ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Million-Fold Electrical Conductivity Enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E = S, O)

View Author Information
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
Cite this: J. Am. Chem. Soc. 2015, 137, 19, 6164–6167
Publication Date (Web):May 1, 2015
https://doi.org/10.1021/jacs.5b02897

Copyright © 2015 American Chemical Society. This publication is licensed under these Terms of Use.

  • Open Access

Article Views

11310

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (2 MB)
Supporting Info (3)»

Abstract

Reaction of FeCl2 and H4DSBDC (2,5-disulfhydrylbenzene-1,4-dicarboxylic acid) leads to the formation of Fe2(DSBDC), an analogue of M2(DOBDC) (MOF-74, DOBDC4– = 2,5-dihydroxybenzene-1,4-dicarboxylate). The bulk electrical conductivity values of both Fe2(DSBDC) and Fe2(DOBDC) are ∼6 orders of magnitude higher than those of the Mn2+ analogues, Mn2(DEBDC) (E = O, S). Because the metals are of the same formal oxidation state, the increase in conductivity is attributed to the loosely bound Fe2+ β-spin electron. These results provide important insight for the rational design of conductive metal–organic frameworks, highlighting in particular the advantages of iron for synthesizing such materials.

Metal–organic frameworks (MOFs) that display intrinsic electrical conductivity are still rare, but conductivity is emerging as an attractive complement to the inherent porosity of these materials. If high surface area is combined with electrical conductivity or high charge mobility, MOFs could find uses in fields outside traditional areas such as gas storage and separation, and make strides into batteries, (1) supercapacitors, (2) electrocatalysis, (3) and sensing, (4) among others. Although recent reports of conductive MOFs have crystallized several potential avenues toward improved electrical properties, including in-plane π-conjugation, (4, 5) through-space charge transport, (6) through-bond charge transport, (7) and doping, (7d, 8) these design strategies require significant refinement.

In this context, we recently reported Mn2(DSBDC), a MOF-74 analogue that contains (-Mn-S-) chains, and discussed the positive effect of replacing phenoxide by thiophenoxide groups on charge mobility. (7a) While this was inspired by the rich literature of organic conductors, where heavier chalcogens generally lead to better electrical properties, (9) the equally compelling literature of inorganic semiconductors shows, for instance, that iron chalcogenides (10) are better intrinsic conductors than manganese chalcogenides, (11) highlighting that the metal ions may be as important as the chalcogens. Taking a cue from inorganic chalcogenides, we wanted to test the relative importance of the metal ion for MOFs with infinite chains as their secondary building units. To do so, we set out to compare the Mn2+ and Fe2+ analogues of the family of materials known as MOF-74, surmising that replacement of Mn2+ by Fe2+ would lead to superior electrical conductivity, as seen for the inorganic chalcogenides. Here, we show that within isostructural materials, replacing Mn2+ with Fe2+ leads to a million-fold enhancement in electrical conductivity, a considerably more pronounced effect than substituting bridging O atoms with less electronegative S atoms.

[Fe2(DSBDC)(DMF)2x(DMF) was isolated as dark red-purple crystals after heating a degassed and dry solution of H4DSBDC and anhydrous FeCl2 in N,N-dimethylformamide (DMF) at 140 °C under an N2 atmosphere for 24 h, and washing with additional DMF. Single-crystal X-ray diffraction analysis of Fe2(DSBDC)(DMF)·x(DMF) revealed an asymmetric unit containing one Fe atom coordinated by three carboxylate groups, two thiophenoxide groups, and one DMF molecule. The sulfur atoms are coordinated in trans fashion to the Fe2+ atom, with Fe–S bond lengths of 2.444(2) and 2.446(2) Å. This indicates that both S atoms interact with the same d orbital of Fe2+, an important orbital symmetry requirement for efficient charge transport. (12) Although Fe2(DSBDC) is isostructural with Fe2(DOBDC) (13) and Mn2(DOBDC), (14) its structure is only topologically related to that of Mn2(DSBDC). As shown in Figure 1a, whereas Fe2(DSBDC) has a single metal atom in the asymmetric unit, Mn2(DSBDC) has two: one that is octahedrally coordinated by donors on DSBDC4– ligands, and another that is bound by two DMF molecules. Relevantly, the two distinct metal ions in Mn2(DSBDC) reduce the symmetry of the (-Mn-S-) chains, which may negatively affect its charge transport properties. As in other MOF-74 analogues, the (-Fe-S-) chains in Fe2(DSBDC) are bridged by thiophenoxide and carboxylate groups to form a three-dimensional framework with one-dimensional hexagonal pores with a van der Waals diameter of ∼16 Å (Figures 1b and S1).

Figure 1

Figure 1. (a) Parts of the infinite secondary building units in M2(DEBDC)(DMF)2·x(DMF) (M = Fe, Mn; E = S, O). The (-M-E-) chains are represented in purple. (b,c) Partial structures of Fe2(DSBDC)(DMF)2·x(DMF) and Fe2(DSBDC)(DMF)2 as determined by single-crystal X-ray diffraction and DFT structure optimization, respectively. H atoms and solvent molecules are omitted for clarity.

When M2(DEBDC)(DMF)2·x(DMF) are soaked in dichloromethane and then evacuated under vacuum (100 °C, 2 h), they yield M2(DEBDC)(DMF)2, a series of materials that are guest-free and where DMF completes the coordination sphere of all metal sites. Infrared spectroscopy and microelemental analysis confirmed that all guest solvent molecules were removed under these conditions (Figure S4). Surprisingly, powder X-ray diffraction (PXRD) revealed that Fe2(DSBDC)(DMF)2 is distorted in comparison to Fe2(DSBDC)(DMF)2·x(DMF), a distortion that was not observed in the other three analogues (Figures S3 and S5). Mathematical simulation and DFT optimization of completely solvent-free Fe2(DSBDC) (15) gave a structure whose simulated pattern agreed well with the observed PXRD pattern of Fe2(DSBDC)(DMF)2 (see Figure 1c and the Supporting Information). This distortion is reversible: soaking Fe2(DSBDC)(DMF)2 in fresh DMF produced a crystalline phase with a PXRD pattern identical to that of Fe2(DSBDC)(DMF)2·x(DMF) (Figure S6). To our knowledge, although breathing behavior has been observed for several classes of MOFs, (16) it has never been associated with MOF-74 analogues.

N2 sorption analysis revealed Brunauer–Emmet–Teller (BET) surface areas of 232, 241, and 287 m2/g for Mn2(DSBDC)(DMF)2, Fe2(DOBDC)(DMF)2, and Mn2(DOBDC)(DMF)2, respectively, confirming their guest-free nature and permanent porosity (Figure S8). These values are lower than those expected for completely activated MOF-74 analogues because coordinated DMF molecules occupy a significant portion of the pore volume in M2(DEBDC)(DMF)2. Fe2(DSBDC)(DMF)2 exhibited a lower BET surface area of 54 m2/g, likely because the distorted pores in this case are almost entirely occupied by coordinated DMF molecules (Figure S9).

Owing to the small crystallite size of all of these materials, single-crystal measurements of their electrical properties proved unfeasible. Accordingly, we prepared pellets of both M2(DEBDC)(DMF)2·x(DMF) and M2(DEBDC)(DMF)2 materials, for a total of eight samples, all of which were analyzed by two-probe current–voltage techniques. Plots of measured current density versus electric field strength, shown for the as-synthesized samples in Figure 2a and for the guest-free samples in Figure S10, revealed striking differences in electrical conductivity between the Fe and Mn analogues, regardless of their solvation level. Indeed, both Fe2(DSBDC)(DMF)2·x(DMF) (σ = 3.9 × 10–6 S/cm) and Fe2(DOBDC)(DMF)2·x(DMF) (σ = 3.2 × 10–7 S/cm) were ∼6 orders of magnitude more conductive than Mn2(DSBDC)(DMF)2·x(DMF) and Mn2(DOBDC)(DMF)2·x(DMF), which exhibited conductivities of 2.5 × 10–12 and 3.9 × 10–13 S/cm, respectively (Table 1). (17) Although the guest-free materials showed slightly lower conductivities overall, possibly due to additional defects and grain boundaries caused by the solvent exchange and guest removal process, they reflected the same remarkable 6 orders of magnitude difference in conductivity between the Fe and Mn analogues (Table 1). Although at the lower end of intrinsically conductive and porous MOFs, whose conductivity ranges between 10–6 and 102 S/cm, (4-7) the conductivity of the Fe frameworks described here is the highest in the MOF-74 family and is comparable to that of typical organic conductors (>10–6 S/cm). (18)

Figure 2

Figure 2. Electrical properties of M2(DEBDC) (M = Fe, Mn; E = S, O) pressed pellets. (a) Plots of current density versus electric field strength (J–E curves) for M2(DEBDC)(DMF)2·x(DMF) at 297 K. (b) Conductance–temperature relationship for M2(DEBDC)(DMF)2.

