ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Design of Modified Amine Transfer Reagents Allows the Synthesis of α-Chiral Secondary Amines via CuH-Catalyzed Hydroamination

View Author Information
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
Cite this: J. Am. Chem. Soc. 2015, 137, 30, 9716–9721
Publication Date (Web):July 5, 2015
https://doi.org/10.1021/jacs.5b05446

Copyright © 2022 American Chemical Society. This publication is licensed under these Terms of Use.

  • Open Access

Article Views

15953

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (2 MB)
Supporting Info (1)»

Abstract

The CuH-catalyzed hydroamination of alkenes and alkynes using a silane and an amine transfer reagent represents a simple strategy to access chiral amine products. We have recently reported methods to prepare chiral amines with high efficiency and stereoselectivity using this approach. However, the current technology is limited to the synthesis of trialkylamines from dialkylamine transfer reagents (R2NOBz). When monoalkylamine transfer reagents [RN(H)OBz] were used for the synthesis of chiral secondary amines, competitive, nonproductive consumption of these reagents by the CuH species resulted in poor yields. In this paper, we report the design of a modified type of amine transfer reagent that addresses this limitation. This effort has enabled us to develop a CuH-catalyzed synthesis of chiral secondary amines using a variety of amine coupling partners, including those derived from amino acid esters, carbohydrates, and steroids. Mechanistic investigations indicated that the modified amine transfer reagents are less susceptible to direct reaction with CuH.

Introduction

ARTICLE SECTIONS
Jump To

Chiral amines are ubiquitous structural motifs found in many pharmaceutical agents, natural products, and catalysts for asymmetric synthesis (see Figure 1 for selected examples). As a result, general and selective methods for their synthesis have long been pursued. (1) Methodologies using resolution (2) or chiral auxiliaries (3) have been established as reliable ways to procure these compounds. Significant progress has also been made in the development of catalytic, asymmetric methods for their preparation. Many of these reported catalytic methods are based on asymmetric transformations of imine, enamine, or enamide intermediates. (4) Other strategies, such as asymmetric allylation of amine nucleophiles (5) and direct C–H bond insertion by a nitrenoid species, (6) are important alternatives.

Figure 1

Figure 1. Representative natural products and pharmaceutical agents that feature a chiral amine motif.

Asymmetric hydroamination, (7) the net stereoselective addition of a hydrogen atom and an amino group directly across a double bond, represents a particularly appealing strategy to prepare chiral amines. Typically, a hydroamination reaction entails the direct union of an alkene 1 with a primary or secondary amine nucleophile 2 in the presence of a catalyst (Figure 2a). (7) Based on catalytic copper(I) hydride chemistry (8) and recent developments in the copper-mediated amination of carbon-based nucleophiles, (9) our group recently reported a mechanistically distinct approach toward asymmetric hydroamination (10) (Figure 2b). In this technique, an olefin first undergoes asymmetric hydrocupration to provide an alkylcopper intermediate, which is then intercepted by a suitable electrophilic amine transfer reagent. Our laboratory has applied this hydroamination strategy to the synthesis of chiral tertiary alkylamines from styrenes, (10a) 1,1-disubstituted alkenes, (10b) vinylsilanes, (10c) and alkynes. (10d) Independently, Miura and co-workers have reported a similar approach for the hydroamination of styrenes (11a) and strained internal alkenes. (11b)

Figure 2

Figure 2. Hydroamination approaches to make α-chiral amines.

To date, this approach to hydroamination (10, 11) has been limited to the synthesis of tertiary alkylamines with O-benzoyl-N,N-dialkylhydroxylamines (R2NOBz, R = alkyl) as the dialkylamine transfer reagents. The expansion of this method to monoalkylamine transfer reagents to allow the direct preparation of chiral secondary amines would be of considerable interest. Herein we report the development of a copper-catalyzed hydroamination process to directly generate chiral, branched secondary amines 8 from styrenes (Figure 2c). One key factor in the development of this method is the design and use of a modified class of amine transfer reagents 7, which improved the efficiency and generality of the transformation. Mechanistic studies indicate that use of the modified amine transfer reagent suppresses nonproductive consumption of the reagent by the copper hydride intermediate.

Results and Discussion

ARTICLE SECTIONS
Jump To

We began our work by studying the reaction between styrene (9a) and O-benzoyl-N-benzylhydroxylamine (12) [BnN(H)OBz, 10a] utilizing our previously reported conditions (10, 13) (Figure 3a). It was found that the desired secondary amine 11a was produced in moderate yield (60%) and excellent enantioselectivity. This result suggested the compatibility between the copper hydride and alkylcopper species with the N–H bond contained in both the amine transfer reagent 10a and the secondary amine product 11a. However, we found that this transformation had a limited substrate scope: either ortho- or β-substitution on the styrene substrate led to a dramatic drop in reaction efficiency (11b and 11c, 25 and <10% yield, respectively). We reasoned that the poor yields of 11b and 11c might be caused by the more challenging hydrocupration of the substituted styrenes (9b and 9c). In these cases, the (relatively rapid) nonproductive consumption of amine transfer reagent 10a by LCuH (Figure 3b, red arrow) would diminish the overall yields of the respective secondary amine products.

Figure 3

Figure 3. CuH-catalyzed hydroamination of styrenes for the formation of chiral secondary amines. aYields are determined using GC with dodecane as an internal standard; unless otherwise noted, CuH solution used in this study was prepared in a nitrogen-filled glovebox. bIsolated yields on 1 mmol scale (average of two runs); enantiomeric excesses (ee) were determined by chiral HPLC analysis; see Supporting Information for experimental details. cThree equivalents of HSi(OEt)2Me was used, and 10e was added over 1.5 h.

We postulated that the use of an amine transfer reagent that is less susceptible to direct reaction with LCuH 5 would change the relative rates of the desired (hydrocupration) versus the undesired [BnN(H)OBz decomposition] pathway, thus expanding the substrate scope for the synthesis of secondary amines. We hypothesized that perturbation of the electronic properties of the benzoyl group of the electrophilic amine source 10 might lead to such an effect. (14) Thus, we prepared amine transfer reagents 10be (Figure 3c) by coupling commercially available N-benzyl hydroxylamine hydrochloride with various carboxylic acids and tested these new amine transfer reagents for the hydroamination of styrenes 9b and 9c under the same conditions as depicted in Figure 3a. As summarized in Figure 3c, we found that the use of more electron-rich amine transfer reagents 10ce was beneficial to the reaction efficiency. Specifically, the use of 10e, an amine transfer reagent bearing a 4-(dimethylamino)benzoate group, provided the highest yields of 11b and 11c. In contrast, 10b, bearing the electron-deficient 4-(trifluoromethyl)benzoate group, gave poorer yields than the parent benzoate 10a. (15)
With 4-(dimethylamino)benzoate 10e as the amine transfer reagent, we found that a variety of styrene derivatives could be converted to the corresponding chiral secondary amines in good to excellent yield and with excellent enantioselectivity (Figure 3d). All these reactions proceeded to completion within 5 h at 40 °C or 16 h at room temperature under the reaction conditions shown in Figure 3a. For example, β-substituted styrenes and styrenes with ortho-substitution are suitable substrates (11be). (16) Additionally, styrenes bearing both electron-donating and electron-withdrawing substituents are tolerated as well (11fg), and the reaction efficiency is not reduced when performed on a 5 mmol scale (11f). Further, styrenes containing heterocyclic rings are effective reaction partners (11hj). Use of 4-fluorostyrene yielded 11k, which resembles the core structure of PF-05105679 (Figure 1), in 92% yield and 95% ee. Lastly, this process also permits the preparation of 11ln, which contain synthetically versatile aryl bromide. The successful formation of 11l was somewhat surprising since related alkylcopper intermediates had been shown to undergo rearrangement to afford the arylcopper species. (17)
We next investigated the scope of the amine transfer reagents that could be employed (Table 1). The amine transfer agents used in this study were prepared from the corresponding primary hydroxylamine 15 and 4-(dimethylamino)benzoic acid via condensation effected by 1,1′-carbonyldiimidazole (CDI). (18) As summarized in Table 1, amine transfer reagents with secondary or tertiary alkyl group substituents are competent substrates, delivering products 17ad in high yields and enantioselectivities. The use of chiral amine transfer agents afforded products with a high level of diastereoselectivity. The configuration of the newly generated stereocenter was determined by ligand employed (17c and 17d). When either racemic ligand or racemic electrophile was used, a near unity ratio of diastereomers was formed (see Supporting Information). These results are consistent with the diastereoselectivity of the hydroamination process being under catalyst control.
Table 1. Scope of Amine Transfer Reagents in Hydroamination Reactionsa
Table a

Reactions performed on 1 mmol scale for 17ad and 0.5 mmol scale for 17el. Isolated yields are reported (average of two runs). Enantiomeric excesses (ee) were determined by chiral HPLC analysis or 1H NMR analysis. Diastereomeric ratios (dr) were determined by 1H NMR or gas chromatography analysis.

Table b

Toluene was used as the solvent, and amine transfer reagent with a pivolate leaving group was used as the substrate (see Supporting Information).

We found that amine transfer reagents prepared from α-amino esters (19) were competent substrates as well, and gave the N-monoalkylated amino esters with high levels of stereocontrol (17el, Table 1). Amino esters spanning a range of steric and electronic properties could be utilized (17ej). Importantly, the protecting groups on the amino esters could be methyl (17e,f and 17j), benzyl (17g), or tert-butyl (17h,i), allowing a variety of choices for the selection of downstream deprotection methods. No epimerization of the labile stereocenter adjacent to the carbonyl group was observed, reflecting the overall mildness of the reaction system. Not surprisingly, use of different enantiomers of the ligand led to the formation of different diastereomers (17h and 17i), again supporting a catalyst-controlled stereodetermining step. Furthermore, an amine transfer reagent derived from a quaternary α-amino ester could also be employed, giving 17j in excellent yield and enantioselectivity. This method could also transform a vinylsilane (10c) to the α-aminosilane (17k), a class of building blocks often employed for the synthesis of peptidomimetics. (20) Finally, this hydroamination reaction can be integrated into a cascade sequence, delivering cyclic product 17l after in situ alkylation of the intermediate secondary amine.
To further demonstrate the utility of this methodology, we applied it in the context of drug molecule synthesis (Scheme 1). For example, this method was applied to the synthesis of Sensipar (21), a drug used to treat secondary hyperparathyroidism. Commercially available aldehyde 18 was converted to amine transfer reagent 19 and then subjected to hydroamination conditions in the presence of 1-vinylnaphthalene (20) to give 21 in 81% yield and 89% ee (Scheme 1a). This methodology was also applied to the derivatization of commercial pharmaceuticals. For instance, chlorpromazine (22), an antipsychotic, could be converted to vinylarene 23, (21) which then underwent hydroamination with l-valine-derived amine transfer reagent 24 to yield 25 (Scheme 1b). In a similar fashion, loratadine (26), an antihistamine drug, could be converted to 27 and then coupled with 29, an amine transfer reagent derived from an estrone derivative 28, to afford the conjugated product 30 in 85% yield and >20:1 dr (Scheme 1c). Lastly, vinylarene 32 made from tufnil (31), a nonsteroid anti-inflammatory drug, could successfully couple with 34, an amine transfer reagent prepared from a glucose derivative 33, to afford 35 in 73% yield and 17:1 dr (Scheme 1d).

Scheme 1

Scheme 1. Hydroamination Reaction in the Synthesis and Derivatization of Drugsa

Scheme aReactions performed on 0.5 mmol scale. Isolated yields are reported (average of two runs). Enantioselectivities and diastereoselectivities were determined by chiral HPLC or 1H NMR analysis. Conditions A: (1) NH2OH·HCl, pyridine; (2) NaBH3CN, HCl in MeOH, MeOH/THF; (3) 4-(dimethylamino)benzoic acid, CDI, CH2Cl2. Conditions B: Pd(OAc)2, SPhos, potassium vinyltrifluoroborate, K2CO3, dioxane/H2O.

Mechanistic Studies

ARTICLE SECTIONS
Jump To

Competition experiments were performed to investigate the role of the modified amine transfer reagents used in this study. We had hypothesized that the narrow substrate scope of the CuH-catalyzed hydroamination reaction using monoalkylamine transfer agents [e.g., BnN(H)OBz] was due to the susceptibility of these reagents toward direct, nonproductive reduction by LCuH. To address this, we conducted a competition experiment by exposing a 1:1 mixture of a pair of mono- and dialkylamine transfer reagents, 10a and 36, to HSi(OEt)2Me and copper catalyst in THF-d8in the absence of styrene and monitored the consumption of these two reagents by 1H NMR spectroscopy (Figure 4a). We found that LCuH was capable of directly reacting with the amine transfer reagents, and over 80% of the monoalkylamine transfer agent 10a was consumed within 1 h to give BnNH2 and the corresponding silylated benzoyl ester (37). (22) In contrast, only a trace (<5%) of the dialkylamine transfer agent 36 was consumed during the same period of time. (23) We then subjected a 1:1 mixture of a pair of monoalkylamine transfer reagents, 10a (parent benzoate) and 10e [4-(dimethylamino)benzoate], to identical conditions as described above (Figure 4b). In this case, both 10a and 10e were gradually consumed in the reaction system, giving the corresponding silylated esters (37 and 38) as products. Importantly, we found that the modified amine transfer reagent 10e was consumed at a considerably slower rate than was 10a. The higher stability of the modified monoalkylamine transfer reagents toward direct reaction with LCuH reaction is consistent with the increased substrate scope seen using the 4-(dimethylamino)benzoate-derived amine transfer reagents.

Figure 4

Figure 4. Relative rates of the reactions between LCuH and different amine transfer agents. Si* = Si(OEt)2Me. Conditions A: a 0.6 mL of a stock solution made from Cu(OAc)2 (3.6 mg), (R)-DTBM-SEGPHOS (26 mg), PPh3 (11.6 mg), HSi(OEt)2Me (0.32 mL, 2.0 mmol), and THF-d8 (1.0 mL) is used. The progress of these experiments was monitored by 1H NMR.

Conclusion

ARTICLE SECTIONS
Jump To

In conclusion, we have designed a new type of amine transfer reagent that possesses a 4-(dimethylamino)benzoate group. The use of these reagents enabled the development of a general method to directly convert styrenes to chiral secondary amines. This process was applicable to mono- and disubstituted styrenes and allowed the use of a variety of functionalized, structurally diverse amine transfer reagents, including those derived from carbohydrates, steroids, and amino acid esters. The utility of this reaction was highlighted by its application to the synthesis of pharmaceutically important drugs as well as the conjugation of other ones. Competition experiments have revealed that, relative to the corresponding O-benzoyl-N-alkyl hydroxylamines, the modified amine transfer reagents (O-[4-(dimethylamino)benzoyl]-N-alkyl hydroxylamines) are less susceptible to direct reaction with LCuH. The information gained from this study should prove useful in the design and development of other CuH-catalyzed processes. (24)

Supporting Information

ARTICLE SECTIONS
Jump To

Experimental procedures and characterization data for all compounds. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b05446.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Author
    • Stephen L. Buchwald - Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States Email: [email protected]
  • Author
    • Dawen Niu - Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
  • Notes
    The authors declare no competing financial interest.

Acknowledgment

ARTICLE SECTIONS
Jump To

The authors acknowledge the National Institutes of Health for financial support (GM58160). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We thank Dr. M.T. Pirnot and Dr. Y. Wang for assistance in the preparation of this manuscript.

References

ARTICLE SECTIONS
Jump To

This article references 24 other publications.

  1. 1
    Nugent, T. C., Ed. Chiral Amine Synthesis: Methods, Developments and Applications; Wiley-VCH: Weinheim, Germany, 2010.
  2. 2
    Turner, N. J.; Carr, R. Biocatalytic Routes to Nonracemic Chiral Amines. In Biocatalysis in the Pharmaceutical and Biotechnology Industries; Patel, R. N., Ed.; CRC Press LLC: Boca Raton, FL, 2006; pp 743 755.
  3. 3
    Robak, M. T.; Herbage, M. A.; Ellman, J. A. Chem. Rev. 2010, 110, 3600 DOI: 10.1021/cr900382t
  4. 4
    (a) Nugent, T. C.; El-Shazly, M. Adv. Synth. Catal. 2010, 352, 753 DOI: 10.1002/adsc.200900719
    (b) Xie, J.; Zhu, S.; Zhou, Q. Chem. Rev. 2011, 111, 1713 DOI: 10.1021/cr100218m
    (N) Tufvesson, P.; Lima-Ramos, J.; Jensen, J. S.; Al-Haque, N.; Neto, W.; Woodley, J. M. Biotechnol. Bioeng. 2011, 108, 1479 DOI: 10.1002/bit.23154
    (c) Gopalaiah, K. Chem. Rev. 2013, 113, 3248 DOI: 10.1021/cr300236r
    (d) Feng, X.; Du, H. Tetrahedron Lett. 2014, 55, 6959 DOI: 10.1016/j.tetlet.2014.10.138
    (e) Bloch, R. Chem. Rev. 1998, 98, 1407 DOI: 10.1021/cr940474e
    (f) Kobayashi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069 DOI: 10.1021/cr980414z
    (g) Friestad, G. K.; Mathies, A. K. Tetrahedron 2007, 63, 2541 DOI: 10.1016/j.tet.2006.11.076
    (h) Yamada, K.; Tomioka, K. Chem. Rev. 2008, 108, 2874 DOI: 10.1021/cr078370u
    (i) Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626 DOI: 10.1021/cr100204f
    (j) Yus, M.; González-Gómez, J. C.; Foubelo, F. Chem. Rev. 2011, 111, 7774 DOI: 10.1021/cr1004474
    (k) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2014, 114, 9047 DOI: 10.1021/cr5001496
  5. 5
    (a) Johannsen, M.; Jørgensen, K. A. Chem. Rev. 1998, 98, 1689 DOI: 10.1021/cr970343o
    (b) Helmchen, G. Iridium-Catalyzed Asymmetric Allylic Substitutions. In Iridium Complexes in Organic Synthesis; Oro, L. A.; Claver, C., Eds.; Wiley-VCH: Weinheim, Germany, 2009; pp 211 250.
    (c) Hartwig, J. F.; Stanley, L. M. Acc. Chem. Res. 2010, 43, 1461 DOI: 10.1021/ar100047x
    (d) Liu, W.-B.; Xia, J.-B.; You, S.-L. Top. Organomet. Chem. 2012, 38, 155 DOI: 10.1007/3418_2011_10
    (e) Tosatti, P.; Nelson, A.; Marsden, S. P. Org. Biomol. Chem. 2012, 10, 3147 DOI: 10.1039/c2ob07086c
  6. 6
    (a) Roizen, J. L.; Harvey, M. E.; Du Bois, J. Acc. Chem. Res. 2012, 45, 911 DOI: 10.1021/ar200318q
    (b) Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417 DOI: 10.1038/nature06485
    (c) Müller, P.; Fruit, C. Chem. Rev. 2003, 103, 2905 DOI: 10.1021/cr020043t
  7. 7
    (a) Muller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675 DOI: 10.1021/cr960433d
    (b) Hartwig, J. F. Pure Appl. Chem. 2004, 76, 507 DOI: 10.1351/pac200476030507
    (c) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673 DOI: 10.1021/ar040051r
    (d) Beller, M.; Seayad, J.; Tillack, A.; Jiao, H. Angew. Chem., Int. Ed. 2004, 43, 3368 DOI: 10.1002/anie.200300616
    (e) Hultzsch, K. C. Org. Biomol. Chem. 2005, 3, 1819 DOI: 10.1039/b418521h
    (f) Muller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795 DOI: 10.1021/cr0306788
    (g) Hultzsch, K. C. Adv. Synth. Catal. 2005, 347, 367 DOI: 10.1002/adsc.200404261
    (h) Huang, L.; Arndt, M.; Gooβen, K.; Heydt, H.; Gooβen, L. J. Chem. Rev. 2015, 115, 2596 DOI: 10.1021/cr300389u
  8. 8
    (a) Appella, D. H.; Moritani, Y.; Shintani, R.; Ferreira, E. M.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 9473 DOI: 10.1021/ja992366l
    (b) Hughes, G.; Kimura, M.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 11253 DOI: 10.1021/ja0351692
    (c) Rainka, M. P.; Aye, Y.; Buchwald, S. L. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5821 DOI: 10.1073/pnas.0307764101
  9. 9
    (a) Berman, A. M.; Johnson, J. S. J. Am. Chem. Soc. 2004, 126, 5680 DOI: 10.1021/ja049474e
    (b) Berman, A. M.; Johnson, J. S. J. Org. Chem. 2006, 71, 219 DOI: 10.1021/jo051999h
    (c) Campbell, M. J.; Johnson, J. S. Org. Lett. 2007, 9, 1521 DOI: 10.1021/ol0702829
    (d) Rucker, R. P.; Whittaker, A. M.; Dang, H.; Lalic, G. Angew. Chem., Int. Ed. 2012, 51, 3953 DOI: 10.1002/anie.201200480
    (e) Yan, X.; Yang, X.; Xi, C. Catal. Sci. Technol. 2014, 4, 4169 DOI: 10.1039/C4CY00773E
    (f) Erdik, E.; Ay, M. Chem. Rev. 1989, 89, 1947 DOI: 10.1021/cr00098a014
    (g) Barker, T. J.; Jarvo, E. R. Synthesis 2011, 24, 3954 DOI: 10.1055/s-0031-1289581
  10. 10
    (a) Zhu, S.; Niljianskul, N.; Buchwald, S. L. J. Am. Chem. Soc. 2013, 135, 15746 DOI: 10.1021/ja4092819
    (b) Zhu, S.; Buchwald, S. L. J. Am. Chem. Soc. 2014, 136, 15913 DOI: 10.1021/ja509786v
    (c) Niljianskul, N.; Zhu, S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2015, 54, 1638 DOI: 10.1002/anie.201410326
    (d) Shi, S.; Buchwald, S. L. Nat. Chem. 2015, 7, 38 DOI: 10.1038/nchem.2131
  11. 11
    (a) Miki, Y.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2013, 52, 10830 DOI: 10.1002/anie.201304365
    (b) Miki, Y.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2014, 16, 1498 DOI: 10.1021/ol5003219
  12. 12

    In contrast to the large number of successful examples using dialkylamine transfer reagents (R2NOBz, R ≠ H) in copper-mediated amination reactions, use of the analogous monoalkylamine transfer reagents [RN(H)OBz] remains underdeveloped. For representative examples, see ref 9b and

    (a) Yotphan, S.; Beukeaw, D.; Reutrakul, V. Tetrahedron 2013, 69, 6627 DOI: 10.1016/j.tet.2013.05.127
    (b) McDonald, S. L.; Wang, Q. Angew. Chem., Int. Ed. 2014, 53, 1867 DOI: 10.1002/anie.201308890
    (c) Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2011, 13, 2860 DOI: 10.1021/ol200855t
  13. 13
    (a) Ascic, E.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 4666 4669 DOI: 10.1021/jacs.5b02316
    (b)

    PPh3 is used as a secondary ligand due to the observed beneficial effects it has on CuH-catalyzed reactions. This concept was developed by Lipshutz:

    Lipshutz, B. H.; Noson, K.; Chrisman, W.; Lower, A. J. Am. Chem. Soc. 2003, 125, 8779 DOI: 10.1021/ja021391f
  14. 14

    Attempts to modify the properties of dialkylamine transfer reagents by adjusting the benzoate group have been reported by Johnson. (9c)

  15. 15
    (a)

    Alkyl carboxylate-based amine transfer reagents 13 and 14 were also tested. Reagent 14 containing a bulky adamantyl group provided yields of 11b and 11c similar to that of 4-(dimethylamino)benzoate 10e. Due to the availability of the 4-(dimethylamino)benzoic acid and its ease of removal after reaction, (15b) 4-(dimethylamino)benzoates were used for most of this work

    .
    (b)

    4-(Dimethylamino)benzoic acid is sparingly soluble in Et2O, EtOAc, or CH2Cl2 but readily soluble in 2 M aqueous K2CO3.

  16. 16

    Attempts to use 10e in the hydroamination of β,β-disubstituted styrenes or terminal unactivated alkenes gave low yields of secondary amine products.

  17. 17
    (a) Grigg, R. D.; Van Hoveln, R.; Schomaker, J. M. J. Am. Chem. Soc. 2012, 134, 16131 DOI: 10.1021/ja306446m
    (b) Van Hoveln, R. J.; Schmid, S. C.; Schomaker, J. M. Org. Biomol. Chem. 2014, 12, 7655 DOI: 10.1039/C4OB01294A
  18. 18
    Smithen, D. A.; Mathews, C. J.; Tomkinson, N. C. O. Org. Biomol. Chem. 2012, 10, 3756 DOI: 10.1039/c2ob25293g
  19. 19

    Several methodologies have been developed to convert α-amino acid esters into the corresponding primary N-hydroxylamines. For references, see:

    (a) Tokuyama, H.; Kuboyama, T.; Fukuyama, T. Org. Synth. 2003, 80, 207 DOI: 10.15227/orgsyn.080.0207
    (b) Wittman, M. D.; Halcomb, R. L.; Danishefsky, S. J. J. Org. Chem. 1990, 55, 1981 DOI: 10.1021/jo00294a005
    (c) Fukuzumi, T.; Bode, J. W. J. Am. Chem. Soc. 2009, 131, 3864 DOI: 10.1021/ja900601c
  20. 20
    Sun, H.; Martin, C.; Kesselring, D.; Keller, R.; Moeller, K. D. J. Am. Chem. Soc. 2006, 128, 13761 DOI: 10.1021/ja064737l
  21. 21
    Molander, G. A.; Brown, A. R. J. Org. Chem. 2006, 71, 9681 DOI: 10.1021/jo0617013
  22. 22

    Formation of BnNH2 and the silylated ester 37 could be detected by GC/MS and 1H NMR analysis.

  23. 23

    Reduction of the dialkylamine transfer agent 36 is much slower. Approximately, 60% of 36 was consumed after 20 h under described conditions.

  24. 24

    A manuscript detailing the use of related modified amine transfer reagents to effect hydroamination of unactivated internal alkenes is in press.

Cited By

This article is cited by 114 publications.

  1. Shaozi Sun, Qinglong Zhang, Weiwei Zi. Palladium-Catalyzed Enantioselective Hydrosulfonylation of Vinylarenes. ACS Catalysis 2023, Article ASAP.
  2. Chengdong Wang, Xingheng Wang, Zheng Wang, Kuiling Ding. Nickel/SKP-Catalyzed Markovnikov Regio- and Enantioselective Hydroamination of Vinylarenes with Hydroxylamines. Organic Letters 2023, 25 (35) , 6577-6581. https://doi.org/10.1021/acs.orglett.3c02442
  3. Laura Talavera, Robert R. A. Freund, Huihui Zhang, Matthew Wakeling, Mara Jensen, Ruben Martin. Nickel-Catalyzed 1,1-Aminoborylation of Unactivated Terminal Alkenes. ACS Catalysis 2023, 13 (8) , 5538-5543. https://doi.org/10.1021/acscatal.3c00888
  4. Yiu-Wai Yeung, Chun-Ming Chan, Yu-Ting Chen, Marco Chan, Mingyu Luo, Xin Gao, Bingnan Du, Wing-Yiu Yu. Cu-Catalyzed Cross-Electrophilic Coupling of α-Diazoesters with O-Benzoyl Hydroxylamines for the Synthesis of Unnatural N-Alkyl α-Amino Acid Derivatives. Organic Letters 2023, 25 (4) , 619-623. https://doi.org/10.1021/acs.orglett.2c04161
  5. Peng-Fei Yang, Jian-Xing Liang, Han-Tong Zhao, Wei Shu. Access to Enantioenriched 1,n-Diamines via Ni-Catalyzed Hydroamination of Unactivated Alkenes with Weakly Coordinating Groups. ACS Catalysis 2022, 12 (15) , 9638-9645. https://doi.org/10.1021/acscatal.2c02892
  6. Geng-Xin Liu, Hao-Cheng Liang, Xiang Fu, Jie Tang, Wen-Hao Hu, Huang Qiu. Photoredox-Catalyzed Carbonyl Alkylative Amination with Diazo Compounds: A Three-Component Reaction for the Construction of γ-Amino Acid Derivatives. Organic Letters 2022, 24 (27) , 4908-4913. https://doi.org/10.1021/acs.orglett.2c01751
  7. Changseok Lee, Hyung-Joon Kang, Huiyeong Seo, Sungwoo Hong. Nickel-Catalyzed Regio- and Enantioselective Hydroamination of Unactivated Alkenes Using Carbonyl Directing Groups. Journal of the American Chemical Society 2022, 144 (20) , 9091-9100. https://doi.org/10.1021/jacs.2c02343
  8. Koji Hirano, Masahiro Miura. Hydroamination, Aminoboration, and Carboamination with Electrophilic Amination Reagents: Umpolung-Enabled Regio- and Stereoselective Synthesis of N-Containing Molecules from Alkenes and Alkynes. Journal of the American Chemical Society 2022, 144 (2) , 648-661. https://doi.org/10.1021/jacs.1c12663
  9. Yang Gao, Yushan Cui, Yanping Huo, Jinhong Chen, Minwei She, Xianwei Li, Qian Chen, Xiao-Qiang Hu. Nickel-Catalyzed Hydroamination of Olefins with Anthranils. The Journal of Organic Chemistry 2021, 86 (17) , 12107-12118. https://doi.org/10.1021/acs.joc.1c01430
  10. Gerald L. Larson, Richard J. Liberatore. Organosilanes in Metal-Catalyzed, Enantioselective Reductions. Organic Process Research & Development 2021, 25 (8) , 1719-1787. https://doi.org/10.1021/acs.oprd.1c00073
  11. Yang Gao, Simin Yang, Yanping Huo, Qian Chen, Xianwei Li, Xiao-Qiang Hu. NiH-Catalyzed Hydroamination/Cyclization Cascade: Rapid Access to Quinolines. ACS Catalysis 2021, 11 (13) , 7772-7779. https://doi.org/10.1021/acscatal.1c02055
  12. Deyun Qian, Srikrishna Bera, Xile Hu. Chiral Alkyl Amine Synthesis via Catalytic Enantioselective Hydroalkylation of Enecarbamates. Journal of the American Chemical Society 2021, 143 (4) , 1959-1967. https://doi.org/10.1021/jacs.0c11630
  13. Bun Chan, Ying Luo, Masanari Kimura. Hydride Affinities for Main-Group Hydride Reductants: Assessment of Density Functionals and Trends in Reactivities. The Journal of Physical Chemistry A 2021, 125 (3) , 835-842. https://doi.org/10.1021/acs.jpca.0c10543
  14. Jinwon Jeon, Changseok Lee, Huiyeong Seo, Sungwoo Hong. NiH-Catalyzed Proximal-Selective Hydroamination of Unactivated Alkenes. Journal of the American Chemical Society 2020, 142 (48) , 20470-20480. https://doi.org/10.1021/jacs.0c10333
  15. Yu-Ting He, Yang-Jie Mao, Hong-Yan Hao, Zhen-Yuan Xu, Shao-Jie Lou, Dan-Qian Xu. Cu-Catalyzed Regioselective C–H Alkylation of Benzimidazoles with Aromatic Alkenes. Organic Letters 2020, 22 (21) , 8250-8255. https://doi.org/10.1021/acs.orglett.0c02864
  16. Richard Y. Liu, Stephen L. Buchwald. CuH-Catalyzed Olefin Functionalization: From Hydroamination to Carbonyl Addition. Accounts of Chemical Research 2020, 53 (6) , 1229-1243. https://doi.org/10.1021/acs.accounts.0c00164
  17. Kodai Saito, Hiromitsu Miyashita, Yui Ito, Masahiro Yamanaka, Takahiko Akiyama. Oxidative Kinetic Resolution of Acyclic Amines Based on Equilibrium Control. Organic Letters 2020, 22 (8) , 3128-3134. https://doi.org/10.1021/acs.orglett.0c00887
  18. Kenzo Yahata, Yuki Kaneko, Shuji Akai. Cobalt-Catalyzed Intermolecular Markovnikov Hydroamination of Nonactivated Olefins: N2-Selective Alkylation of Benzotriazole. Organic Letters 2020, 22 (2) , 598-603. https://doi.org/10.1021/acs.orglett.9b04375
  19. Sheng Feng, Hua Hao, Peng Liu, Stephen L. Buchwald. Diastereo- and Enantioselective CuH-Catalyzed Hydroamination of Strained Trisubstituted Alkenes. ACS Catalysis 2020, 10 (1) , 282-291. https://doi.org/10.1021/acscatal.9b04871
  20. Ciro Romano, Daniele Fiorito, Clément Mazet. Remote Functionalization of α,β-Unsaturated Carbonyls by Multimetallic Sequential Catalysis. Journal of the American Chemical Society 2019, 141 (42) , 16983-16990. https://doi.org/10.1021/jacs.9b09373
  21. Gaël Tran, Wen Shao, Clément Mazet. Ni-Catalyzed Enantioselective Intermolecular Hydroamination of Branched 1,3-Dienes Using Primary Aliphatic Amines. Journal of the American Chemical Society 2019, 141 (37) , 14814-14822. https://doi.org/10.1021/jacs.9b07253
  22. Le’an Hu, Yao Zhang, Gen-Qiang Chen, Bi-Jin Lin, Qing-Wen Zhang, Qin Yin, Xumu Zhang. CuH-Catalyzed Atropoenantioselective Reduction of Bringmann’s Lactones via Dynamic Kinetic Resolution. Organic Letters 2019, 21 (14) , 5575-5580. https://doi.org/10.1021/acs.orglett.9b01907
  23. Qing-Feng Xu-Xu, Xiao Zhang, Shu-Li You. Enantioselective Synthesis of 4-Aminotetrahydroquinolines via 1,2-Reductive Dearomatization of Quinolines and Copper(I) Hydride-Catalyzed Asymmetric Hydroamination. Organic Letters 2019, 21 (13) , 5357-5362. https://doi.org/10.1021/acs.orglett.9b02034
  24. Jin-Sheng Yu, Miguel Espinosa, Hidetoshi Noda, Masakatsu Shibasaki. Traceless Electrophilic Amination for the Synthesis of Unprotected Cyclic β-Amino Acids. Journal of the American Chemical Society 2019, 141 (26) , 10530-10537. https://doi.org/10.1021/jacs.9b05476
  25. Tatsuaki Takata, Koji Hirano, Masahiro Miura. Synthesis of α-Trifluoromethylamines by Cu-Catalyzed Regio- and Enantioselective Hydroamination of 1-Trifluoromethylalkenes. Organic Letters 2019, 21 (11) , 4284-4288. https://doi.org/10.1021/acs.orglett.9b01471
  26. Yuxuan Ye, Seoung-Tae Kim, Jinhoon Jeong, Mu-Hyun Baik, Stephen L. Buchwald. CuH-Catalyzed Enantioselective Alkylation of Indole Derivatives with Ligand-Controlled Regiodivergence. Journal of the American Chemical Society 2019, 141 (9) , 3901-3909. https://doi.org/10.1021/jacs.8b11838
  27. Dongyang Fan, Yang Liu, Jia Jia, Zhenfeng Zhang, Yangang Liu, Wanbin Zhang. Synthesis of Chiral α-Aminosilanes through Palladium-Catalyzed Asymmetric Hydrogenation of Silylimines. Organic Letters 2019, 21 (4) , 1042-1045. https://doi.org/10.1021/acs.orglett.8b04073
  28. Thomas R. Puleo, Alivia J. Strong, Jeffrey S. Bandar. Catalytic α-Selective Deuteration of Styrene Derivatives. Journal of the American Chemical Society 2019, 141 (4) , 1467-1472. https://doi.org/10.1021/jacs.8b12874
  29. Jérôme Hannedouche, Emmanuelle Schulz. Hydroamination and Hydroaminoalkylation of Alkenes by Group 3–5 Elements: Recent Developments and Comparison with Late Transition Metals. Organometallics 2018, 37 (23) , 4313-4326. https://doi.org/10.1021/acs.organomet.8b00431
  30. Sheng Guo, Jeffrey C. Yang, Stephen L. Buchwald. A Practical Electrophilic Nitrogen Source for the Synthesis of Chiral Primary Amines by Copper-Catalyzed Hydroamination. Journal of the American Chemical Society 2018, 140 (46) , 15976-15984. https://doi.org/10.1021/jacs.8b10564
  31. Fang Xie, Bingxue Shen, Xingwei Li. Enantioselective Copper-Catalyzed Hydroamination of Vinylarenes with Anthranils. Organic Letters 2018, 20 (22) , 7154-7157. https://doi.org/10.1021/acs.orglett.8b03093
  32. Youming Huang, Juan del Pozo, Sebastian Torker, and Amir H. Hoveyda . Enantioselective Synthesis of Trisubstituted Allenyl–B(pin) Compounds by Phosphine–Cu-Catalyzed 1,3-Enyne Hydroboration. Insights Regarding Stereochemical Integrity of Cu–Allenyl Intermediates. Journal of the American Chemical Society 2018, 140 (7) , 2643-2655. https://doi.org/10.1021/jacs.7b13296
  33. Yong-Yuan Gui, Naifu Hu, Xiao-Wang Chen, Li−Li Liao, Tao Ju, Jian-Heng Ye, Zhen Zhang, Jing Li, and Da-Gang Yu . Highly Regio- and Enantioselective Copper-Catalyzed Reductive Hydroxymethylation of Styrenes and 1,3-Dienes with CO2. Journal of the American Chemical Society 2017, 139 (47) , 17011-17014. https://doi.org/10.1021/jacs.7b10149
  34. Yujing Zhou, Jeffrey S. Bandar, and Stephen L. Buchwald . Enantioselective CuH-Catalyzed Hydroacylation Employing Unsaturated Carboxylic Acids as Aldehyde Surrogates. Journal of the American Chemical Society 2017, 139 (24) , 8126-8129. https://doi.org/10.1021/jacs.7b04937
  35. Shuo Liu, Michael S. Eberhart, Jack R. Norton, Xiaodong Yin, Michelle C. Neary, and Daniel W. Paley . Cationic Copper Hydride Clusters Arising from Oxidation of (Ph3P)6Cu6H6. Journal of the American Chemical Society 2017, 139 (23) , 7685-7688. https://doi.org/10.1021/jacs.7b02183
  36. Scott A. Shuler, Guoyin Yin, Sarah B. Krause, Caroline M. Vesper, and Donald A. Watson . Synthesis of Secondary Unsaturated Lactams via an Aza-Heck Reaction. Journal of the American Chemical Society 2016, 138 (42) , 13830-13833. https://doi.org/10.1021/jacs.6b08932
  37. Abraham J. Jordan, Gojko Lalic, and Joseph P. Sadighi . Coinage Metal Hydrides: Synthesis, Characterization, and Reactivity. Chemical Reviews 2016, 116 (15) , 8318-8372. https://doi.org/10.1021/acs.chemrev.6b00366
  38. Genping Huang and Peng Liu . Mechanism and Origins of Ligand-Controlled Linear Versus Branched Selectivity of Iridium-Catalyzed Hydroarylation of Alkenes. ACS Catalysis 2016, 6 (2) , 809-820. https://doi.org/10.1021/acscatal.5b02201
  39. Jing Zheng, Jifeng Qi, and Sunliang Cui . Fe-Catalyzed Olefin Hydroamination with Diazo Compounds for Hydrazone Synthesis. Organic Letters 2016, 18 (1) , 128-131. https://doi.org/10.1021/acs.orglett.5b03317
  40. Jeffrey S. Bandar, Michael T. Pirnot, and Stephen L. Buchwald . Mechanistic Studies Lead to Dramatically Improved Reaction Conditions for the Cu-Catalyzed Asymmetric Hydroamination of Olefins. Journal of the American Chemical Society 2015, 137 (46) , 14812-14818. https://doi.org/10.1021/jacs.5b10219
  41. Hyung‐Joon Kang, Changseok Lee, Sungwoo Hong. Nickel‐Catalyzed Kinetic Resolution of Racemic Unactivated Alkenes via Enantio‐, Diastereo‐, and Regioselective Hydroamination. Angewandte Chemie 2023, 135 (24) https://doi.org/10.1002/ange.202305042
  42. Hyung‐Joon Kang, Changseok Lee, Sungwoo Hong. Nickel‐Catalyzed Kinetic Resolution of Racemic Unactivated Alkenes via Enantio‐, Diastereo‐, and Regioselective Hydroamination. Angewandte Chemie International Edition 2023, 62 (24) https://doi.org/10.1002/anie.202305042
  43. Shan Wang, Lou Shi, Xiao‐Yi Chen, Wei Shu. Catalyst‐Controlled Regiodivergent and Enantioselective Formal Hydroamination of N,N ‐Disubstituted Acrylamides to α‐Tertiary‐α‐Aminolactam and β‐Aminoamide Derivatives. Angewandte Chemie International Edition 2023, 62 (22) https://doi.org/10.1002/anie.202303795
  44. Shan Wang, Lou Shi, Xiao‐Yi Chen, Wei Shu. Catalyst‐Controlled Regiodivergent and Enantioselective Formal Hydroamination of N,N ‐Disubstituted Acrylamides to α‐Tertiary‐α‐Aminolactam and β‐Aminoamide Derivatives. Angewandte Chemie 2023, 135 (22) https://doi.org/10.1002/ange.202303795
  45. Yuanrui Wang, Xiao-Feng Wu. Palladium-catalyzed dicarbonylation of terminal alkynes: A redox-neutral strategy for the synthesis of maleimides. Journal of Catalysis 2023, 421 , 319-323. https://doi.org/10.1016/j.jcat.2023.03.034
  46. Yan-Long Zheng, Di-Yu Liang, Hong-Bin Ma, Fan-Cheng Meng, Tie Wang. Regio- and chemoselective hydroamination of unactivated alkenes with anthranils via NiH-catalysis. Chemical Communications 2023, 59 (19) , 2751-2754. https://doi.org/10.1039/D2CC07052A
  47. Sachin Balaso Mohite, Milan Bera, Vishal Kumar, Rajshekhar Karpoormath, Shaik Baji Baba, Arjun S. Kumbhar. O-Benzoylhydroxylamines: A Versatile Electrophilic Aminating Reagent for Transition Metal-Catalyzed C–N Bond-Forming Reactions. Topics in Current Chemistry 2023, 381 (1) https://doi.org/10.1007/s41061-022-00414-5
  48. R. A. Rather, B. A. Lone, G. Khanum, T. Ara. N-Methyl-N-arylformamides: Synthesis and Interaction of with Carbonic Anhydrase (PDB: 3FW3) and Nuclease (PDB: 6O70) Enzymes via In Silico Molecular Docking. Russian Journal of General Chemistry 2023, 93 (1) , 175-181. https://doi.org/10.1134/S1070363223010231
  49. Deyun Qian. Asymmetric transformations under copper hydride (CuH) catalysis. 2023, 267-296. https://doi.org/10.1016/B978-0-323-85225-8.00002-2
  50. Yi Jiang, Jiayi Gu, Wenxing Nie, Guoqing Lu, Meixiu Xin, Zefeng Zhu, Jiayao Jiang, Yingfen Meng, Hui Miao, Yong Zou. Copper‐Catalyzed C(sp 2 )−N Coupling of ( E )‐3‐(2‐Bromophenysl)‐2‐arylacrylamides for the Synthesis of 3‐Arylquinolin‐2‐ones. ChemistrySelect 2022, 7 (47) https://doi.org/10.1002/slct.202204339
  51. Jing Zhang, Min Jiang, Chang-Sheng Wang, Kai Guo, Quan-Xin Li, Cheng Ma, Shao-Fei Ni, Gen-Qiang Chen, Yan Zong, Hua Lu, Li-Wen Xu, Xinxin Shao. Transition-metal free C–N bond formation from alkyl iodides and diazonium salts via halogen-atom transfer. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-35613-7
  52. Wenjun Huang, Shuai Fan, Jiahui Gao, Shangwen Luo, Shouchu Tang, Jian Liu, Xiaolei Wang. Total Synthesis of Complex Peptidyl Nucleoside Antibiotics: Asymmetric De Novo Syntheses of Miharamycin B and Its Biosynthetic Precursor. Angewandte Chemie International Edition 2022, 61 (31) https://doi.org/10.1002/anie.202204907
  53. Wenjun Huang, Shuai Fan, Jiahui Gao, Shangwen Luo, Shouchu Tang, Jian Liu, Xiaolei Wang. Total Synthesis of Complex Peptidyl Nucleoside Antibiotics: Asymmetric De Novo Syntheses of Miharamycin B and Its Biosynthetic Precursor. Angewandte Chemie 2022, 134 (31) https://doi.org/10.1002/ange.202204907
  54. Paméla Aoun, Ahmad Hammoud, Mayte A. Martínez-Aguirre, Laurent Bouteiller, Matthieu Raynal. Asymmetric hydroamination with far fewer chiral species than copper centers achieved by tuning the structure of supramolecular helical catalysts. Catalysis Science & Technology 2022, 12 (3) , 834-842. https://doi.org/10.1039/D1CY02168K
  55. Jie Zhao, Baihua Ye. Hydrometallation of Organometallic Complexes. 2022, 32-74. https://doi.org/10.1016/B978-0-12-820206-7.00121-9
  56. Changseok Lee, Huiyeong Seo, Jinwon Jeon, Sungwoo Hong. γ-Selective C(sp3)–H amination via controlled migratory hydroamination. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-25696-z
  57. Leipeng Xie, Shenghao Wang, Lanlan Zhang, Lei Zhao, Chun Luo, Linping Mu, Xiuguang Wang, Chao Wang. Directed nickel-catalyzed regio- and diastereoselective arylamination of unactivated alkenes. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-26527-x
  58. Yang Yuan, Fengqian Zhao, Xiao-Feng Wu. Copper-catalyzed enantioselective carbonylation toward α-chiral secondary amides. Chemical Science 2021, 12 (38) , 12676-12681. https://doi.org/10.1039/D1SC04210F
  59. Soshi Nishino, Masahiro Miura, Koji Hirano. An umpolung-enabled copper-catalysed regioselective hydroamination approach to α-amino acids. Chemical Science 2021, 12 (34) , 11525-11537. https://doi.org/10.1039/D1SC03692K
  60. Shengzu Duan, Guogang Deng, Yujin Zi, Xiaomei Wu, Xun Tian, Zhengfen Liu, Minyan Li, Hongbin Zhang, Xiaodong Yang, Patrick J. Walsh. Nickel-catalyzed enantioselective vinylation of aryl 2-azaallyl anions. Chemical Science 2021, 12 (18) , 6406-6412. https://doi.org/10.1039/D1SC00972A
  61. Soshi Nishino, Koji Hirano, Masahiro Miura. Cu‐Catalyzed Reductive gem ‐Difunctionalization of Terminal Alkynes via Hydrosilylation/Hydroamination Cascade: Concise Synthesis of α‐Aminosilanes. Chemistry – A European Journal 2020, 26 (40) , 8725-8728. https://doi.org/10.1002/chem.202001799
  62. Qingjing Yang, Sifeng Li, Jun (Joelle) Wang. Asymmetric Synthesis of Chiral Chromanes by Copper‐Catalyzed Hydroamination of 2 H ‐Chromenes. ChemCatChem 2020, 12 (12) , 3202-3206. https://doi.org/10.1002/cctc.202000601
  63. Ba L. Tran, Benjamin D. Neisen, Amy L. Speelman, Thilina Gunasekara, Eric S. Wiedner, R. Morris Bullock. Mechanistic Studies on the Insertion of Carbonyl Substrates into Cu‐H: Different Rate‐Limiting Steps as a Function of Electrophilicity. Angewandte Chemie 2020, 132 (22) , 8723-8731. https://doi.org/10.1002/ange.201916406
  64. Ba L. Tran, Benjamin D. Neisen, Amy L. Speelman, Thilina Gunasekara, Eric S. Wiedner, R. Morris Bullock. Mechanistic Studies on the Insertion of Carbonyl Substrates into Cu‐H: Different Rate‐Limiting Steps as a Function of Electrophilicity. Angewandte Chemie International Edition 2020, 59 (22) , 8645-8653. https://doi.org/10.1002/anie.201916406
  65. Pierre Colonna, Sophie Bezzenine, Richard Gil, Jérôme Hannedouche. Alkene Hydroamination via Earth‐Abundant Transition Metal (Iron, Cobalt, Copper and Zinc) Catalysis: A Mechanistic Overview. Advanced Synthesis & Catalysis 2020, 362 (8) , 1550-1563. https://doi.org/10.1002/adsc.201901157
  66. Kenzo Yahata, Yuki Kaneko, Shuji Akai. Cobalt-Catalyzed Hydroamination of Alkenes with 5-Substituted Tetrazoles: Facile Access to 2,5-Disubstituted Tetrazoles and Asymmetric Intermolecular Hydroaminations. Chemical and Pharmaceutical Bulletin 2020, 68 (4) , 332-335. https://doi.org/10.1248/cpb.c20-00068
  67. Haoxuan Wang, Stephen L. Buchwald. Copper‐Catalyzed, Enantioselective Hydrofunctionalization of Alkenes. 2019, 121-206. https://doi.org/10.1002/0471264180.or100.03
  68. Hongyu Wang, Yunquan Man, Yanan Xiang, Kaiye Wang, Na Li, Bo Tang. Regioselective intramolecular Markovnikov and anti-Markovnikov hydrofunctionalization of alkenes via photoredox catalysis. Chemical Communications 2019, 55 (76) , 11426-11429. https://doi.org/10.1039/C9CC05902D
  69. Lu Yu, Peter Somfai. Regio‐ and Enantioselective Formal Hydroamination of Enamines for the Synthesis of 1,2‐Diamines. Angewandte Chemie 2019, 131 (25) , 8639-8643. https://doi.org/10.1002/ange.201902642
  70. Lu Yu, Peter Somfai. Regio‐ and Enantioselective Formal Hydroamination of Enamines for the Synthesis of 1,2‐Diamines. Angewandte Chemie International Edition 2019, 58 (25) , 8551-8555. https://doi.org/10.1002/anie.201902642
  71. Shona Banjo, Eiko Nakasuji, Tatsuhiko Meguro, Takaaki Sato, Noritaka Chida. Copper‐Catalyzed Electrophilic Amidation of Organotrifluoroborates with Use of N ‐Methoxyamides. Chemistry – A European Journal 2019, 25 (33) , 7941-7947. https://doi.org/10.1002/chem.201901145
  72. Di Liu, Ping Yang, Hao Zhang, Minjie Liu, Wenfei Zhang, Dongmei Xu, Jun Gao. Direct reductive coupling of nitroarenes and alcohols catalysed by Co–N–C/CNT@AC. Green Chemistry 2019, 21 (8) , 2129-2137. https://doi.org/10.1039/C8GC03818J
  73. Richard Y. Liu, Stephen L. Buchwald*. Copper‐Catalyzed Enantioselective Hydroamination of Alkenes. 2019, 80-96. https://doi.org/10.1002/0471264229.os095.06
  74. Xi‐Jie Dai, Oliver D. Engl, Thierry León, Stephen L. Buchwald. Catalytic Asymmetric Synthesis of α‐Arylpyrrolidines and Benzo‐fused Nitrogen Heterocycles. Angewandte Chemie International Edition 2019, 58 (11) , 3407-3411. https://doi.org/10.1002/anie.201814331
  75. Xi‐Jie Dai, Oliver D. Engl, Thierry León, Stephen L. Buchwald. Catalytic Asymmetric Synthesis of α‐Arylpyrrolidines and Benzo‐fused Nitrogen Heterocycles. Angewandte Chemie 2019, 131 (11) , 3445-3449. https://doi.org/10.1002/ange.201814331
  76. Clément Lepori, Elise Bernoud, Régis Guillot, Sven Tobisch, Jérôme Hannedouche. Experimental and Computational Mechanistic Studies of the β‐Diketiminatoiron(II)‐Catalysed Hydroamination of Primary Aminoalkenes. Chemistry – A European Journal 2019, 25 (3) , 835-844. https://doi.org/10.1002/chem.201804681
  77. Songjie Yu, Hui Leng Sang, Shuo-Qing Zhang, Xin Hong, Shaozhong Ge. Catalytic asymmetric synthesis of chiral trisubstituted heteroaromatic allenes from 1,3-enynes. Communications Chemistry 2018, 1 (1) https://doi.org/10.1038/s42004-018-0065-4
  78. Hao Yu, Zhen Li, Carsten Bolm. Copper‐Catalyzed Transsulfinamidation of Sulfinamides as a Key Step in the Preparation of Sulfonamides and Sulfonimidamides. Angewandte Chemie 2018, 130 (47) , 15828-15831. https://doi.org/10.1002/ange.201810548
  79. Hao Yu, Zhen Li, Carsten Bolm. Copper‐Catalyzed Transsulfinamidation of Sulfinamides as a Key Step in the Preparation of Sulfonamides and Sulfonimidamides. Angewandte Chemie International Edition 2018, 57 (47) , 15602-15605. https://doi.org/10.1002/anie.201810548
  80. Qing‐Feng Xu‐Xu, Qiang‐Qiang Liu, Xiao Zhang, Shu‐Li You. Copper‐Catalyzed Ring Opening of Benzofurans and an Enantioselective Hydroamination Cascade. Angewandte Chemie International Edition 2018, 57 (46) , 15204-15208. https://doi.org/10.1002/anie.201809003
  81. Qing‐Feng Xu‐Xu, Qiang‐Qiang Liu, Xiao Zhang, Shu‐Li You. Copper‐Catalyzed Ring Opening of Benzofurans and an Enantioselective Hydroamination Cascade. Angewandte Chemie 2018, 130 (46) , 15424-15428. https://doi.org/10.1002/ange.201809003
  82. Koji Hirano, Masahiro Miura. Development of New C-N and C-P Bond Formations with Alkenes and Alkynes Based on Electrophilic Amination and Phosphination. Journal of Synthetic Organic Chemistry, Japan 2018, 76 (11) , 1206-1214. https://doi.org/10.5059/yukigoseikyokaishi.76.1206
  83. Jianhui Chen, Jun Guo, Zhan Lu. Recent Advances in Hydrometallation of Alkenes and Alkynes via the First Row Transition Metal Catalysis. Chinese Journal of Chemistry 2018, 36 (11) , 1075-1109. https://doi.org/10.1002/cjoc.201800314
  84. Tatsuaki Takata, Daiki Nishikawa, Koji Hirano, Masahiro Miura. Synthesis of α‐Aminophosphines by Copper‐Catalyzed Regioselective Hydroamination of Vinylphosphines. Chemistry – A European Journal 2018, 24 (43) , 10975-10978. https://doi.org/10.1002/chem.201802491
  85. Saki Ichikawa, Shaolin Zhu, Stephen L. Buchwald. A Modified System for the Synthesis of Enantioenriched N ‐Arylamines through Copper‐Catalyzed Hydroamination. Angewandte Chemie 2018, 130 (28) , 8850-8854. https://doi.org/10.1002/ange.201803026
  86. Saki Ichikawa, Shaolin Zhu, Stephen L. Buchwald. A Modified System for the Synthesis of Enantioenriched N ‐Arylamines through Copper‐Catalyzed Hydroamination. Angewandte Chemie International Edition 2018, 57 (28) , 8714-8718. https://doi.org/10.1002/anie.201803026
  87. Yujing Zhou, Oliver D. Engl, Jeffrey S. Bandar, Emma D. Chant, Stephen L. Buchwald. CuH‐Catalyzed Asymmetric Hydroamidation of Vinylarenes. Angewandte Chemie International Edition 2018, 57 (22) , 6672-6675. https://doi.org/10.1002/anie.201802797
  88. Yujing Zhou, Oliver D. Engl, Jeffrey S. Bandar, Emma D. Chant, Stephen L. Buchwald. CuH‐Catalyzed Asymmetric Hydroamidation of Vinylarenes. Angewandte Chemie 2018, 130 (22) , 6782-6785. https://doi.org/10.1002/ange.201802797
  89. Yun Gao, Ping Wang, Yang Zhao, Qingyun Liu, Wei Liu, Yong Wang. A DFT Study on CuH‐Catalyzed Reductive Relay Hydroamination for Synthesis of Remote‐Chiral Amine. ChemistrySelect 2018, 3 (7) , 2157-2161. https://doi.org/10.1002/slct.201800367
  90. Marwan Simaan, Ilan Marek. Asymmetric Catalytic Preparation of Polysubstituted Cyclopropanol and Cyclopropylamine Derivatives. Angewandte Chemie 2018, 130 (6) , 1559-1562. https://doi.org/10.1002/ange.201710707
  91. Marwan Simaan, Ilan Marek. Asymmetric Catalytic Preparation of Polysubstituted Cyclopropanol and Cyclopropylamine Derivatives. Angewandte Chemie International Edition 2018, 57 (6) , 1543-1546. https://doi.org/10.1002/anie.201710707
  92. Jianhui Chen, Zhan Lu. Asymmetric hydrofunctionalization of minimally functionalized alkenes via earth abundant transition metal catalysis. Organic Chemistry Frontiers 2018, 5 (2) , 260-272. https://doi.org/10.1039/C7QO00613F
  93. Mei-Hua Shen, Xin-Tao Ren, Ying-Peng Pan, Hua-Dong Xu. Iridium catalyzed fragmentation/cyclization of N -butynyl 4,4-dimethylisoxazolidine-3,5-diones: a unique access to multiply substituted pyrroles. Organic Chemistry Frontiers 2018, 5 (1) , 46-50. https://doi.org/10.1039/C7QO00698E
  94. Hui Leng Sang, Songjie Yu, Shaozhong Ge. Copper-catalyzed asymmetric hydroboration of 1,3-enynes with pinacolborane to access chiral allenylboronates. Organic Chemistry Frontiers 2018, 5 (8) , 1284-1287. https://doi.org/10.1039/C8QO00167G
  95. Songjie Yu, Hui Leng Sang, Shaozhong Ge. Enantioselective Copper‐Catalyzed Alkylation of Quinoline N ‐Oxides with Vinylarenes. Angewandte Chemie 2017, 129 (50) , 16112-16116. https://doi.org/10.1002/ange.201709411
  96. Songjie Yu, Hui Leng Sang, Shaozhong Ge. Enantioselective Copper‐Catalyzed Alkylation of Quinoline N ‐Oxides with Vinylarenes. Angewandte Chemie International Edition 2017, 56 (50) , 15896-15900. https://doi.org/10.1002/anie.201709411
  97. Sophie Bezzenine-Lafollée, Richard Gil, Damien Prim, Jérôme Hannedouche. First-Row Late Transition Metals for Catalytic Alkene Hydrofunctionalisation: Recent Advances in C-N, C-O and C-P Bond Formation. Molecules 2017, 22 (11) , 1901. https://doi.org/10.3390/molecules22111901
  98. Christophe Michon, Marc-Antoine Abadie, Florian Medina, Francine Agbossou-Niedercorn. Recent metal-catalysed asymmetric hydroaminations of alkenes. Journal of Organometallic Chemistry 2017, 847 , 13-27. https://doi.org/10.1016/j.jorganchem.2017.03.032
  99. Huawen Huang, Feifei Li, Zhenhua Xu, Jinhui Cai, Xiaochen Ji, Guo‐Jun Deng. Base‐Promoted [3+2]‐Annulation of Oxime Esters and Aldehydes for Rapid Isoxazoline Formation. Advanced Synthesis & Catalysis 2017, 359 (18) , 3102-3107. https://doi.org/10.1002/adsc.201700730
  100. Felix Pape, Johannes F. Teichert. Dealing at Arm's Length: Catalysis with N-Heterocyclic Carbene Ligands Bearing Anionic Tethers. European Journal of Organic Chemistry 2017, 2017 (29) , 4206-4229. https://doi.org/10.1002/ejoc.201700124
Load all citations
  • Abstract

    Figure 1

    Figure 1. Representative natural products and pharmaceutical agents that feature a chiral amine motif.

    Figure 2

    Figure 2. Hydroamination approaches to make α-chiral amines.

    Figure 3

    Figure 3. CuH-catalyzed hydroamination of styrenes for the formation of chiral secondary amines. aYields are determined using GC with dodecane as an internal standard; unless otherwise noted, CuH solution used in this study was prepared in a nitrogen-filled glovebox. bIsolated yields on 1 mmol scale (average of two runs); enantiomeric excesses (ee) were determined by chiral HPLC analysis; see Supporting Information for experimental details. cThree equivalents of HSi(OEt)2Me was used, and 10e was added over 1.5 h.

    Scheme 1

    Scheme 1. Hydroamination Reaction in the Synthesis and Derivatization of Drugsa

    Scheme aReactions performed on 0.5 mmol scale. Isolated yields are reported (average of two runs). Enantioselectivities and diastereoselectivities were determined by chiral HPLC or 1H NMR analysis. Conditions A: (1) NH2OH·HCl, pyridine; (2) NaBH3CN, HCl in MeOH, MeOH/THF; (3) 4-(dimethylamino)benzoic acid, CDI, CH2Cl2. Conditions B: Pd(OAc)2, SPhos, potassium vinyltrifluoroborate, K2CO3, dioxane/H2O.

    Figure 4

    Figure 4. Relative rates of the reactions between LCuH and different amine transfer agents. Si* = Si(OEt)2Me. Conditions A: a 0.6 mL of a stock solution made from Cu(OAc)2 (3.6 mg), (R)-DTBM-SEGPHOS (26 mg), PPh3 (11.6 mg), HSi(OEt)2Me (0.32 mL, 2.0 mmol), and THF-d8 (1.0 mL) is used. The progress of these experiments was monitored by 1H NMR.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 24 other publications.

    1. 1
      Nugent, T. C., Ed. Chiral Amine Synthesis: Methods, Developments and Applications; Wiley-VCH: Weinheim, Germany, 2010.
    2. 2
      Turner, N. J.; Carr, R. Biocatalytic Routes to Nonracemic Chiral Amines. In Biocatalysis in the Pharmaceutical and Biotechnology Industries; Patel, R. N., Ed.; CRC Press LLC: Boca Raton, FL, 2006; pp 743 755.
    3. 3
      Robak, M. T.; Herbage, M. A.; Ellman, J. A. Chem. Rev. 2010, 110, 3600 DOI: 10.1021/cr900382t
    4. 4
      (a) Nugent, T. C.; El-Shazly, M. Adv. Synth. Catal. 2010, 352, 753 DOI: 10.1002/adsc.200900719
      (b) Xie, J.; Zhu, S.; Zhou, Q. Chem. Rev. 2011, 111, 1713 DOI: 10.1021/cr100218m
      (N) Tufvesson, P.; Lima-Ramos, J.; Jensen, J. S.; Al-Haque, N.; Neto, W.; Woodley, J. M. Biotechnol. Bioeng. 2011, 108, 1479 DOI: 10.1002/bit.23154
      (c) Gopalaiah, K. Chem. Rev. 2013, 113, 3248 DOI: 10.1021/cr300236r
      (d) Feng, X.; Du, H. Tetrahedron Lett. 2014, 55, 6959 DOI: 10.1016/j.tetlet.2014.10.138
      (e) Bloch, R. Chem. Rev. 1998, 98, 1407 DOI: 10.1021/cr940474e
      (f) Kobayashi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069 DOI: 10.1021/cr980414z
      (g) Friestad, G. K.; Mathies, A. K. Tetrahedron 2007, 63, 2541 DOI: 10.1016/j.tet.2006.11.076
      (h) Yamada, K.; Tomioka, K. Chem. Rev. 2008, 108, 2874 DOI: 10.1021/cr078370u
      (i) Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626 DOI: 10.1021/cr100204f
      (j) Yus, M.; González-Gómez, J. C.; Foubelo, F. Chem. Rev. 2011, 111, 7774 DOI: 10.1021/cr1004474
      (k) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2014, 114, 9047 DOI: 10.1021/cr5001496
    5. 5
      (a) Johannsen, M.; Jørgensen, K. A. Chem. Rev. 1998, 98, 1689 DOI: 10.1021/cr970343o
      (b) Helmchen, G. Iridium-Catalyzed Asymmetric Allylic Substitutions. In Iridium Complexes in Organic Synthesis; Oro, L. A.; Claver, C., Eds.; Wiley-VCH: Weinheim, Germany, 2009; pp 211 250.
      (c) Hartwig, J. F.; Stanley, L. M. Acc. Chem. Res. 2010, 43, 1461 DOI: 10.1021/ar100047x
      (d) Liu, W.-B.; Xia, J.-B.; You, S.-L. Top. Organomet. Chem. 2012, 38, 155 DOI: 10.1007/3418_2011_10
      (e) Tosatti, P.; Nelson, A.; Marsden, S. P. Org. Biomol. Chem. 2012, 10, 3147 DOI: 10.1039/c2ob07086c
    6. 6
      (a) Roizen, J. L.; Harvey, M. E.; Du Bois, J. Acc. Chem. Res. 2012, 45, 911 DOI: 10.1021/ar200318q
      (b) Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417 DOI: 10.1038/nature06485
      (c) Müller, P.; Fruit, C. Chem. Rev. 2003, 103, 2905 DOI: 10.1021/cr020043t
    7. 7
      (a) Muller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675 DOI: 10.1021/cr960433d
      (b) Hartwig, J. F. Pure Appl. Chem. 2004, 76, 507 DOI: 10.1351/pac200476030507
      (c) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673 DOI: 10.1021/ar040051r
      (d) Beller, M.; Seayad, J.; Tillack, A.; Jiao, H. Angew. Chem., Int. Ed. 2004, 43, 3368 DOI: 10.1002/anie.200300616
      (e) Hultzsch, K. C. Org. Biomol. Chem. 2005, 3, 1819 DOI: 10.1039/b418521h
      (f) Muller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795 DOI: 10.1021/cr0306788
      (g) Hultzsch, K. C. Adv. Synth. Catal. 2005, 347, 367 DOI: 10.1002/adsc.200404261
      (h) Huang, L.; Arndt, M.; Gooβen, K.; Heydt, H.; Gooβen, L. J. Chem. Rev. 2015, 115, 2596 DOI: 10.1021/cr300389u
    8. 8
      (a) Appella, D. H.; Moritani, Y.; Shintani, R.; Ferreira, E. M.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 9473 DOI: 10.1021/ja992366l
      (b) Hughes, G.; Kimura, M.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 11253 DOI: 10.1021/ja0351692
      (c) Rainka, M. P.; Aye, Y.; Buchwald, S. L. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5821 DOI: 10.1073/pnas.0307764101
    9. 9
      (a) Berman, A. M.; Johnson, J. S. J. Am. Chem. Soc. 2004, 126, 5680 DOI: 10.1021/ja049474e
      (b) Berman, A. M.; Johnson, J. S. J. Org. Chem. 2006, 71, 219 DOI: 10.1021/jo051999h
      (c) Campbell, M. J.; Johnson, J. S. Org. Lett. 2007, 9, 1521 DOI: 10.1021/ol0702829
      (d) Rucker, R. P.; Whittaker, A. M.; Dang, H.; Lalic, G. Angew. Chem., Int. Ed. 2012, 51, 3953 DOI: 10.1002/anie.201200480
      (e) Yan, X.; Yang, X.; Xi, C. Catal. Sci. Technol. 2014, 4, 4169 DOI: 10.1039/C4CY00773E
      (f) Erdik, E.; Ay, M. Chem. Rev. 1989, 89, 1947 DOI: 10.1021/cr00098a014
      (g) Barker, T. J.; Jarvo, E. R. Synthesis 2011, 24, 3954 DOI: 10.1055/s-0031-1289581
    10. 10
      (a) Zhu, S.; Niljianskul, N.; Buchwald, S. L. J. Am. Chem. Soc. 2013, 135, 15746 DOI: 10.1021/ja4092819
      (b) Zhu, S.; Buchwald, S. L. J. Am. Chem. Soc. 2014, 136, 15913 DOI: 10.1021/ja509786v
      (c) Niljianskul, N.; Zhu, S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2015, 54, 1638 DOI: 10.1002/anie.201410326
      (d) Shi, S.; Buchwald, S. L. Nat. Chem. 2015, 7, 38 DOI: 10.1038/nchem.2131
    11. 11
      (a) Miki, Y.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2013, 52, 10830 DOI: 10.1002/anie.201304365
      (b) Miki, Y.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2014, 16, 1498 DOI: 10.1021/ol5003219
    12. 12

      In contrast to the large number of successful examples using dialkylamine transfer reagents (R2NOBz, R ≠ H) in copper-mediated amination reactions, use of the analogous monoalkylamine transfer reagents [RN(H)OBz] remains underdeveloped. For representative examples, see ref 9b and

      (a) Yotphan, S.; Beukeaw, D.; Reutrakul, V. Tetrahedron 2013, 69, 6627 DOI: 10.1016/j.tet.2013.05.127
      (b) McDonald, S. L.; Wang, Q. Angew. Chem., Int. Ed. 2014, 53, 1867 DOI: 10.1002/anie.201308890
      (c) Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2011, 13, 2860 DOI: 10.1021/ol200855t
    13. 13
      (a) Ascic, E.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 4666 4669 DOI: 10.1021/jacs.5b02316
      (b)

      PPh3 is used as a secondary ligand due to the observed beneficial effects it has on CuH-catalyzed reactions. This concept was developed by Lipshutz:

      Lipshutz, B. H.; Noson, K.; Chrisman, W.; Lower, A. J. Am. Chem. Soc. 2003, 125, 8779 DOI: 10.1021/ja021391f
    14. 14

      Attempts to modify the properties of dialkylamine transfer reagents by adjusting the benzoate group have been reported by Johnson. (9c)

    15. 15
      (a)

      Alkyl carboxylate-based amine transfer reagents 13 and 14 were also tested. Reagent 14 containing a bulky adamantyl group provided yields of 11b and 11c similar to that of 4-(dimethylamino)benzoate 10e. Due to the availability of the 4-(dimethylamino)benzoic acid and its ease of removal after reaction, (15b) 4-(dimethylamino)benzoates were used for most of this work

      .
      (b)

      4-(Dimethylamino)benzoic acid is sparingly soluble in Et2O, EtOAc, or CH2Cl2 but readily soluble in 2 M aqueous K2CO3.

    16. 16

      Attempts to use 10e in the hydroamination of β,β-disubstituted styrenes or terminal unactivated alkenes gave low yields of secondary amine products.

    17. 17
      (a) Grigg, R. D.; Van Hoveln, R.; Schomaker, J. M. J. Am. Chem. Soc. 2012, 134, 16131 DOI: 10.1021/ja306446m
      (b) Van Hoveln, R. J.; Schmid, S. C.; Schomaker, J. M. Org. Biomol. Chem. 2014, 12, 7655 DOI: 10.1039/C4OB01294A
    18. 18
      Smithen, D. A.; Mathews, C. J.; Tomkinson, N. C. O. Org. Biomol. Chem. 2012, 10, 3756 DOI: 10.1039/c2ob25293g
    19. 19

      Several methodologies have been developed to convert α-amino acid esters into the corresponding primary N-hydroxylamines. For references, see:

      (a) Tokuyama, H.; Kuboyama, T.; Fukuyama, T. Org. Synth. 2003, 80, 207 DOI: 10.15227/orgsyn.080.0207
      (b) Wittman, M. D.; Halcomb, R. L.; Danishefsky, S. J. J. Org. Chem. 1990, 55, 1981 DOI: 10.1021/jo00294a005
      (c) Fukuzumi, T.; Bode, J. W. J. Am. Chem. Soc. 2009, 131, 3864 DOI: 10.1021/ja900601c
    20. 20
      Sun, H.; Martin, C.; Kesselring, D.; Keller, R.; Moeller, K. D. J. Am. Chem. Soc. 2006, 128, 13761 DOI: 10.1021/ja064737l
    21. 21
      Molander, G. A.; Brown, A. R. J. Org. Chem. 2006, 71, 9681 DOI: 10.1021/jo0617013
    22. 22

      Formation of BnNH2 and the silylated ester 37 could be detected by GC/MS and 1H NMR analysis.

    23. 23

      Reduction of the dialkylamine transfer agent 36 is much slower. Approximately, 60% of 36 was consumed after 20 h under described conditions.

    24. 24

      A manuscript detailing the use of related modified amine transfer reagents to effect hydroamination of unactivated internal alkenes is in press.

  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Experimental procedures and characterization data for all compounds. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b05446.


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect