , 1910-1924. https://doi.org/10.1016/j.chempr.2024.03.003
  38. Yan‐Fang Wang, Song‐Meng Wang, Xiaobin Zhang, Hao Nian, Li‐Shuo Zheng, Xiaoping Wang, Georg Schreckenbach, Wei Jiang, Liu‐Pan Yang, Li‐Li Wang. Precise Recognition in Water by an Endo ‐Functionalized Cavity: Tuning the Complementarity of Binding Sites. Angewandte Chemie 2023, 135 (47) https://doi.org/10.1002/ange.202310115
  39. Yan‐Fang Wang, Song‐Meng Wang, Xiaobin Zhang, Hao Nian, Li‐Shuo Zheng, Xiaoping Wang, Georg Schreckenbach, Wei Jiang, Liu‐Pan Yang, Li‐Li Wang. Precise Recognition in Water by an Endo ‐Functionalized Cavity: Tuning the Complementarity of Binding Sites. Angewandte Chemie International Edition 2023, 62 (47) https://doi.org/10.1002/anie.202310115
  40. Rubi Moral, Oiyao Appun Pegu, Gopal Das. Terminal substituent-induced differential aggregation and sensing properties: A case study of neutral benzimidazole-based urea receptors. New Journal of Chemistry 2023, 47 (42) , 19625-19632. https://doi.org/10.1039/D3NJ03806H
  41. Matúš Chvojka, Anurag Singh, Alessio Cataldo, Aaron Torres‐Huerta, Marcin Konopka, Vladimír Šindelář, Hennie Valkenier. The Lucigenin Assay: Measuring Anion Transport in Lipid Vesicles**. Analysis & Sensing 2023, 19 https://doi.org/10.1002/anse.202300044
  42. Kai Ye, Zekai Zhang, Zexin Yan, Shihao Pang, Huiting Yang, Xiaonan Sun, Can Liu, Linyong Zhu, Cheng Lian, Chunyan Bao. Molecular rotaxane shuttle-relay accelerates K+/Cl− symport across a lipid membrane. Science China Chemistry 2023, 66 (8) , 2300-2308. https://doi.org/10.1007/s11426-023-1614-7
  43. David Seiferth, Stephen J. Tucker, Philip C. Biggin. Limitations of non-polarizable force fields in describing anion binding poses in non-polar synthetic hosts. Physical Chemistry Chemical Physics 2023, 25 (26) , 17596-17608. https://doi.org/10.1039/D3CP00479A
  44. Y. You, A. Wang, M. Liu. Synthesis and Properties of a New Sulfonamide Modified Hemicucurbituril. Russian Journal of General Chemistry 2023, 93 (7) , 1920-1930. https://doi.org/10.1134/S1070363223070289
  45. Toby G. Johnson, Andrew Docker, Amir Sadeghi-Kelishadi, Matthew J. Langton. Halogen bonding relay and mobile anion transporters with kinetically controlled chloride selectivity. Chemical Science 2023, 14 (19) , 5006-5013. https://doi.org/10.1039/D3SC01170D
  46. Jiayao Li, Changwei Wang, Yirong Mo. Selectivity Rule of Cryptands for Anions: Molecular Rigidity and Bonding Site. Chemistry – A European Journal 2023, 29 (16) https://doi.org/10.1002/chem.202203558
  47. Luis Martínez‐Crespo, Hennie Valkenier. Transmembrane Transport of Bicarbonate by Anion Receptors. ChemPlusChem 2022, 87 (11) https://doi.org/10.1002/cplu.202200266
  48. Dan Qiao, Yuang Chen, Haojing Tan, Ruhong Zhou, Jiandong Feng. De novo design of transmembrane nanopores. Science China Chemistry 2022, 65 (11) , 2122-2143. https://doi.org/10.1007/s11426-022-1354-5
  49. Linda X. Phan, Charlotte I. Lynch, Jason Crain, Mark S.P. Sansom, Stephen J. Tucker. Influence of effective polarization on ion and water interactions within a biomimetic nanopore. Biophysical Journal 2022, 121 (11) , 2014-2026. https://doi.org/10.1016/j.bpj.2022.05.006
  50. Stefan Kubik. When Molecules Meet in Water‐Recent Contributions of Supramolecular Chemistry to the Understanding of Molecular Recognition Processes in Water. ChemistryOpen 2022, 11 (4) https://doi.org/10.1002/open.202200028
  51. Hazel A. Fargher, Tobias J. Sherbow, Michael M. Haley, Darren W. Johnson, Michael D. Pluth. C–H⋯S hydrogen bonding interactions. Chemical Society Reviews 2022, 51 (4) , 1454-1469. https://doi.org/10.1039/D1CS00838B
  52. Saber Mirzaei, Victor M. Espinoza Castro, Raúl Hernández Sánchez. Nonspherical anion sequestration by C–H hydrogen bonding. Chemical Science 2022, 13 (7) , 2026-2032. https://doi.org/10.1039/D1SC07041J
  53. Chen Ma, Yida Zhang, Yuan Zhang, Syed Faheem Askari Rizvi, Guoqing Fu, Xiaoyan Liu, Haixia Zhang. A pH-targeted and NIR-responsive NaCl-nanocarrier for photothermal therapy and ion-interference therapy. Nanomedicine: Nanotechnology, Biology and Medicine 2022, 39 , 102460. https://doi.org/10.1016/j.nano.2021.102460
  54. Jie Yang, Guocan Yu, Jonathan L. Sessler, Injae Shin, Philip A. Gale, Feihe Huang. Artificial transmembrane ion transporters as potential therapeutics. Chem 2021, 7 (12) , 3256-3291. https://doi.org/10.1016/j.chempr.2021.10.028
  55. Laura E. Bickerton, Toby G. Johnson, Aidan Kerckhoffs, Matthew J. Langton. Supramolecular chemistry in lipid bilayer membranes. Chemical Science 2021, 12 (34) , 11252-11274. https://doi.org/10.1039/D1SC03545B
  56. Huang Wu, Yu Wang, Leighton O. Jones, Wenqi Liu, Long Zhang, Bo Song, Xiao‐Yang Chen, Charlotte L. Stern, George C. Schatz, J. Fraser Stoddart. Selective Separation of Hexachloroplatinate(IV) Dianions Based on Exo‐Binding with Cucurbit[6]uril. Angewandte Chemie 2021, 133 (32) , 17728-17735. https://doi.org/10.1002/ange.202104646
  57. Huang Wu, Yu Wang, Leighton O. Jones, Wenqi Liu, Long Zhang, Bo Song, Xiao‐Yang Chen, Charlotte L. Stern, George C. Schatz, J. Fraser Stoddart. Selective Separation of Hexachloroplatinate(IV) Dianions Based on Exo‐Binding with Cucurbit[6]uril. Angewandte Chemie International Edition 2021, 60 (32) , 17587-17594. https://doi.org/10.1002/anie.202104646
  58. Brian J. J. Timmer, Tiddo J. Mooibroek. Anion binding properties of a hollow PdL-cage. Chemical Communications 2021, 57 (58) , 7184-7187. https://doi.org/10.1039/D1CC02663A
  59. Alexander M. Gilchrist, Patrick Wang, Israel Carreira-Barral, Daniel Alonso-Carrillo, Xin Wu, Roberto Quesada, Philip A. Gale. Supramolecular methods: the 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) transport assay. Supramolecular Chemistry 2021, 33 (7) , 325-344. https://doi.org/10.1080/10610278.2021.1999956
  60. Luis Martínez‐Crespo, Sarah H. Hewitt, Nicola Alessandro De Simone, Vladimír Šindelář, Anthony P. Davis, Stephen Butler, Hennie Valkenier. Transmembrane Transport of Bicarbonate Unravelled**. Chemistry – A European Journal 2021, 27 (26) , 7367-7375. https://doi.org/10.1002/chem.202100491
  61. Chenyang Zhang, Jing Zhang, Wencan Li, Shizhong Mao, Zeyuan Dong. Anion Transmembrane Nanochannels from Pore‐Forming Helices Constructed by the Dynamic Covalent Reaction of Dihydrazide and Dialdehyde Units. ChemPlusChem 2021, 86 (3) , 492-495. https://doi.org/10.1002/cplu.202000813
  62. Zhong-Kun Wang, Xiao-Qiao Hong, Jinhui Hu, Yuan-Yuan Xing, Wen-Hua Chen. Synthesis and biological activity of squaramido-tethered bisbenzimidazoles as synthetic anion transporters. RSC Advances 2021, 11 (7) , 3972-3980. https://doi.org/10.1039/D0RA10189C
  63. Miki Mori, Kohei Sato, Toru Ekimoto, Shinichi Okumura, Mitsunori Ikeguchi, Kazuhito V. Tabata, Hiroyuki Noji, Kazushi Kinbara. Imidazolinium‐based Multiblock Amphiphile as Transmembrane Anion Transporter. Chemistry – An Asian Journal 2021, 16 (2) , 147-157. https://doi.org/10.1002/asia.202001106
  64. Pritam Ghosh, Natalia Fridman, Galia Maayan. From Distinct Metallopeptoids to Self‐Assembled Supramolecular Architectures. Chemistry – A European Journal 2021, 27 (2) , 634-640. https://doi.org/10.1002/chem.202003612
  65. Radu-Cristian Mutihac, Andrei A. Bunaciu, Hans-Jürgen Buschmann, Lucia Mutihac. A brief overview on supramolecular analytical chemistry of cucurbit[n]urils and hemicucurbit[n]urils. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2020, 98 (3-4) , 137-148. https://doi.org/10.1007/s10847-020-01019-5
  66. Kamini A. Mishra, Jasper Adamson, Mario Öeren, Sandra Kaabel, Maria Fomitšenko, Riina Aav. Dynamic chiral cyclohexanohemicucurbit[12]uril. Chemical Communications 2020, 56 (93) , 14645-14648. https://doi.org/10.1039/D0CC06817A
  67. Jeffery T. Davis, Philip A. Gale, Roberto Quesada. Advances in anion transport and supramolecular medicinal chemistry. Chemical Society Reviews 2020, 49 (16) , 6056-6086. https://doi.org/10.1039/C9CS00662A
  68. Manzoor Ahmad, Surajit Metya, Aloke Das, Pinaki Talukdar. A Sandwich Azobenzene–Diamide Dimer for Photoregulated Chloride Transport. Chemistry – A European Journal 2020, 26 (40) , 8703-8708. https://doi.org/10.1002/chem.202000400
  69. Xin Wu, Alexander M. Gilchrist, Philip A. Gale. Prospects and Challenges in Anion Recognition and Transport. Chem 2020, 6 (6) , 1296-1309. https://doi.org/10.1016/j.chempr.2020.05.001
  70. Laura E. Bickerton, Alistair J. Sterling, Paul D. Beer, Fernanda Duarte, Matthew J. Langton. Transmembrane anion transport mediated by halogen bonding and hydrogen bonding triazole anionophores. Chemical Science 2020, 11 (18) , 4722-4729. https://doi.org/10.1039/D0SC01467B
  71. Ekaterina Y. Chernikova, Daria V. Berdnikova, Alexander S. Peregudov, Olga A. Fedorova, Yuri V. Fedorov. Encapsulation‐Controlled Photoisomerization of a Styryl Derivative: Stereoselective Formation of the Anti Z ‐Isomer in the Cucurbit[7]uril Cavity. ChemPhysChem 2020, 21 (5) , 442-449. https://doi.org/10.1002/cphc.201901095
  72. Khaleel I. Assaf, Werner M. Nau. Cucurbituril Properties and the Thermodynamic Basis of Host–Guest Binding. 2019, 54-85. https://doi.org/10.1039/9781788015967-00054
  73. Vladimír Šindelář, Tomáš Lízal. Hemicucurbiturils. 2019, 527-545. https://doi.org/10.1039/9781788015967-00527
  74. Elena Prigorchenko, Sandra Kaabel, Triin Narva, Anastassia Baškir, Maria Fomitšenko, Jasper Adamson, Ivar Järving, Kari Rissanen, Toomas Tamm, Riina Aav. Formation and trapping of the thermodynamically unfavoured inverted-hemicucurbit[6]uril. Chemical Communications 2019, 55 (63) , 9307-9310. https://doi.org/10.1039/C9CC04990H
  75. Kenichiro Omoto, Shohei Tashiro, Mitsuhiko Shionoya. Molecular recognition of planar and non-planar aromatic hydrocarbons through multipoint Ag–π bonding in a dinuclear metallo-macrocycle. Chemical Science 2019, 10 (30) , 7172-7176. https://doi.org/10.1039/C9SC02619C
  76. Nasim Akhtar, Nirmalya Pradhan, Abhishek Saha, Vishnu Kumar, Oindrila Biswas, Subhasis Dey, Manisha Shah, Sachin Kumar, Debasis Manna. Tuning the solubility of ionophores: glutathione-mediated transport of chloride ions across hydrophobic membranes. Chemical Communications 2019, 55 (58) , 8482-8485. https://doi.org/10.1039/C9CC04518J
  77. Yun Liu, Wei Zhao, Chun-Hsing Chen, Amar H. Flood. Chloride capture using a C–H hydrogen-bonding cage. Science 2019, 365 (6449) , 159-161. https://doi.org/10.1126/science.aaw5145
  78. Frank Biedermann. Water‐Compatible Host Systems. 2019, 35-77. https://doi.org/10.1002/9783527814923.ch2
  79. Sandra Kaabel, Robin S. Stein, Maria Fomitšenko, Ivar Järving, Tomislav Friščić, Riina Aav. Size‐Control by Anion Templating in Mechanochemical Synthesis of Hemicucurbiturils in the Solid State. Angewandte Chemie 2019, 131 (19) , 6296-6300. https://doi.org/10.1002/ange.201813431
  80. Sandra Kaabel, Robin S. Stein, Maria Fomitšenko, Ivar Järving, Tomislav Friščić, Riina Aav. Size‐Control by Anion Templating in Mechanochemical Synthesis of Hemicucurbiturils in the Solid State. Angewandte Chemie International Edition 2019, 58 (19) , 6230-6234. https://doi.org/10.1002/anie.201813431
  81. Laura A. Jowett, Philip A. Gale. Supramolecular methods: the chloride/nitrate transmembrane exchange assay. Supramolecular Chemistry 2019, 31 (5) , 297-312. https://doi.org/10.1080/10610278.2019.1574017
  82. Ga Young Lee, Katherine L. Bay, Kendall N. Houk. Evaluation of DFT Methods and Implicit Solvation Models for Anion‐Binding Host‐Guest Systems. Helvetica Chimica Acta 2019, 102 (5) https://doi.org/10.1002/hlca.201900032
  83. Hennie Valkenier, Omer Akrawi, Pia Jurček, Kristína Sleziaková, Tomáš Lízal, Kristin Bartik, Vladimír Šindelář. Fluorinated Bambusurils as Highly Effective and Selective Transmembrane Cl−/HCO3− Antiporters. Chem 2019, 5 (2) , 429-444. https://doi.org/10.1016/j.chempr.2018.11.008
  84. Mahdi Nejati Biyareh, Ali Reza Rezvani, Kheibar Dashtian, Morteza Montazerozohori, Mehrorang Ghaedi, Ardavan Masoudi Asl, Jonathan White. Potentiometric Ion-Selective Electrode Based on a New Single Crystal Cadmium(II) Schiff Base Complex for Detection of Fluoride Ion: Central Composite Design Optimization. IEEE Sensors Journal 2019, 19 (2) , 413-425. https://doi.org/10.1109/JSEN.2018.2871433
  85. Dawid Lichosyt, Sylwia Wasiłek, Paweł Dydio, Janusz Jurczak. The Influence of Binding Site Geometry on Anion‐Binding Selectivity: A Case Study of Macrocyclic Receptors Built on the Azulene Skeleton. Chemistry – A European Journal 2018, 24 (45) , 11683-11692. https://doi.org/10.1002/chem.201801460
  86. Laura A. Jowett, Ethan N. W. Howe, Xin Wu, Nathalie Busschaert, Philip A. Gale. New Insights into the Anion Transport Selectivity and Mechanism of Tren‐based Tris‐(thio)ureas. Chemistry – A European Journal 2018, 24 (41) , 10475-10487. https://doi.org/10.1002/chem.201801463
  87. Xi-Hui Yu, Chen-Chen Peng, Xiao-Xiao Sun, Wen-Hua Chen. Synthesis, anionophoric activity and apoptosis-inducing bioactivity of benzimidazolyl-based transmembrane anion transporters. European Journal of Medicinal Chemistry 2018, 152 , 115-125. https://doi.org/10.1016/j.ejmech.2018.04.036
  88. Ting-Ting Ma, Jin Tong, Wen-Qing Sun, Hong-Wei Ma, Shu-Yan Yu. Self-assembly of a Pd-based molecular bowl as anion receptor featured by multiple C H···anion hydrogen bonds. Inorganic Chemistry Communications 2018, 91 , 24-28. https://doi.org/10.1016/j.inoche.2018.01.026
  89. Mariano Macchione, Maria Tsemperouli, Antoine Goujon, Ajith R. Mallia, Naomi Sakai, Kaori Sugihara, Stefan Matile. Mechanosensitive Oligodithienothiophenes: Transmembrane Anion Transport Along Chalcogen‐Bonding Cascades. Helvetica Chimica Acta 2018, 101 (4) https://doi.org/10.1002/hlca.201800014
  90. Nicolaj N. Andersen, Micke Lisbjerg, Kristina Eriksen, Michael Pittelkow. Hemicucurbit[ n ]urils and Their Derivatives – Synthesis and Applications. Israel Journal of Chemistry 2018, 58 (3-4) , 435-448. https://doi.org/10.1002/ijch.201700129
  91. Riina Aav, Kamini Mishra. The Breaking of Symmetry Leads to Chirality in Cucurbituril-Type Hosts. Symmetry 2018, 10 (4) , 98. https://doi.org/10.3390/sym10040098
  92. Dawei Zhang, Tanya K. Ronson, Jesús Mosquera, Alexandre Martinez, Jonathan R. Nitschke. Selective Anion Extraction and Recovery Using a Fe II 4 L 4 Cage. Angewandte Chemie 2018, 130 (14) , 3779-3783. https://doi.org/10.1002/ange.201800459
  93. Dawei Zhang, Tanya K. Ronson, Jesús Mosquera, Alexandre Martinez, Jonathan R. Nitschke. Selective Anion Extraction and Recovery Using a Fe II 4 L 4 Cage. Angewandte Chemie International Edition 2018, 57 (14) , 3717-3721. https://doi.org/10.1002/anie.201800459
  94. Arundhati Roy, Amitosh Gautam, Javid Ahmad Malla, Sohini Sarkar, Arnab Mukherjee, Pinaki Talukdar. Self-assembly of small-molecule fumaramides allows transmembrane chloride channel formation. Chemical Communications 2018, 54 (16) , 2024-2027. https://doi.org/10.1039/C7CC08693H
  95. Christopher M. Dias, Hongyu Li, Hennie Valkenier, Louise E. Karagiannidis, Philip A. Gale, David N. Sheppard, Anthony P. Davis. Anion transport by ortho -phenylene bis-ureas across cell and vesicle membranes. Organic & Biomolecular Chemistry 2018, 16 (7) , 1083-1087. https://doi.org/10.1039/C7OB02787G
  96. Changliang Ren, Xin Ding, Arundhati Roy, Jie Shen, Shaoyuan Zhou, Feng Chen, Sam Fong Yau Li, Haisheng Ren, Yi Yan Yang, Huaqiang Zeng. A halogen bond-mediated highly active artificial chloride channel with high anticancer activity. Chemical Science 2018, 9 (17) , 4044-4051. https://doi.org/10.1039/C8SC00602D
  97. Laura A. Jowett, Ethan N. W. Howe, Vanessa Soto-Cerrato, Wim Van Rossom, Ricardo Pérez-Tomás, Philip A. Gale. Indole-based perenosins as highly potent HCl transporters and potential anti-cancer agents. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-09645-9
  98. Xian-Yi Jin, Jiang-Lin Zhao, Fang Wang, Hang Cong, Zhu Tao. Formation of an interaction complex of hemicucurbit[6]uril and ferrocene. Journal of Organometallic Chemistry 2017, 846 , 1-5. https://doi.org/10.1016/j.jorganchem.2017.05.053
  99. Tânia F.G.G. Cova, Sandra C.C. Nunes, Artur J.M. Valente, Teresa M.V.D. Pinho e Melo, Alberto A.C.C. Pais. Properties and patterns in anion-receptors: A closer look at bambusurils. Journal of Molecular Liquids 2017, 242 , 640-652. https://doi.org/10.1016/j.molliq.2017.07.065
  100. Hennie Valkenier, Christopher M. Dias, Craig P. Butts, Anthony P. Davis. A folding decalin tetra-urea for transmembrane anion transport. Tetrahedron 2017, 73 (33) , 4955-4962. https://doi.org/10.1016/j.tet.2017.04.064
Load all citations

Journal of the American Chemical Society

Cite this: J. Am. Chem. Soc. 2015, 137, 15, 4948–4951
Click to copy citationCitation copied!
https://doi.org/10.1021/jacs.5b02306
Published April 8, 2015

Copyright © 2015 American Chemical Society. This publication is licensed under CC-BY.

Article Views

5734

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Scheme 1

    Scheme 1. Synthetic Pathway to Biotin[6]Uril Hexaesters 2–4a

    Scheme aEsterification of biotin[6]uril 1 to biotin[6]uril hexamethyl ester 2, hexaethyl ester 3, and hexabutyl ester 4 is catalyzed by HCl.

    Figure 1

    Figure 1. Macrocyclic core of biotin[6]urils 14, with side chains replaced by Me groups, modeled binding Cl. CH···Cl distances range from 2.9 to 3.2 Å. For details of the calculation, see SI.

    Figure 2

    Figure 2. (a) Schematic representation of the vesicles used in this study. The transport activity is monitored using the lucigenin assay. Biotin[6]uril hexaesters promote transport of Cl into the vesicles and NO3 out of the vesicle. This process is observed as the quenching of lucigenin fluorescence caused by the increasing amount of chloride inside the vesicle. (b) Part of the vesicle membrane illustrating the carrier mechanism employed by the biotin[6]uril hexaesters. (c) Chloride/nitrate exchange by 2, 3, and 4 at a transporter-to-lipid ratio of 1:1000.

    Figure 3

    Figure 3. Exchange of chloride for different anions by biotin[6]uril ester (4, solid lines) and bis-urea 5 (dashed lines). Red = NO3; green = SO42–; blue = HCO3 (Na+ salts, 225 mM). Transporter-to-lipid ratios were 1:1000 for 4 and 1:25 000 for 5. Transport by compound 5 was assessed at a lower loading because it is ∼25 times more active than 4. At equilibrium (24 mM chloride both inside and outside of the vesicle), F/F0 ≈ 0.5 in NaNO3 and Na2SO4, but ≈ 0.7 in NaHCO3, due to the partial quenching of lucigenin by HCO3.

  • References


    This article references 24 other publications.

    1. 1
      (a) Ashcroft, F. M. Ion Channels and Disease; Academic Press: London, 2000.
      (b) Davis, A. P.; Sheppard, D. N.; Smith, B. D. Chem. Soc. Rev. 2007, 36, 348
      (c) Davis, J. T.; Okunola, O.; Quesada, R. Chem. Soc. Rev. 2010, 39, 3843
      (d) Busschaert, N.; Gale, P. A. Angew. Chem., Int. Ed. 2013, 52, 1374
      (e) Matile, S.; Fyles, T. Acc. Chem. Res. 2013, 46, 2741 2742
    2. 2
      (a) Pressman, B. C. Annu. Rev. Biochem. 1976, 45, 501 530
      (b) Fyles, T. M. In Inclusion Aspects of Membrane Chemistry; Osa, T.; Atwood, J., Eds.; Kluwer: Dordrecht, 1991; Vol. 2, pp 59 110.
    3. 3
      (a) Sessler, J. L.; Eller, L. R.; Cho, W. S.; Nicolaou, S.; Aguilar, A.; Lee, J. T.; Lynch, V. M.; Magda, D. J. Angew. Chem., Int. Ed. 2005, 44, 5989 5992
      (b) Gale, P. A.; Perez-Tomas, R.; Quesada, R. Acc. Chem. Res. 2013, 46, 2801 2813
      (c) Ko, S. K.; Kim, S. K.; Share, A.; Lynch, V. M.; Park, J.; Namkung, W.; Van Rossom, W.; Busschaert, N.; Gale, P. A.; Sessler, J. L.; Shin, I. Nat. Chem. 2014, 6, 885 892
    4. 4
      Wallace, D. P.; Tomich, J. M.; Eppler, J. W.; Iwamoto, T.; Grantham, J. J.; Sullivan, L. P. Biochim. Biophys. Acta 2000, 1464, 69 82
    5. 5
      (a) Gokel, G. W.; Negin, S. Acc. Chem. Res. 2013, 46, 2824 2833
      (b) Vargas Jentzsch, A.; Hennig, A.; Mareda, J.; Matile, S. Acc. Chem. Res. 2013, 46, 2791 2800
    6. 6
      (a) McNally, B. A.; O’Neil, E. J.; Nguyen, A.; Smith, B. D. J. Am. Chem. Soc. 2008, 130, 17274
      (b) Hennig, A.; Fischer, L.; Guichard, G.; Matile, S. J. Am. Chem. Soc. 2009, 131, 16889
    7. 7
      (a) Valkenier, H.; Davis, A. P. Acc. Chem. Res. 2013, 46, 2898
      (b) Koulov, A. V.; Lambert, T. N.; Shukla, R.; Jain, M.; Boon, J. M.; Smith, B. D.; Li, H. Y.; Sheppard, D. N.; Joos, J. B.; Clare, J. P.; Davis, A. P. Angew. Chem., Int. Ed. 2003, 42, 4931 4933
      (c) Hussain, S.; Brotherhood, P. R.; Judd, L. W.; Davis, A. P. J. Am. Chem. Soc. 2011, 133, 1614 1617
      (d) Cooper, J. A.; Street, S. T. G.; Davis, A. P. Angew. Chem., Int. Ed. 2014, 53, 5609
      (e) Valkenier, H.; Judd, L. W.; Li, H.; Hussain, S.; Sheppard, D. N.; Davis, A. P. J. Am. Chem. Soc. 2014, 136, 12507 12512
      (f) Moore, S. J.; Haynes, C. J. E.; Gonzalez, J.; Sutton, J. L.; Brooks, S. J.; Light, M. E.; Herniman, J.; Langley, G. J.; Soto-Cerrato, V.; Perez-Tomas, R.; Marques, I.; Costa, P. J.; Felix, V.; Gale, P. A. Chem. Sci. 2013, 4, 103 117
      (g) Busschaert, N.; Elmes, R. B. P.; Czech, D. D.; Wu, X.; Kirby, I. L.; Peck, E. M.; Hendzel, K. D.; Shaw, S. K.; Chan, B.; Smith, B. D.; Jolliffe, K. A.; Gale, P. A. Chem. Sci. 2014, 5, 3617
      (h) Vargas Jentzsch, A.; Emery, D.; Mareda, J.; Nayak, S. K.; Metrangolo, P.; Resnati, G.; Sakai, N.; Matile, S. Nat. Commun. 2012, 3, 905
    8. 8

      For notable exceptions see:

      (a) Santacroce, P. V.; Okunola, O. A.; Zavalij, P. Y.; Davis, J. T. Chem. Commun. 2006, 3246 3248
      (b) Busschaert, N.; Karagiannidis, L. E.; Wenzel, M.; Haynes, C. J. E.; Wells, N. J.; Young, P. G.; Makuc, D.; Plavec, J.; Jolliffe, K. A.; Gale, P. A. Chem. Sci. 2014, 5, 1118 1127
    9. 9
      Fahlke, C. Am. J. Physiol. Renal Physiol. 2001, 280, F748 F757
    10. 10

      Selectivity is not always observed for natural systems. See:

      Quinton, P. M. Am. J. Physiol. Cell Physiol. 2010, 299, C1222 C1233
    11. 11
      (a) Davis, J. T.; Gale, P. A.; Okunola, O. A.; Prados, P.; Iglesias-Sánchez, J. C.; Torroba, T.; Quesada, R. Nat. Chem. 2009, 1, 138
      (b) Harrel, W. A., Jr.; Bergmeyer, M. L.; Zavalij, P. Y.; Davis, J. T. Chem. Commun. 2010, 46, 3950
      (c) Gale, P. A.; Tong, C. C.; Haynes, C. J. E.; Adeosun, O.; Gross, D. E.; Karnas, E.; Sedenberg, E. M.; Quesada, R.; Sessler, J. L. J. Am. Chem. Soc. 2010, 132, 3240
      (d) Andrews, N. J.; Haynes, C. J. E.; Light, M. E.; Moore, S. J.; Tong, C. C.; Davis, J. T.; Harrell, W. A., Jr.; Gale, P. A. Chem. Sci. 2011, 2, 256
      (e) Busschaert, N.; Gale, P. A.; Haynes, C. J. E.; Light, M. E.; Moore, S. J.; Tong, C. C.; Davis, J. T.; Harrell, W. A., Jr. Chem. Commun. 2010, 46, 6252
    12. 12
      Cai, J.; Sessler, J. L. Chem. Soc. Rev. 2014, 43, 6198
    13. 13
      (a) Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond. In Structural Chemistry and Biology; Oxford University Press: Oxford, 1999; pp 86 89.
      (b) Nishio, M. Phys. Chem. Chem. Phys. 2011, 13, 13873 13900
    14. 14

      It is fairly common for CH···anion bonding to supplement stronger interactions in anionophores. For examples, see ref 12 and the following:

      (a) Yano, M.; Tong, C. C.; Light, M. E.; Schmidtchen, F. P.; Gale, P. A. Org. Biomol. Chem. 2010, 8, 4356
      (b) Fisher, M. G.; Gale, P. A.; Hiscock, J. R.; Hursthouse, M. B.; Light, M. E.; Schmidtchen, F. P.; Tong, C. C. Chem. Commun. 2009, 3017
    15. 15
      (a) Lisbjerg, M.; Jessen, B. M.; Rasmussen, B.; Nielsen, B. E.; Madsen, A. Ø.; Pittelkow, M. Chem. Sci. 2014, 5, 2647
      (b) Lisbjerg, M.; Nielsen, B. E.; Milhøj, B. O.; Sauer, S. P. A.; Pittelkow, M. Org. Biomol. Chem. 2015, 13, 369
    16. 16
      Sisson, A. L.; Clare, J. P.; Taylor, L. H.; Charmant, J. P. H.; Davis, A. P. Chem. Commun. 2003, 2246 2247
    17. 17
      McNally, B. A.; Koulov, A. V.; Smith, B. D.; Joos, J.; Davis, A. P. Chem. Commun. 2005, 1087
    18. 18
      (a) Haynes, C. J. E.; Busschaert, N.; Kirby, I. L.; Herniman, J.; Light, M. E.; Wells, N. J.; Marques, I.; Félix, V.; Gale, P. A. Org. Biomol. Chem. 2014, 12, 62
      (b) Saggiomo, V.; Otto, S.; Marques, I.; Félix, V.; Torroba, T.; Quesada, R. Chem. Commun. 2012, 48, 5274
      (c) Busschaert, N.; Bradberry, S. J.; Wenzel, M.; Haynes, C. J. E.; Hiscock, J. R.; Kirby, I. L.; Karagiannidis, L. E.; Moore, S. J.; Wells, N. J.; Herniman, J.; Langley, G. J.; Horton, P. N.; Light, M. E.; Marques, I.; Costa, P. J.; Félix, V.; Frey, J. G.; Gale, P. A. Chem. Sci. 2013, 4, 3036
    19. 19
      Valkenier, H.; Haynes, C. J. E.; Herniman, J.; Gale, P. A.; Davis, A. P. Chem. Sci. 2014, 5, 1128 1134
    20. 20

      For another example of this phenomenon, see ref 7c.

    21. 21

      The biotin[6]uril hexaesters are not large enough to form unimolecular channels. The height of the biotin[6]uril hexaacid measured from the crystal structures is 16.5–17.2 Å, (15a) while the vesicle membrane thickness is ∼3.4–4.0 nm. (24)

    22. 22
      (a) Moore, S. J.; Haynes, C. J. E.; González, J.; Sutton, J. L.; Brooks, S. J.; Light, M. E.; Herniman, J.; Langley, G. J.; Soto-Cerrato, V.; Pérez-Tomás, R.; Marques, I.; Costa, P. J.; Félix, V.; Gale, P. A. Chem. Sci. 2013, 4, 103
      (b) Busschaert, N.; Karagiannidis, L. E.; Wenzel, M.; Haynes, C. J. E.; Wells, N. J.; Young, P. G.; Makuc, D.; Plavec, J.; Jolliffe, K. A.; Gale, P. A. Chem. Sci. 2014, 5, 1118
    23. 23
      Deng, G.; Dewa, T.; Regen, S. L. J. Am. Chem. Soc. 1996, 118, 8975
    24. 24
      (a) Gullingsrud, J.; Schulten, K. Biophys. J. 2004, 86, 3496
      (b) Leekumjorn, S.; Sum, A. K. J. Phys. Chem. B 2007, 111, 6026
  • Supporting Information

    Supporting Information


    Binding studies, Job plots, and experimental details for the measurement of the chloride transport assays. This material is available free of charge via the Internet at http://pubs.acs.org.


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.