To probe the cause of the large difference between the Fe and Mn analogues, we determined the activation energy in M2(DEBDC)(DMF)2 by measuring their pellet conductance under variable temperature between 200 and 420 K. Working with guest-free rather than as-synthesized materials was necessary because our variable-temperature, air-free electrical microprobe setup requires that samples be passed through an evacuation chamber. However, it is reasonable to assume that because neutral guest solvent molecules are unlikely to contribute to charge transport, the activation energies of M2(DEBDC)(DMF)2 are not vastly different and follow the same trends as those of M2(DEBDC)(DMF)2·x(DMF). All samples showed an increase in conductance with increasing temperature, indicative of semiconducting behavior (see Figure 2b). Fitting the respective conductance values, G, to the Arrhenius law (eq 1) revealed notable differences in activation energies, Ea, shown in Table 1. Thus, both Fe2(DSBDC)(DMF)2 (Ea = 0.27 eV) and Fe2(DOBDC)(DMF)2 (Ea = 0.41 eV) had considerably lower activation energies than Mn2(DSBDC)(DMF)2 (Ea = 0.81 eV) and Mn2(DOBDC)(DMF)2 (Ea = 0.55 eV), suggesting that the Fe-based MOFs have smaller band gaps and hence higher charge density than the Mn-based MOFs.(1)

Table 1. Electrical Properties of M2(DEBDC) (M = Fe, Mn; E = S, O)
 Fe2(DSBDC)Mn2(DSBDC)Fe2(DOBDC)Mn2(DOBDC)
σas-synthesized (S/cm)a3.9 × 10–62.5 × 10–123.2 × 10–73.9 × 10–13
σguest-free (S/cm)b5.8 × 10–71.2 × 10–124.8 × 10–83.0 × 10–13
Ea (eV)c0.270.810.410.55
Eg (eV)d1.922.601.472.48
Φ (eV)e3.713.812.813.72
a

Electrical conductivity of M2(DEBDC)(DMF)2·x(DMF) at 297 K.

b

Electrical conductivity of M2(DEBDC)(DMF)2 at 297 K.

c

Activation energy of M2(DEBDC)(DMF)2.

d

Calculated bandgap of M2(DEBDC)(DMF)2.

e

Calculated work function of M2(DEBDC)(DMF)2.

Notably, the addition of a single electron per metal ion (i.e., substitution of d5 Mn2+ for d6 Fe2+) has a much more pronounced positive effect on conductivity than changing the bridging atom from O to S, indicating that the electronic structure of the metal ions plays the most important role in charge conduction in this class of materials. To confirm the oxidation state and high-spin configuration of the Fe atoms, we measured 57Fe Mössbauer spectra of both Fe-based MOFs. As shown in Figures S11 and S12, these spectra revealed well-resolved doublets characterized by isomer shifts of 1.172 and 1.308 mm/s, and quadrupole splittings of 3.218 and 2.739 mm/s, for Fe2(DSBDC) and Fe2(DOBDC), respectively. Because the isomer shifts of both MOFs fall in the expected range of high-spin Fe2+, these experiments demonstrated that oxidation to Fe3+ did not occur during our experiments.

Density functional calculations were used to further probe the differences in electronic structure of M2(DEBDC)(DMF)2, and the significance of the additional d electron associated with the Fe2+ ions. The electronic density of states and ionization potentials of the guest-free system are presented in Figure 3, and detailed in the Supporting Information. Because Fe2(DOBDC) and Mn2(DOBDC) are structurally analogous, while Fe2(DSBDC) and Mn2(DSBDC) differ in the number of metal ions in their asymmetric units, the comparison between Fe2(DOBDC) and Mn2(DOBDC) illustrates best the difference between Mn2+ and Fe2+. Most importantly, the valence band maximum of Mn2(DOBDC) is composed of C-p, O-p, and Mn-d states, while in Fe2(DOBDC) the Fe-d states dominate the valence band, with negligible contribution from ligand orbitals. This difference is attributed to the low binding energy of the filled β-spin d band of Fe2+, which is empty for the d5 high-spin Mn2+ ions. (20) Furthermore, because the lower conduction band in both MOFs is dominated by ligand-based orbitals, the band gaps are narrowed owing to a decreased work function. As a result, the calculated work functions and band gaps of Fe2(DOBDC) are 0.91 and 1.01 eV smaller than those of Mn2(DOBDC), respectively.

Figure 3

Figure 3. Calculated energy bands and projected density of states (DOS) of M2(DEBDC)(DMF)2 (M = Fe, Mn; E = S, O). The work function, Φ, and the absolute energy scale are aligned to vacuum according to ref 19. Gray curves represent total DOS. Blue, teal, yellow, red, and black curves represent projected DOS of Fe, Mn, S, O, and C, respectively.

To assess the relative importance of the chalcogen atom on the charge transport, we also compared the structurally analogous Fe2(DSBDC) and Fe2(DOBDC) materials. First, the valence and conduction bands of these frameworks are flat in reciprocal space (dispersion of <100 meV in all cases). This behavior is indicative of localized orbitals rather than delocalized bands, and is typical of many MOFs. (21) Thus, we anticipate that the primary mode of conduction is through charge hopping. Moreover, because the Fe2+ d orbitals dominate the valence band (83% of the orbital contribution), intervalence transitions between Fe atoms will proceed with little contribution from O. In contrast, due to the enhanced orbital overlap in Fe2(DSBDC), where Fe and S orbitals contribute 53% and 14% to the valence band, transport will occur through both Fe and S in the (-Fe-S-) chains. This mechanism lowers the charge hopping barrier and is also associated with the larger work function of Fe2(DSBDC) compared with that of Fe2(DOBDC). Finally, the increased contribution of C-p states to the valence band in Fe2(DSBDC) compared to Fe2(DOBDC) may also indicate a more efficient interchain transport, which further increases the conductivity of the former.

In summary, the synthesis of a new MOF-74 analogue based on (-Fe-S-) chains led to a material with the highest conductivity in the MOF-74 structural family. The combination of loosely bound Fe2+ β-spin electrons and the low electronegativity of S atoms contributes to the higher relative conductivity of Fe2(DSBDC). Applying similar design principles to other MOFs made from one-dimensional secondary building units should lead to further improvements in electrical properties for materials in this class.

Supporting Information

ARTICLE SECTIONS
Jump To

Experimental details, table of X-ray refinement details, PXRD patterns, IR spectra, I–V curves, Mössbauer spectra, isotherms, computational details, and crystallographic data (CIF). The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b02897.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Author
    • Mircea Dincă - Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States Email: [email protected]
  • Authors
    • Lei Sun - Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
    • Christopher H. Hendon - Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
    • Mikael A. Minier - Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
    • Aron Walsh - Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
  • Notes
    The authors declare no competing financial interest.

Acknowledgment

ARTICLE SECTIONS
Jump To

This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under award no. DE-SC0006937. Part of the characterization was performed at the Shared Experimental Facilities, supported by the NSF under the MRSEC Program (DMR-08-19762). M.D. thanks the Sloan Foundation, the Research Corporation for Science Advancement, and 3M for non-tenured faculty awards. Work in the UK benefited from access to ARCHER through membership in the UK’s HPC Materials Chemistry Consortium, which is funded by EPSRC (Grant No. EP/L00202). Additional support was received from the European Research Council (Grant No. 277757). We thank Prof. S. J. Lippard for use of the Mössbauer spectrometer and Prof. J. R. Long for valuable discussions.

References

ARTICLE SECTIONS
Jump To

This article references 21 other publications.

  1. 1
    (a) Férey, G.; Millange, F.; Morcrette, M.; Serre, C.; Doublet, M.; Grenèche, J.; Tarascon, J. Angew. Chem., Int. Ed. 2007, 46, 3259
    (b) Demir-Cakan, R.; Morcrette, M.; Nouar, F.; Davoisne, C.; Devic, T.; Gonbeau, D.; Dominko, R.; Serre, C.; Férey, G.; Tarascon, J. J. Am. Chem. Soc. 2011, 133, 16154
    (c) Wiers, B. M.; Foo, M.; Balsara, N. P.; Long, J. R. J. Am. Chem. Soc. 2011, 133, 14522
    (d) Zhang, Z.; Yoshikawa, H.; Awaga, K. J. Am. Chem. Soc. 2014, 136, 16112
  2. 2
    Choi, K. M.; Jeong, H. M.; Park, J. H.; Zhang, Y.; Kang, J. K.; Yaghi, O. M. ACS Nano 2014, 8, 7451
  3. 3
    (a) Nohra, B.; Moll, H. E.; Albelo, M. R.; Mialane, P.; Marrot, J.; Mellot-Draznieks, C.; O’Keeffe, M.; Biboum, R. N.; Lemaire, J.; Keita, B.; Nadjo, L.; Dolbecq, A. J. Am. Chem. Soc. 2011, 133, 13363
    (b) Ahrenholtz, S. R.; Epley, C. C.; Morris, A. J. J. Am. Chem. Soc. 2014, 136, 2464
  4. 4
    Campbell, M. G.; Sheberla, D.; Liu, S.; Swager, T. M.; Dincă, M. Angew. Chem., Int. Ed. 2015, 54, 4349
  5. 5
    (a) Hmadeh, M.; Lu, Z.; Liu, Z.; Gándara, F.; Furukawa, H.; Wan, S.; Augustyn, V.; Chang, R.; Liao, L.; Zhou, F.; Perre, E.; Ozolins, V.; Suenaga, K.; Duan, X.; Dunn, B.; Yamamto, Y.; Terasaki, O.; Yaghi, O. M. Chem. Mater. 2012, 24, 3511
    (b) Kambe, T.; Sakamoto, R.; Hoshiko, K.; Takada, K.; Miyachi, M.; Ryu, J.; Sasaki, S.; Kim, J.; Nakazato, K.; Takata, M.; Nishihara, H. J. Am. Chem. Soc. 2013, 135, 2462
    (c) Cui, J.; Xu, Z. Chem. Commun. 2014, 50, 3986
    (d) Sheberla, D.; Sun, L.; Blood-Forsythe, M. A.; Er, S.; Wade, C. R.; Brozek, C. K.; Aspuru-Guzik, A.; Dincă, M. J. Am. Chem. Soc. 2014, 136, 8859
  6. 6
    (a) Narayan, T. C.; Miyakai, T.; Seki, S.; Dincă, M. J. Am. Chem. Soc. 2012, 134, 12932
    (b) Park, S. S.; Hontz, E. R.; Sun, L.; Hendon, C. H.; Walsh, A.; Van Voorhis, T.; Dincă, M. J. Am. Chem. Soc. 2015, 137, 1774
    (c) Avendano, C.; Zhang, Z.; Ota, A.; Zhao, H.; Dunbar, K. R. Angew. Chem., Int. Ed. 2011, 50, 6543
    (d) Zhang, Z.; Zhao, H.; Kojima, H.; Mori, T.; Dunbar, K. R. Chem.—Eur. J. 2013, 19, 3348
  7. 7
    (a) Sun, L.; Miyakai, T.; Seki, S.; Dincă, M. J. Am. Chem. Soc. 2013, 135, 8185
    (b) Gándara, F.; Uribe-Romo, F. J.; Britt, D. K.; Furukawa, H.; Lei, L.; Cheng, R.; Duan, X.; O’Keeffe, M.; Yaghi, O. M. Chem.—Eur. J. 2012, 18, 10595
    (c) Takaishi, S.; Hosoda, M.; Kajiwara, T.; Miyasaka, H.; Yamashita, M.; Nakanishi, Y.; Kitagawa, Y.; Yamaguchi, K.; Kobayashi, A.; Kitagawa, H. Inorg. Chem. 2009, 48, 9048
    (d) Kobayashi, Y.; Jacobs, B.; Allendorf, M. D.; Long, J. R. Chem. Mater. 2010, 22, 4120
  8. 8
    (a) Zeng, M.; Wang, Q.; Tan, Y.; Hu, S.; Zhao, H.; Long, L.; Kurmoo, M. J. Am. Chem. Soc. 2010, 132, 2561
    (b) Talin, A. A.; Centrone, A.; Ford, A. C.; Foster, M. E.; Stavila, V.; Haney, P.; Kinney, R. A.; Szalai, V.; Gabaly, F. E.; Yoon, H. P.; Léonard, F.; Allendorf, M. D. Science 2014, 343, 66
  9. 9
    Holliday, B. J.; Swager, T. M. Chem. Commun. 2005, 23
  10. 10
    (a) Fu, G.; Polity, A.; Volbers, N.; Meyer, B. K.; Mogwitz, B.; Janek, J. Appl. Phys. Lett. 2006, 89, 262113
    (b) Park, J.; Kim, D.; Lee, C.; Kim, D. Bull. Korean Chem. Soc. 1999, 20, 1005
  11. 11
    (a) Makovetskiǐ, G. I.; Galyas, A. I.; Demidenko, O. F.; Yanushkevich, K. I.; Ryabinkina, L. I.; Romanova, O. B. Phys. Solid State 2008, 50, 1826
    (b) Bhide, V. G.; Dani, R. H. Physica 1961, 27, 821
  12. 12
    (a) Anderson, P. W. Phys. Rev. 1950, 79, 350
    (b) Kanamori, J. J. Phys. Chem. Solids 1959, 10, 87
    (c) Tiana, D.; Hendon, C. H.; Walsh, A. Chem. Commun. 2014, 50, 13990
  13. 13
    (a) Bhattacharjee, S.; Choi, J.; Yang, S.; Choi, S. B.; Kim, J.; Ahn, W. J. Nanosci. Nanotechnol. 2010, 10, 135
    (b) Bloch, E. D.; Murray, L. J.; Queen, W. L.; Chavan, S.; Maximoff, S. N.; Bigi, J. P.; Krishna, R.; Peterson, V. K.; Grandjean, F.; Long, G. J.; Smit, B.; Bordiga, S.; Brown, C. M.; Long, J. R. J. Am. Chem. Soc. 2011, 133, 14814
  14. 14
    (a) Wu, H.; Zhou, W.; Yildirim, T. J. Am. Chem. Soc. 2009, 131, 4995
    (b) Cozzolino, A. F.; Brozek, C. K.; Palmer, R. D.; Yano, J.; Li, M.; Dincă, M. J. Am. Chem. Soc. 2014, 136, 3334
  15. 15

    Optimizing Fe2(DSBDC)(DMF)2 itself was computationally unfeasible because the solvent molecules add 72 atoms to the unit cell.

  16. 16
    (a) Barthelet, K.; Marrot, J.; Riou, D.; Férey, G. Angew. Chem., Int. Ed. 2002, 41, 281
    (b) Murdock, C. R.; Hughes, B. C.; Lu, Z.; Jenkins, D. M. Coord. Chem. Rev. 2014, 258–259, 119
  17. 17

    J–E curves and log scale are used in Figure 2a to show the difference among conductivities of various MOFs clearly. See Supporting Information.

  18. 18
    Saito, G.; Yoshida, Y. Top. Curr. Chem. 2012, 321, 67
  19. 19
    Butler, K. T.; Hendon, C. H.; Walsh, A. J. Am. Chem. Soc. 2014, 136, 2703
  20. 20
    Zhang, Q.; Li, B.; Chen, L. Inorg. Chem. 2013, 52, 9356
  21. 21
    Butler, K. T.; Hendon, C. H.; Walsh, A. ACS Appl. Mater. Interfaces 2014, 6, 22044

Cited By

ARTICLE SECTIONS
Jump To

This article is cited by 285 publications.

  1. Yitian Wen, Tian Qin, Yaoyu Zhou. Metal–Organic Frameworks Based Sensor Platforms for Rapid Detection of Contaminants in Wastewater. Langmuir 2024, 40 (10) , 5026-5039. https://doi.org/10.1021/acs.langmuir.3c03545
  2. Rajat Saha, Kajal Gupta, Carlos J. Gómez García. Strategies to Improve Electrical Conductivity in Metal–Organic Frameworks: A Comparative Study. Crystal Growth & Design 2024, 24 (5) , 2235-2265. https://doi.org/10.1021/acs.cgd.3c01162
  3. Margit Aust, Marina I. Schönherr, Dominik P. Halter, Lena Schröck, Thomas Pickl, Simon N. Deger, Mian Z. Hussain, Andreas Jentys, Raphael Bühler, Zihan Zhang, Karsten Meyer, Matthias Kuhl, Johanna Eichhorn, Dana D. Medina, Alexander Pöthig, Roland A. Fischer. Benzene-1,4-Di(dithiocarboxylate) Linker-Based Coordination Polymers of Mn2+, Zn2+, and Mixed-Valence Fe2+/3+. Inorganic Chemistry 2024, 63 (1) , 129-140. https://doi.org/10.1021/acs.inorgchem.3c02471
  4. Ana Martinez-Martinez, Esther Resines-Urien, Lucía Piñeiro-López, Angel Fernández-Blanco, Antonio Lorenzo Mariano, Jorge Albalad, Daniel Maspoch, Roberta Poloni, Jose Alberto Rodríguez-Velamazán, E. Carolina Sañudo, Enrique Burzurí, José Sánchez Costa. Spin Crossover-Assisted Modulation of Electron Transport in a Single-Crystal 3D Metal–Organic Framework. Chemistry of Materials 2023, 35 (15) , 6012-6023. https://doi.org/10.1021/acs.chemmater.3c01049
  5. James Nyakuchena, Sarah Ostresh, Jens Neu, Daniel Streater, Claire Cody, Reagan Hooper, Xiaoyi Zhang, Benjamin Reinhart, Gary W. Brudvig, Jier Huang. Engineering Band Gap and Photoconduction in Semiconducting Metal Organic Frameworks: Metal Node Effect. The Journal of Physical Chemistry Letters 2023, 14 (26) , 5960-5965. https://doi.org/10.1021/acs.jpclett.3c00499
  6. Yezhen Chen, Zhenchao Luan, Yifei Liu, Xianger Xia, Kunkai Ma, Junzhi Lin, Bing Geng, Hui Li. The Preparation of a Colorful Aluminum Flake Powder with Smart Anticorrosion Properties by Encapsulation of Composited Metal–Organic Framework-Derived Layers. Industrial & Engineering Chemistry Research 2022, 61 (43) , 16013-16022. https://doi.org/10.1021/acs.iecr.2c02752
  7. Dmitry Skachkov, Shuang-Long Liu, Jia Chen, George Christou, Arthur F. Hebard, Xiao-Guang Zhang, Samuel B. Trickey, Hai-Ping Cheng. Dipole Switching by Intramolecular Electron Transfer in Single-Molecule Magnetic Complex [Mn12O12(O2CR)16(H2O)4]. The Journal of Physical Chemistry A 2022, 126 (32) , 5265-5272. https://doi.org/10.1021/acs.jpca.2c02585
  8. Deepika Rani, Ajit Singh, Ritu Ladhi, Labhini Singla, Angshuman Roy Choudhury, Kuldeep Kumar Bhasin, Chandan Bera, Monika Singh. Nanochannel Mediated Electrical and Photoconductivity of Metal Organic Nanotubes. ACS Sustainable Chemistry & Engineering 2022, 10 (21) , 6981-6987. https://doi.org/10.1021/acssuschemeng.2c00026
  9. Patricia I. Scheurle, Andre Mähringer, Tabea Haug, Alexander Biewald, Daniel Axthammer, Achim Hartschuh, Lena Harms, Gunther Wittstock, Dana D. Medina, Thomas Bein. Helical Anthracene–Ethyne-Based MOF-74 Analogue. Crystal Growth & Design 2022, 22 (5) , 2849-2853. https://doi.org/10.1021/acs.cgd.1c01145
  10. Jacob McKenzie, Khoa N. Le, Dylan J. Bardgett, Kelsey A. Collins, Thomas Ericson, Michael K. Wojnar, Julie Chouinard, Stephen Golledge, Anthony F. Cozzolino, David C. Johnson, Christopher H. Hendon, Carl K. Brozek. Conductivity in Open-Framework Chalcogenides Tuned via Band Engineering and Redox Chemistry. Chemistry of Materials 2022, 34 (4) , 1905-1920. https://doi.org/10.1021/acs.chemmater.1c04285
  11. Elif Erçarıkcı, Kader Dağcı Kıranşan, Ezgi Topçu. Three-Dimensional ZnCo-MOF Modified Graphene Sponge: Flexible Electrode Material for Symmetric Supercapacitor. Energy & Fuels 2022, 36 (3) , 1735-1745. https://doi.org/10.1021/acs.energyfuels.1c04183
  12. Brian Pattengale, Sarah Ostresh, Charles A. Schmuttenmaer, Jens Neu. Interrogating Light-initiated Dynamics in Metal–Organic Frameworks with Time-resolved Spectroscopy. Chemical Reviews 2022, 122 (1) , 132-166. https://doi.org/10.1021/acs.chemrev.1c00528
  13. Ching-Kit Ho, Chi-Ying Vanessa Li, Liang Gao, Kwong-Yu Chan, Jiawei Chen, Jinyao Tang, Joseph F. Olorunyomi, Changzhong Liao, Tianshou Zhao. Protonated Emeraldine Polyaniline Threaded MIL-101 as a Conductive High Surface Area Nanoporous Electrode. ACS Energy Letters 2021, 6 (11) , 3769-3779. https://doi.org/10.1021/acsenergylett.1c01313
  14. Sungwon Yoon, A. Alec Talin, Vitalie Stavila, Austin M. Mroz, Thomas D. Bennett, Yuping He, David A. Keen, Christopher H. Hendon, Mark D. Allendorf, Monica C. So. From n- to p-Type Material: Effect of Metal Ion on Charge Transport in Metal–Organic Materials. ACS Applied Materials & Interfaces 2021, 13 (44) , 52055-52062. https://doi.org/10.1021/acsami.1c09130
  15. Xuxu Tang Qianhao Geng Weiwei Sun Yong Wang . Chemistry of Metal−Organic Frameworks for Li-Ion Storage and Conversion. , 455-498. https://doi.org/10.1021/bk-2021-1393.ch016
  16. Anurag Prakash Sunda Sonia Yadav . Advances in Environmental Applications of Metal–Organic Frameworks. , 25-52. https://doi.org/10.1021/bk-2021-1395.ch002
  17. Julius J. Oppenheim, Jenna L. Mancuso, Ashley M. Wright, Adam J. Rieth, Christopher H. Hendon, Mircea Dincǎ. Divergent Adsorption Behavior Controlled by Primary Coordination Sphere Anions in the Metal–Organic Framework Ni2X2BTDD. Journal of the American Chemical Society 2021, 143 (40) , 16343-16347. https://doi.org/10.1021/jacs.1c07449
  18. Darsi Rambabu, Alae Eddine Lakraychi, Jiande Wang, Louis Sieuw, Deepak Gupta, Petru Apostol, Géraldine Chanteux, Tom Goossens, Koen Robeyns, Alexandru Vlad. An Electrically Conducting Li-Ion Metal–Organic Framework. Journal of the American Chemical Society 2021, 143 (30) , 11641-11650. https://doi.org/10.1021/jacs.1c04591
  19. Qian Zhao, Jiawei Jiang, Wei Zhao, Sheng-Hua Li, Wenbo Mi, Chun Zhang. Truxone-Based Conductive Metal–Organic Frameworks for the Oxygen Reductive Reaction. The Journal of Physical Chemistry C 2021, 125 (23) , 12690-12698. https://doi.org/10.1021/acs.jpcc.1c03418
  20. Nina Tymińska, Mikaël Kepenekian. Interplay between Electronic, Magnetic, and Transport Properties in Metal Organic–Radical Frameworks. The Journal of Physical Chemistry C 2021, 125 (20) , 11225-11234. https://doi.org/10.1021/acs.jpcc.1c02509
  21. Eric M. Johnson, Stefan Ilic, Amanda J. Morris. Design Strategies for Enhanced Conductivity in Metal–Organic Frameworks. ACS Central Science 2021, 7 (3) , 445-453. https://doi.org/10.1021/acscentsci.1c00047
  22. Hao Liu, Yongshuai Wang, Zhengsheng Qin, Dan Liu, Hai Xu, Huanli Dong, Wenping Hu. Electrically Conductive Coordination Polymers for Electronic and Optoelectronic Device Applications. The Journal of Physical Chemistry Letters 2021, 12 (6) , 1612-1630. https://doi.org/10.1021/acs.jpclett.0c02988
  23. Andreas Kourtellaris, Marios S. Markoulides, Nikos Chronakis, Simon J. Teat, John C. Plakatouras, Anastasios J. Tasiopoulos. Isoreticular Design of Two Novel Metal Organic Frameworks and Their Single-Crystal-to-Single-Crystal Solvent Exchange Properties. Crystal Growth & Design 2020, 20 (12) , 7822-7832. https://doi.org/10.1021/acs.cgd.0c01108
  24. Zi-You Zhang, Yan Su, Lin-Xi Shi, Shu-Fang Li, Florence Fabunmi, Shun-Li Li, Tao Yu, Zhong-Ning Chen, Zhi Su, Hong-Ke Liu. Coordination-Bond-Driven Dissolution–Recrystallization Structural Transformation with the Expansion of Cuprous Halide Aggregate. Inorganic Chemistry 2020, 59 (18) , 13326-13334. https://doi.org/10.1021/acs.inorgchem.0c01698
  25. Ashok Yadav, Dillip K. Panda, Shiyu Zhang, Wei Zhou, Sourav Saha. Electrically Conductive 3D Metal–Organic Framework Featuring π-Acidic Hexaazatriphenylene Hexacarbonitrile Ligands with Anion−π Interaction and Efficient Charge-Transport Capabilities. ACS Applied Materials & Interfaces 2020, 12 (36) , 40613-40619. https://doi.org/10.1021/acsami.0c12388
  26. Martin P. van Koeverden, Brendan F. Abrahams, Deanna M. D’Alessandro, Patrick W. Doheny, Carol Hua, Timothy A. Hudson, Guy N. L. Jameson, Keith S. Murray, Wasinee Phonsri, Richard Robson, Ashley L. Sutton. Tuning Charge-State Localization in a Semiconductive Iron(III)–Chloranilate Framework Magnet Using a Redox-Active Cation. Chemistry of Materials 2020, 32 (17) , 7551-7563. https://doi.org/10.1021/acs.chemmater.0c03132
  27. Yingxue Diao, Nanfeng Xu, Mu-Qing Li, Xunjin Zhu, Zhengtao Xu. Porphyrin Grafting on a Mercapto-Equipped Zr(IV)-Carboxylate Framework Enhances Photocatalytic Hydrogen Production. Inorganic Chemistry 2020, 59 (17) , 12643-12649. https://doi.org/10.1021/acs.inorgchem.0c01744
  28. Jenna L. Mancuso, Austin M. Mroz, Khoa N. Le, Christopher H. Hendon. Electronic Structure Modeling of Metal–Organic Frameworks. Chemical Reviews 2020, 120 (16) , 8641-8715. https://doi.org/10.1021/acs.chemrev.0c00148
  29. Lilia S. Xie, Grigorii Skorupskii, Mircea Dincă. Electrically Conductive Metal–Organic Frameworks. Chemical Reviews 2020, 120 (16) , 8536-8580. https://doi.org/10.1021/acs.chemrev.9b00766
  30. Andrew S. Rosen, M. Rasel Mian, Timur Islamoglu, Haoyuan Chen, Omar K. Farha, Justin M. Notestein, Randall Q. Snurr. Tuning the Redox Activity of Metal–Organic Frameworks for Enhanced, Selective O2 Binding: Design Rules and Ambient Temperature O2 Chemisorption in a Cobalt–Triazolate Framework. Journal of the American Chemical Society 2020, 142 (9) , 4317-4328. https://doi.org/10.1021/jacs.9b12401
  31. Yoshinobu Kamakura, Pondchanok Chinapang, Shigeyuki Masaoka, Akinori Saeki, Kazuyoshi Ogasawara, Shigeto R. Nishitani, Hirofumi Yoshikawa, Tetsuro Katayama, Naoto Tamai, Kunihisa Sugimoto, Daisuke Tanaka. Semiconductive Nature of Lead-Based Metal–Organic Frameworks with Three-Dimensionally Extended Sulfur Secondary Building Units. Journal of the American Chemical Society 2020, 142 (1) , 27-32. https://doi.org/10.1021/jacs.9b10436
  32. Maximilian Kriebel, Matthias Hennemann, Frank R. Beierlein, Dana D. Medina, Thomas Bein, Timothy Clark. Propagation of Holes and Electrons in Metal–Organic Frameworks. Journal of Chemical Information and Modeling 2019, 59 (12) , 5057-5064. https://doi.org/10.1021/acs.jcim.9b00461
  33. Amina Khatun, Dillip K. Panda, Nickolas Sayresmith, Michael G. Walter, Sourav Saha. Thiazolothiazole-Based Luminescent Metal–Organic Frameworks with Ligand-to-Ligand Energy Transfer and Hg2+-Sensing Capabilities. Inorganic Chemistry 2019, 58 (19) , 12707-12715. https://doi.org/10.1021/acs.inorgchem.9b01595
  34. Farzaneh Rouhani, Fatemeh Rafizadeh-Masuleh, Ali Morsali. Highly Electroconductive Metal–Organic Framework: Tunable by Metal Ion Sorption Quantity. Journal of the American Chemical Society 2019, 141 (28) , 11173-11182. https://doi.org/10.1021/jacs.9b04173
  35. Brian Pattengale, Jens Neu, Sarah Ostresh, Gongfang Hu, Jacob A. Spies, Ryotaro Okabe, Gary W. Brudvig, Charles A. Schmuttenmaer. Metal–Organic Framework Photoconductivity via Time-Resolved Terahertz Spectroscopy. Journal of the American Chemical Society 2019, 141 (25) , 9793-9797. https://doi.org/10.1021/jacs.9b04338
  36. Huajun Yang, Fang Peng, Candy Dang, Yong Wang, Dandan Hu, Xiang Zhao, Pingyun Feng, Xianhui Bu. Ligand Charge Separation To Build Highly Stable Quasi-Isomer of MOF-74-Zn. Journal of the American Chemical Society 2019, 141 (25) , 9808-9812. https://doi.org/10.1021/jacs.9b04432
  37. Andrew S. Rosen, Justin M. Notestein, Randall Q. Snurr. Structure–Activity Relationships That Identify Metal–Organic Framework Catalysts for Methane Activation. ACS Catalysis 2019, 9 (4) , 3576-3587. https://doi.org/10.1021/acscatal.8b05178
  38. Noah E. Horwitz, Jiaze Xie, Alexander S. Filatov, Robert J. Papoular, William E. Shepard, David Z. Zee, Mia P. Grahn, Chloe Gilder, John S. Anderson. Redox-Active 1D Coordination Polymers of Iron–Sulfur Clusters. Journal of the American Chemical Society 2019, 141 (9) , 3940-3951. https://doi.org/10.1021/jacs.8b12339
  39. Mohamed H. Hassan, Rana R. Haikal, Tawheed Hashem, Julia Rinck, Franz Koeniger, Peter Thissen, Stefan Heiβler, Christof Wöll, Mohamed H. Alkordi. Electrically Conductive, Monolithic Metal–Organic Framework–Graphene (MOF@G) Composite Coatings. ACS Applied Materials & Interfaces 2019, 11 (6) , 6442-6447. https://doi.org/10.1021/acsami.8b20951
  40. Yan-Lung Wong, Yingxue Diao, Jun He, Matthias Zeller, Zhengtao Xu. A Thiol-Functionalized UiO-67-Type Porous Single Crystal: Filling in the Synthetic Gap. Inorganic Chemistry 2019, 58 (2) , 1462-1468. https://doi.org/10.1021/acs.inorgchem.8b03000
  41. Jesse G. Park, Michael L. Aubrey, Julia Oktawiec, Khetpakorn Chakarawet, Lucy E. Darago, Fernande Grandjean, Gary J. Long, Jeffrey R. Long. Charge Delocalization and Bulk Electronic Conductivity in the Mixed-Valence Metal–Organic Framework Fe(1,2,3-triazolate)2(BF4)x. Journal of the American Chemical Society 2018, 140 (27) , 8526-8534. https://doi.org/10.1021/jacs.8b03696
  42. Lilia S. Xie, Lei Sun, Ruomeng Wan, Sarah S. Park, Jordan A. DeGayner, Christopher H. Hendon, Mircea Dincă. Tunable Mixed-Valence Doping toward Record Electrical Conductivity in a Three-Dimensional Metal–Organic Framework. Journal of the American Chemical Society 2018, 140 (24) , 7411-7414. https://doi.org/10.1021/jacs.8b03604
  43. Ben A. Johnson, Asamanjoy Bhunia, Honghan Fei, Seth M. Cohen, and Sascha Ott . Development of a UiO-Type Thin Film Electrocatalysis Platform with Redox-Active Linkers. Journal of the American Chemical Society 2018, 140 (8) , 2985-2994. https://doi.org/10.1021/jacs.7b13077
  44. Michael E. Ziebel, Lucy E. Darago, and Jeffrey R. Long . Control of Electronic Structure and Conductivity in Two-Dimensional Metal–Semiquinoid Frameworks of Titanium, Vanadium, and Chromium. Journal of the American Chemical Society 2018, 140 (8) , 3040-3051. https://doi.org/10.1021/jacs.7b13510
  45. Siping Wang, Jie Liu, Hongmei Zhao, Zhifen Guo, Hongzhu Xing, and Yuan Gao . Electrically Conductive Coordination Polymer for Highly Selective Chemiresistive Sensing of Volatile Amines. Inorganic Chemistry 2018, 57 (2) , 541-544. https://doi.org/10.1021/acs.inorgchem.7b02464
  46. Bedika Phukan, Samir Ghorai, Kashmiri Deka, Pritam Deb, and Chandan Mukherjee . Interactions of Alkali and Alkaline-Earth Metals in Water-Soluble Heterometallic FeIII/M (M = Na+, K+, Ca2+)-Type Coordination Complex. Crystal Growth & Design 2018, 18 (1) , 531-539. https://doi.org/10.1021/acs.cgd.7b01588
  47. Anouck M. Champsaur, Jaeeun Yu, Xavier Roy, Daniel W. Paley, Michael L. Steigerwald, Colin Nuckolls, and Christopher M. Bejger . Two-Dimensional Nanosheets from Redox-Active Superatoms. ACS Central Science 2017, 3 (9) , 1050-1055. https://doi.org/10.1021/acscentsci.7b00328
  48. Barun Dhara, Vikash Kumar, Kriti Gupta, Plawan Kumar Jha, and Nirmalya Ballav . Giant Enhancement of Carrier Mobility in Bimetallic Coordination Polymers. ACS Omega 2017, 2 (8) , 4488-4493. https://doi.org/10.1021/acsomega.7b00931
  49. Christopher H. Hendon, Adam J. Rieth, Maciej D. Korzyński, and Mircea Dincă . Grand Challenges and Future Opportunities for Metal–Organic Frameworks. ACS Central Science 2017, 3 (6) , 554-563. https://doi.org/10.1021/acscentsci.7b00197
  50. Christopher H. Hendon, Keith T. Butler, Alex M. Ganose, Yuriy Román-Leshkov, David O. Scanlon, Geoffrey A. Ozin, and Aron Walsh . Electroactive Nanoporous Metal Oxides and Chalcogenides by Chemical Design. Chemistry of Materials 2017, 29 (8) , 3663-3670. https://doi.org/10.1021/acs.chemmater.7b00464
  51. Ekaterina A. Dolgopolova, Amy J. Brandt, Otega A. Ejegbavwo, Audrey S. Duke, Thathsara D. Maddumapatabandi, Randima P. Galhenage, Bryon W. Larson, Obadiah G. Reid, Salai C. Ammal, Andreas Heyden, Mvs Chandrashekhar, Vitalie Stavila, Donna A. Chen, and Natalia B. Shustova . Electronic Properties of Bimetallic Metal–Organic Frameworks (MOFs): Tailoring the Density of Electronic States through MOF Modularity. Journal of the American Chemical Society 2017, 139 (14) , 5201-5209. https://doi.org/10.1021/jacs.7b01125
  52. Jordan A. DeGayner, Ie-Rang Jeon, Lei Sun, Mircea Dincă, and T. David Harris . 2D Conductive Iron-Quinoid Magnets Ordering up to Tc = 105 K via Heterogenous Redox Chemistry. Journal of the American Chemical Society 2017, 139 (11) , 4175-4184. https://doi.org/10.1021/jacs.7b00705
  53. Airi Kawamura, Arin R. Greenwood, Alexander S. Filatov, Audrey T. Gallagher, Giulia Galli, and John S. Anderson . Incorporation of Pyrazine and Bipyridine Linkers with High-Spin Fe(II) and Co(II) in a Metal–Organic Framework. Inorganic Chemistry 2017, 56 (6) , 3349-3356. https://doi.org/10.1021/acs.inorgchem.6b02883
  54. Jack D. Evans, Guillaume Fraux, Romain Gaillac, Daniela Kohen, Fabien Trousselet, Jean-Mathieu Vanson, François-Xavier Coudert. Computational Chemistry Methods for Nanoporous Materials. Chemistry of Materials 2017, 29 (1) , 199-212. https://doi.org/10.1021/acs.chemmater.6b02994
  55. Lihong Wei, Baihai Li, Qiuju Zhang, Liang Chen, and Xiao Cheng Zeng . Monopolar Magnetic MOF-74 with Hybrid Node Ni–Fe. The Journal of Physical Chemistry C 2016, 120 (47) , 26908-26914. https://doi.org/10.1021/acs.jpcc.6b09175
  56. Lei Sun, Sarah S. Park, Dennis Sheberla, and Mircea Dincă . Measuring and Reporting Electrical Conductivity in Metal–Organic Frameworks: Cd2(TTFTB) as a Case Study. Journal of the American Chemical Society 2016, 138 (44) , 14772-14782. https://doi.org/10.1021/jacs.6b09345
  57. Orlando J. Silveira, Simone S. Alexandre, and Helio Chacham . Electron States of 2D Metal–Organic and Covalent–Organic Honeycomb Frameworks: Ab Initio Results and a General Fitting Hamiltonian. The Journal of Physical Chemistry C 2016, 120 (35) , 19796-19803. https://doi.org/10.1021/acs.jpcc.6b05081
  58. Benjamin Le Ouay, Mickael Boudot, Takashi Kitao, Takeshi Yanagida, Susumu Kitagawa, and Takashi Uemura . Nanostructuration of PEDOT in Porous Coordination Polymers for Tunable Porosity and Conductivity. Journal of the American Chemical Society 2016, 138 (32) , 10088-10091. https://doi.org/10.1021/jacs.6b05552
  59. Barun Dhara, Sanjog S. Nagarkar, Jitender Kumar, Vikash Kumar, Plawan Kumar Jha, Sujit K. Ghosh, Sunil Nair, and Nirmalya Ballav . Increase in Electrical Conductivity of MOF to Billion-Fold upon Filling the Nanochannels with Conducting Polymer. The Journal of Physical Chemistry Letters 2016, 7 (15) , 2945-2950. https://doi.org/10.1021/acs.jpclett.6b01236
  60. Christopher H. Hendon, Aron Walsh, and Mircea Dincă . Frontier Orbital Engineering of Metal–Organic Frameworks with Extended Inorganic Connectivity: Porous Alkaline-Earth Oxides. Inorganic Chemistry 2016, 55 (15) , 7265-7269. https://doi.org/10.1021/acs.inorgchem.6b00979
  61. Michael E. Foster, Karl Sohlberg, Catalin D. Spataru, and Mark D. Allendorf . Proposed Modification of the Graphene Analogue Ni3(HITP)2 To Yield a Semiconducting Material. The Journal of Physical Chemistry C 2016, 120 (27) , 15001-15008. https://doi.org/10.1021/acs.jpcc.6b05746
  62. Xue-Feng Lu, Pei-Qin Liao, Jia-Wei Wang, Jun-Xi Wu, Xun-Wei Chen, Chun-Ting He, Jie-Peng Zhang, Gao-Ren Li, and Xiao-Ming Chen . An Alkaline-Stable, Metal Hydroxide Mimicking Metal–Organic Framework for Efficient Electrocatalytic Oxygen Evolution. Journal of the American Chemical Society 2016, 138 (27) , 8336-8339. https://doi.org/10.1021/jacs.6b03125
  63. Ananya Sengupta, Subhadeep Datta, Chenliang Su, Tun Seng Herng, Jun Ding, Jagadese J. Vittal, and Kian Ping Loh . Tunable Electrical Conductivity and Magnetic Property of the Two Dimensional Metal Organic Framework [Cu(TPyP)Cu2(O2CCH3)4]. ACS Applied Materials & Interfaces 2016, 8 (25) , 16154-16159. https://doi.org/10.1021/acsami.6b03073
  64. Ie-Rang Jeon, Lei Sun, Bogdan Negru, Richard P. Van Duyne, Mircea Dincă, and T. David Harris . Solid-State Redox Switching of Magnetic Exchange and Electronic Conductivity in a Benzoquinoid-Bridged MnII Chain Compound. Journal of the American Chemical Society 2016, 138 (20) , 6583-6590. https://doi.org/10.1021/jacs.6b02485
  65. Yuanjing Cui, Bin Li, Huajun He, Wei Zhou, Banglin Chen, and Guodong Qian . Metal–Organic Frameworks as Platforms for Functional Materials. Accounts of Chemical Research 2016, 49 (3) , 483-493. https://doi.org/10.1021/acs.accounts.5b00530
  66. Zhongyue Zhang, Hirofumi Yoshikawa, and Kunio Awaga . Discovery of a “Bipolar Charging” Mechanism in the Solid-State Electrochemical Process of a Flexible Metal–Organic Framework. Chemistry of Materials 2016, 28 (5) , 1298-1303. https://doi.org/10.1021/acs.chemmater.5b04075
  67. Ie-Rang Jeon, Bogdan Negru, Richard P. Van Duyne, and T. David Harris . A 2D Semiquinone Radical-Containing Microporous Magnet with Solvent-Induced Switching from Tc = 26 to 80 K. Journal of the American Chemical Society 2015, 137 (50) , 15699-15702. https://doi.org/10.1021/jacs.5b10382
  68. Lucy E. Darago, Michael L. Aubrey, Chung Jui Yu, Miguel I. Gonzalez, and Jeffrey R. Long . Electronic Conductivity, Ferrimagnetic Ordering, and Reductive Insertion Mediated by Organic Mixed-Valence in a Ferric Semiquinoid Metal–Organic Framework. Journal of the American Chemical Society 2015, 137 (50) , 15703-15711. https://doi.org/10.1021/jacs.5b10385
  69. Michael G. Campbell, Sophie F. Liu, Timothy M. Swager, and Mircea Dincă . Chemiresistive Sensor Arrays from Conductive 2D Metal–Organic Frameworks. Journal of the American Chemical Society 2015, 137 (43) , 13780-13783. https://doi.org/10.1021/jacs.5b09600
  70. Sameer Patwardhan and George C. Schatz . Theoretical Investigation of Charge Transfer in Metal Organic Frameworks for Electrochemical Device Applications. The Journal of Physical Chemistry C 2015, 119 (43) , 24238-24247. https://doi.org/10.1021/acs.jpcc.5b06065
  71. Michael L. Aubrey and Jeffrey R. Long . A Dual−Ion Battery Cathode via Oxidative Insertion of Anions in a Metal–Organic Framework. Journal of the American Chemical Society 2015, 137 (42) , 13594-13602. https://doi.org/10.1021/jacs.5b08022
  72. Phuong T. K. Nguyen, Huong T. D. Nguyen, Hung Q. Pham, Jaheon Kim, Kyle E. Cordova, and Hiroyasu Furukawa . Synthesis and Selective CO2 Capture Properties of a Series of Hexatopic Linker-Based Metal–Organic Frameworks. Inorganic Chemistry 2015, 54 (20) , 10065-10072. https://doi.org/10.1021/acs.inorgchem.5b01900
  73. Deok Yeon Lee, Eun-Kyung Kim, Nabeen K. Shrestha, Danil W. Boukhvalov, Joong Kee Lee, and Sung-Hwan Han . Charge Transfer-Induced Molecular Hole Doping into Thin Film of Metal–Organic Frameworks. ACS Applied Materials & Interfaces 2015, 7 (33) , 18501-18507. https://doi.org/10.1021/acsami.5b04771
  74. Carl K. Brozek, Vladimir K. Michaelis, Ta-Chung Ong, Luca Bellarosa, Núria López, Robert G. Griffin, and Mircea Dincă . Dynamic DMF Binding in MOF-5 Enables the Formation of Metastable Cobalt-Substituted MOF-5 Analogues. ACS Central Science 2015, 1 (5) , 252-260. https://doi.org/10.1021/acscentsci.5b00247
  75. Rongmei Zhu, Limei Liu, Guangxun Zhang, Yi Zhang, Yuxuan Jiang, Huan Pang. Advances in electrochemistry of intrinsic conductive metal-organic frameworks and their composites: Mechanisms, synthesis and applications. Nano Energy 2024, 122 , 109333. https://doi.org/10.1016/j.nanoen.2024.109333
  76. Mohammad Ali Abdelkareem, A. Qaisar, E.T. Sayed, N. Shehata, J.B.M. Parambath, Abdul Hai Alami, A.G. Olabi. Recent advances on metal-organic frameworks (MOFs) and their applications in energy conversion devices: Technical review. Energy 2024, 276 , 131127. https://doi.org/10.1016/j.energy.2024.131127
  77. Xiaolin Zhao, Yan-Ni Li, Guang-Rui Si, Youwei Wang, Erhong Song, Wujie Qiu, Jian-Rong Li, Tao Zhang, Jianjun Liu. Enhancing cathodic redox of metal-organic frameworks through biomimetic O2 adsorption. Energy Storage Materials 2024, 68 , 103338. https://doi.org/10.1016/j.ensm.2024.103338
  78. Sanjaya Viraj Bandara, Ishanie Rangeeka Perera. MOF Thin Films as Electrochemical Sensor. 2024, 175-199. https://doi.org/10.1002/9783527834266.ch10
  79. Nicolas Zigon, Federica Solano, Pascale Auban-Senzier, Stéphane Grolleau, Thomas Devic, Pavel N. Zolotarev, Davide M. Proserpio, Bolesław Barszcz, Iwona Olejniczak, Narcis Avarvari. A redox active rod coordination polymer from tetrakis(4-carboxylic acid biphenyl)tetrathiafulvalene. Dalton Transactions 2024, 53 (10) , 4805-4813. https://doi.org/10.1039/D3DT04280D
  80. Akashdeep Sharma, Sunil Babu Eadi, Hemanth Noothalapati, Michal Otyepka, Hi-Deok Lee, Kolleboyina Jayaramulu. Porous materials as effective chemiresistive gas sensors. Chemical Society Reviews 2024, 53 (5) , 2530-2577. https://doi.org/10.1039/D2CS00761D
  81. Mu-Qing Li, Yulin Cao, Lei Qin, Hua Cheng, Weimin Yang, Zhouguang Lu. Layered coordination polymer with two-dimensional covalent bismuth-organic networks: Semiconductor and lithium ion storage. Nano Research 2024, 17 (3) , 2181-2185. https://doi.org/10.1007/s12274-023-6367-6
  82. Sydney M. Angel, Nicholas S. Barnett, A. Alec Talin, Michael E. Foster, Vitalie Stavila, Mark D. Allendorf, Monica C. So. From insulator to semiconductor: effect of host–guest interactions on charge transport in M-MOF-74 metal–organic frameworks. Journal of Materials Chemistry C 2024, 12 (8) , 2699-2704. https://doi.org/10.1039/D3TC04155G
  83. Mozhgan Shahmirzaee, Atsushi Nagai. An Appraisal for Providing Charge Transfer (CT) Through Synthetic Porous Frameworks for their Semiconductor Applications. Small 2024, 132 https://doi.org/10.1002/smll.202307828
  84. Ryohei Akiyoshi, Akinori Saeki, Kazuyoshi Ogasawara, Daisuke Tanaka. Impact of substituent position on crystal structure and photoconductivity in 1D and 2D lead( ii ) benzenethiolate coordination polymers. Journal of Materials Chemistry C 2024, 12 (6) , 1958-1964. https://doi.org/10.1039/D3TC04362B
  85. Hyegi Min, Ohchan Kwon, Jihyun Lee, Eunji Choi, Jihee Kim, Nahyeon Lee, Kiwon Eum, Kyu Hyoung Lee, Dae Woo Kim, Wooyoung Lee. N‐Carbon‐Doped Binary Nanophase of Metal Oxide/Metal–Organic Framework for Extremely Sensitive and Selective Gas Response. Advanced Materials 2024, 36 (8) https://doi.org/10.1002/adma.202309041
  86. Bing Chen, Jiaoran Wang, Linzhuang Peng, Qiang Wang, Yuan Wang, Xiuwen Xu. Radiation‐Responsive Metal–Organic Frameworks: Fundamentals and Applications. Advanced Functional Materials 2024, 34 (9) https://doi.org/10.1002/adfm.202310270
  87. Kendra Hamilton, Jens Neu. Terahertz spectroscopy of MOFs reveals dynamic structure and contact free ultrafast photoconductivity. APL Materials 2024, 12 (1) https://doi.org/10.1063/5.0179574
  88. Dae-Woon Lim, Yasaswini Oruganti. Ions and electron conductive porous coordination polymers for energy applications. 2024, 237-272. https://doi.org/10.1016/B978-0-323-95535-5.00009-2
  89. Nidhi Goel, Naresh Kumar. Future prospects and grand challenges for porous coordination polymers. 2024, 393-408. https://doi.org/10.1016/B978-0-323-95535-5.00019-5
  90. Gavin A. McCarver, Taner Yildirim, Wei Zhou. Sulfur substitution in Fe-MOF-74: implications for electrocatalytic CO 2 and CO reduction from an ab initio perspective. Catalysis Science & Technology 2024, 10 https://doi.org/10.1039/D4CY00217B
  91. Gavin A. McCarver, Taner Yildirim, Wei Zhou. Catalyst Engineering for the Selective Reduction of CO 2 to CH 4 : A First‐Principles Study on X‐MOF‐74 (X=Mg, Mn, Fe, Co, Ni, Cu, Zn). ChemPhysChem 2023, 24 (24) https://doi.org/10.1002/cphc.202300645
  92. Rajesh Patra, Sumit Mondal, Debajit Sarma. Thiol and thioether-based metal–organic frameworks: synthesis, structure, and multifaceted applications. Dalton Transactions 2023, 52 (47) , 17623-17655. https://doi.org/10.1039/D3DT02884D
  93. Samim Khan, Pubali Das, Sanobar Naaz, Paula Brandão, Aditya Choudhury, Raghavender Medishetty, Partha Pratim Ray, Mohammad Hedayetullah Mir. A dual-functional 2D coordination polymer exhibiting photomechanical and electrically conductive behaviours. Dalton Transactions 2023, 52 (47) , 17934-17941. https://doi.org/10.1039/D3DT02728G
  94. Jingguo Li, Amol Kumar, Ben A. Johnson, Sascha Ott. Experimental manifestation of redox-conductivity in metal-organic frameworks and its implication for semiconductor/insulator switching. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-40110-6
  95. Uddit Narayan Hazarika, Jhorna Borah, Arobinda Kakoti, Rinki Brahma, Kangkan Sarmah, Ankur Kanti Guha, Prithiviraj Khakhlary. Highly conductive three-dimensional metal organic frameworks from small in situ generated ligands. Materials Advances 2023, 4 (23) , 6304-6311. https://doi.org/10.1039/D3MA00562C
  96. Siquan Zhang, Loris Lombardo, Masahiko Tsujimoto, Zeyu Fan, Ellan K. Berdichevsky, Yong‐Sheng Wei, Kotoha Kageyama, Yusuke Nishiyama, Satoshi Horike. Synthesizing Interpenetrated Triazine‐based Covalent Organic Frameworks from CO 2. Angewandte Chemie International Edition 2023, 62 (47) https://doi.org/10.1002/anie.202312095
  97. Siquan Zhang, Loris Lombardo, Masahiko Tsujimoto, Zeyu Fan, Ellan K. Berdichevsky, Yong‐Sheng Wei, Kotoha Kageyama, Yusuke Nishiyama, Satoshi Horike. Synthesizing Interpenetrated Triazine‐based Covalent Organic Frameworks from CO 2. Angewandte Chemie 2023, 135 (47) https://doi.org/10.1002/ange.202312095
  98. Mariyappan Shanmugam, Nithish Agamendran, Karthikeyan Sekar, Thillai Sivakumar Natarajan. Metal–organic frameworks (MOFs) for energy production and gaseous fuel and electrochemical energy storage applications. Physical Chemistry Chemical Physics 2023, 25 (44) , 30116-30144. https://doi.org/10.1039/D3CP04297A
  99. Nusik Gedikoglu, Pablo Salcedo-Abraira, Long H. B. Nguyen, Nathalie Guillou, Nicolas Dupré, Christophe Payen, Nicolas Louvain, Lorenzo Stievano, Philippe Poizot, Thomas Devic. Fe( iii )-carboxythiolate layered metal–organic frameworks with interest as active materials for rechargeable alkali-ion batteries. Journal of Materials Chemistry A 2023, 11 (44) , 23909-23921. https://doi.org/10.1039/D3TA05353A
  100. Honggang Zhang, Shenghe Si, Guangyao Zhai, Yujie Li, Yuanyuan Liu, Hefeng Cheng, Zeyan Wang, Peng Wang, Zhaoke Zheng, Ying Dai, Terence Xiaoteng Liu, Baibiao Huang. The long-distance charge transfer process in ferrocene-based MOFs with FeO6 clusters boosts photocatalytic CO2 chemical fixation. Applied Catalysis B: Environmental 2023, 337 , 122909. https://doi.org/10.1016/j.apcatb.2023.122909
Load more citations
  • Abstract

    Figure 1

    Figure 1. (a) Parts of the infinite secondary building units in M2(DEBDC)(DMF)2·x(DMF) (M = Fe, Mn; E = S, O). The (-M-E-) chains are represented in purple. (b,c) Partial structures of Fe2(DSBDC)(DMF)2·x(DMF) and Fe2(DSBDC)(DMF)2 as determined by single-crystal X-ray diffraction and DFT structure optimization, respectively. H atoms and solvent molecules are omitted for clarity.

    Figure 2

    Figure 2. Electrical properties of M2(DEBDC) (M = Fe, Mn; E = S, O) pressed pellets. (a) Plots of current density versus electric field strength (J–E curves) for M2(DEBDC)(DMF)2·x(DMF) at 297 K. (b) Conductance–temperature relationship for M2(DEBDC)(DMF)2.

    Figure 3

    Figure 3. Calculated energy bands and projected density of states (DOS) of M2(DEBDC)(DMF)2 (M = Fe, Mn; E = S, O). The work function, Φ, and the absolute energy scale are aligned to vacuum according to ref 19. Gray curves represent total DOS. Blue, teal, yellow, red, and black curves represent projected DOS of Fe, Mn, S, O, and C, respectively.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 21 other publications.

    1. 1
      (a) Férey, G.; Millange, F.; Morcrette, M.; Serre, C.; Doublet, M.; Grenèche, J.; Tarascon, J. Angew. Chem., Int. Ed. 2007, 46, 3259
      (b) Demir-Cakan, R.; Morcrette, M.; Nouar, F.; Davoisne, C.; Devic, T.; Gonbeau, D.; Dominko, R.; Serre, C.; Férey, G.; Tarascon, J. J. Am. Chem. Soc. 2011, 133, 16154
      (c) Wiers, B. M.; Foo, M.; Balsara, N. P.; Long, J. R. J. Am. Chem. Soc. 2011, 133, 14522
      (d) Zhang, Z.; Yoshikawa, H.; Awaga, K. J. Am. Chem. Soc. 2014, 136, 16112
    2. 2
      Choi, K. M.; Jeong, H. M.; Park, J. H.; Zhang, Y.; Kang, J. K.; Yaghi, O. M. ACS Nano 2014, 8, 7451
    3. 3
      (a) Nohra, B.; Moll, H. E.; Albelo, M. R.; Mialane, P.; Marrot, J.; Mellot-Draznieks, C.; O’Keeffe, M.; Biboum, R. N.; Lemaire, J.; Keita, B.; Nadjo, L.; Dolbecq, A. J. Am. Chem. Soc. 2011, 133, 13363
      (b) Ahrenholtz, S. R.; Epley, C. C.; Morris, A. J. J. Am. Chem. Soc. 2014, 136, 2464
    4. 4
      Campbell, M. G.; Sheberla, D.; Liu, S.; Swager, T. M.; Dincă, M. Angew. Chem., Int. Ed. 2015, 54, 4349
    5. 5
      (a) Hmadeh, M.; Lu, Z.; Liu, Z.; Gándara, F.; Furukawa, H.; Wan, S.; Augustyn, V.; Chang, R.; Liao, L.; Zhou, F.; Perre, E.; Ozolins, V.; Suenaga, K.; Duan, X.; Dunn, B.; Yamamto, Y.; Terasaki, O.; Yaghi, O. M. Chem. Mater. 2012, 24, 3511
      (b) Kambe, T.; Sakamoto, R.; Hoshiko, K.; Takada, K.; Miyachi, M.; Ryu, J.; Sasaki, S.; Kim, J.; Nakazato, K.; Takata, M.; Nishihara, H. J. Am. Chem. Soc. 2013, 135, 2462
      (c) Cui, J.; Xu, Z. Chem. Commun. 2014, 50, 3986
      (d) Sheberla, D.; Sun, L.; Blood-Forsythe, M. A.; Er, S.; Wade, C. R.; Brozek, C. K.; Aspuru-Guzik, A.; Dincă, M. J. Am. Chem. Soc. 2014, 136, 8859
    6. 6
      (a) Narayan, T. C.; Miyakai, T.; Seki, S.; Dincă, M. J. Am. Chem. Soc. 2012, 134, 12932
      (b) Park, S. S.; Hontz, E. R.; Sun, L.; Hendon, C. H.; Walsh, A.; Van Voorhis, T.; Dincă, M. J. Am. Chem. Soc. 2015, 137, 1774
      (c) Avendano, C.; Zhang, Z.; Ota, A.; Zhao, H.; Dunbar, K. R. Angew. Chem., Int. Ed. 2011, 50, 6543
      (d) Zhang, Z.; Zhao, H.; Kojima, H.; Mori, T.; Dunbar, K. R. Chem.—Eur. J. 2013, 19, 3348
    7. 7
      (a) Sun, L.; Miyakai, T.; Seki, S.; Dincă, M. J. Am. Chem. Soc. 2013, 135, 8185
      (b) Gándara, F.; Uribe-Romo, F. J.; Britt, D. K.; Furukawa, H.; Lei, L.; Cheng, R.; Duan, X.; O’Keeffe, M.; Yaghi, O. M. Chem.—Eur. J. 2012, 18, 10595
      (c) Takaishi, S.; Hosoda, M.; Kajiwara, T.; Miyasaka, H.; Yamashita, M.; Nakanishi, Y.; Kitagawa, Y.; Yamaguchi, K.; Kobayashi, A.; Kitagawa, H. Inorg. Chem. 2009, 48, 9048
      (d) Kobayashi, Y.; Jacobs, B.; Allendorf, M. D.; Long, J. R. Chem. Mater. 2010, 22, 4120
    8. 8
      (a) Zeng, M.; Wang, Q.; Tan, Y.; Hu, S.; Zhao, H.; Long, L.; Kurmoo, M. J. Am. Chem. Soc. 2010, 132, 2561
      (b) Talin, A. A.; Centrone, A.; Ford, A. C.; Foster, M. E.; Stavila, V.; Haney, P.; Kinney, R. A.; Szalai, V.; Gabaly, F. E.; Yoon, H. P.; Léonard, F.; Allendorf, M. D. Science 2014, 343, 66
    9. 9
      Holliday, B. J.; Swager, T. M. Chem. Commun. 2005, 23
    10. 10
      (a) Fu, G.; Polity, A.; Volbers, N.; Meyer, B. K.; Mogwitz, B.; Janek, J. Appl. Phys. Lett. 2006, 89, 262113
      (b) Park, J.; Kim, D.; Lee, C.; Kim, D. Bull. Korean Chem. Soc. 1999, 20, 1005
    11. 11
      (a) Makovetskiǐ, G. I.; Galyas, A. I.; Demidenko, O. F.; Yanushkevich, K. I.; Ryabinkina, L. I.; Romanova, O. B. Phys. Solid State 2008, 50, 1826
      (b) Bhide, V. G.; Dani, R. H. Physica 1961, 27, 821
    12. 12
      (a) Anderson, P. W. Phys. Rev. 1950, 79, 350
      (b) Kanamori, J. J. Phys. Chem. Solids 1959, 10, 87
      (c) Tiana, D.; Hendon, C. H.; Walsh, A. Chem. Commun. 2014, 50, 13990
    13. 13
      (a) Bhattacharjee, S.; Choi, J.; Yang, S.; Choi, S. B.; Kim, J.; Ahn, W. J. Nanosci. Nanotechnol. 2010, 10, 135
      (b) Bloch, E. D.; Murray, L. J.; Queen, W. L.; Chavan, S.; Maximoff, S. N.; Bigi, J. P.; Krishna, R.; Peterson, V. K.; Grandjean, F.; Long, G. J.; Smit, B.; Bordiga, S.; Brown, C. M.; Long, J. R. J. Am. Chem. Soc. 2011, 133, 14814
    14. 14
      (a) Wu, H.; Zhou, W.; Yildirim, T. J. Am. Chem. Soc. 2009, 131, 4995
      (b) Cozzolino, A. F.; Brozek, C. K.; Palmer, R. D.; Yano, J.; Li, M.; Dincă, M. J. Am. Chem. Soc. 2014, 136, 3334
    15. 15

      Optimizing Fe2(DSBDC)(DMF)2 itself was computationally unfeasible because the solvent molecules add 72 atoms to the unit cell.

    16. 16
      (a) Barthelet, K.; Marrot, J.; Riou, D.; Férey, G. Angew. Chem., Int. Ed. 2002, 41, 281
      (b) Murdock, C. R.; Hughes, B. C.; Lu, Z.; Jenkins, D. M. Coord. Chem. Rev. 2014, 258–259, 119
    17. 17

      J–E curves and log scale are used in Figure 2a to show the difference among conductivities of various MOFs clearly. See Supporting Information.

    18. 18
      Saito, G.; Yoshida, Y. Top. Curr. Chem. 2012, 321, 67
    19. 19
      Butler, K. T.; Hendon, C. H.; Walsh, A. J. Am. Chem. Soc. 2014, 136, 2703
    20. 20
      Zhang, Q.; Li, B.; Chen, L. Inorg. Chem. 2013, 52, 9356
    21. 21
      Butler, K. T.; Hendon, C. H.; Walsh, A. ACS Appl. Mater. Interfaces 2014, 6, 22044
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Experimental details, table of X-ray refinement details, PXRD patterns, IR spectra, I–V curves, Mössbauer spectra, isotherms, computational details, and crystallographic data (CIF). The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b02897.


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect