ACS Publications. Most Trusted. Most Cited. Most Read
Toward an Experimental Quantum Chemistry: Exploring a New Energy Partitioning
My Activity

Figure 1Loading Img
    Article

    Toward an Experimental Quantum Chemistry: Exploring a New Energy Partitioning
    Click to copy article linkArticle link copied!

    View Author Information
    Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2015, 137, 32, 10282–10291
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.5b05600
    Published July 20, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Following the work of L. C. Allen, this work begins by relating the central chemical concept of electronegativity with the average binding energy of electrons in a system. The average electron binding energy, χ̅, is in principle accessible from experiment, through photoelectron and X-ray spectroscopy. It can also be estimated theoretically. χ̅ has a rigorous and understandable connection to the total energy. That connection defines a new kind of energy decomposition scheme. The changing total energy in a reaction has three primary contributions to it: the average electron binding energy, the nuclear–nuclear repulsion, and multielectron interactions. This partitioning allows one to gain insight into the predominant factors behind a particular energetic preference. We can conclude whether an energy change in a transformation is favored or resisted by collective changes to the binding energy of electrons, the movement of nuclei, or multielectron interactions. For example, in the classical formation of H2 from atoms, orbital interactions dominate nearly canceling nuclear–nuclear repulsion and two-electron interactions. While in electron attachment to an H atom, the multielectron interactions drive the reaction. Looking at the balance of average electron binding energy, multielectron, and nuclear–nuclear contributions one can judge when more traditional electronegativity arguments can be justifiably invoked in the rationalization of a particular chemical event.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b05600.

    • Demonstration of χ̅ from canonical and localized orbitals. Discussion on how to calculate χ̅ for extended systems. Dependence of χ̅ on the level of theory and basis set. Python code for performing the χ̅-analysis (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 40 publications.

    1. Peter T. Wolczanski. Elemental Aspects of Transition Metals Pertinent to Organometallic Chemistry: Properties, Periodicity, Curiosities, and Related Main Group Issues. Organometallics 2024, 43 (8) , 787-801. https://doi.org/10.1021/acs.organomet.3c00529
    2. Stefano Racioppi, Per Hyldgaard, Martin Rahm. Quantifying Atomic Volume, Partial Charge, and Electronegativity in Condensed Phases. The Journal of Physical Chemistry C 2024, 128 (9) , 4009-4017. https://doi.org/10.1021/acs.jpcc.3c07677
    3. Frederik Ø. Kjeldal, Janus J. Eriksen. Properties of Local Electronic Structures. Journal of Chemical Theory and Computation 2023, 19 (24) , 9228-9238. https://doi.org/10.1021/acs.jctc.3c00963
    4. Michael J. Sahre, Guido Falk von Rudorff, O. Anatole von Lilienfeld. Quantum Alchemy Based Bonding Trends and Their Link to Hammett’s Equation and Pauling’s Electronegativity Model. Journal of the American Chemical Society 2023, 145 (10) , 5899-5908. https://doi.org/10.1021/jacs.2c13393
    5. Jianfu Li, Yanlei Geng, Zhenzhen Xu, Pinhua Zhang, Gaston Garbarino, Maosheng Miao, Qingyang Hu, Xiaoli Wang. Mechanochemistry and the Evolution of Ionic Bonds in Dense Silver Iodide. JACS Au 2023, 3 (2) , 402-408. https://doi.org/10.1021/jacsau.2c00550
    6. Stefano Racioppi, Phalgun Lolur, Per Hyldgaard, Martin Rahm. A Density Functional Theory for the Average Electron Energy. Journal of Chemical Theory and Computation 2023, 19 (3) , 799-807. https://doi.org/10.1021/acs.jctc.2c00899
    7. Francesco Sessa, Martin Rahm. Electronegativity Equilibration. The Journal of Physical Chemistry A 2022, 126 (32) , 5472-5482. https://doi.org/10.1021/acs.jpca.2c03814
    8. Jarosław Zaklika, Jerzy Hładyszowski, Piotr Ordon, Ludwik Komorowski. From the Electron Density Gradient to the Quantitative Reactivity Indicators: Local Softness and the Fukui Function. ACS Omega 2022, 7 (9) , 7745-7758. https://doi.org/10.1021/acsomega.1c06540
    9. Jesús Sánchez-Márquez, Victor García, David Zorrilla, Manuel Fernández. On Electronegativity, Hardness, and Reactivity Descriptors: A New Property-Oriented Basis Set. The Journal of Physical Chemistry A 2020, 124 (23) , 4700-4711. https://doi.org/10.1021/acs.jpca.0c01342
    10. Martin Rahm, Roberto Cammi, N. W. Ashcroft, Roald Hoffmann. Squeezing All Elements in the Periodic Table: Electron Configuration and Electronegativity of the Atoms under Compression. Journal of the American Chemical Society 2019, 141 (26) , 10253-10271. https://doi.org/10.1021/jacs.9b02634
    11. Martin Rahm, Tao Zeng, Roald Hoffmann. Electronegativity Seen as the Ground-State Average Valence Electron Binding Energy. Journal of the American Chemical Society 2019, 141 (1) , 342-351. https://doi.org/10.1021/jacs.8b10246
    12. Chanan D. Sessler, Martin Rahm, Sabine Becker, Jacob M. Goldberg, Fang Wang, and Stephen J. Lippard . CF2H, a Hydrogen Bond Donor. Journal of the American Chemical Society 2017, 139 (27) , 9325-9332. https://doi.org/10.1021/jacs.7b04457
    13. Daniel S. Levine, Paul R. Horn, Yuezhi Mao, and Martin Head-Gordon . Variational Energy Decomposition Analysis of Chemical Bonding. 1. Spin-Pure Analysis of Single Bonds. Journal of Chemical Theory and Computation 2016, 12 (10) , 4812-4820. https://doi.org/10.1021/acs.jctc.6b00571
    14. Martin Rahm and Roald Hoffmann . Distinguishing Bonds. Journal of the American Chemical Society 2016, 138 (11) , 3731-3744. https://doi.org/10.1021/jacs.5b12434
    15. Guolin Cao, Sha Yang, Ji-Chang Ren, Wei Liu. Electronic descriptors for designing high-entropy alloy electrocatalysts by leveraging local chemical environments. Nature Communications 2025, 16 (1) https://doi.org/10.1038/s41467-025-56421-9
    16. Qian Zuo, Bing Li, Zhiyi Deng, Xiangyu Zheng, Ping Li, Jinhua Wu. Enhanced Cr(VI) reduction and immobilization by Fe0 coupled with biochar through galvanic interaction. Journal of Water Process Engineering 2025, 71 , 107165. https://doi.org/10.1016/j.jwpe.2025.107165
    17. Weizhou Wang, Wen Xin Wu, Yu Zhang, Wei Jun Jin. Perfluoroaryl⋯aryl interaction: The most important subset of π -hole⋯ π bonding. Chemical Physics Reviews 2024, 5 (3) https://doi.org/10.1063/5.0205540
    18. Eric Berquist, Amanda Dumi, Shiv Upadhyay, Omri D. Abarbanel, Minsik Cho, Sagar Gaur, Victor Hugo Cano Gil, Geoffrey R. Hutchison, Oliver S. Lee, Andrew S. Rosen, Sanjeed Schamnad, Felipe S. S. Schneider, Casper Steinmann, Maxim Stolyarchuk, Jonathon E. Vandezande, Weronika Zak, Karol M. Langner. cclib 2.0: An updated architecture for interoperable computational chemistry. The Journal of Chemical Physics 2024, 161 (4) https://doi.org/10.1063/5.0216778
    19. Qiang Qu, Ling Qiu, Ming-Zhuo Li, Guo-Tao Sun, He-Yu Chen, Xiao-Hui Guo. Synergistic effects of pyrolysis temperature, iron ion concentration and solid/liquid ratio on the properties and Cr(VI) removal performance of magnetic carbon. Journal of Water Process Engineering 2023, 53 , 103785. https://doi.org/10.1016/j.jwpe.2023.103785
    20. Martin Rahm. Experimental quantum chemistry and chemical reactivity. 2023, 483-503. https://doi.org/10.1016/B978-0-32-390257-1.00024-3
    21. Jesús Sánchez-Márquez. Electronegativity equalization principle: new approaches and models for the study of chemical reactivity. 2023, 227-242. https://doi.org/10.1016/B978-0-32-390259-5.00014-7
    22. Ge Gao, Lei Zhang, Yixin Shi, Shengjiong Yang, Gen Wang, Huining Xu, Dahu Ding, Rongzhi Chen, Pengkang Jin, Xiaochang C. Wang. Mutual-activation between Zero-Valent iron and graphitic carbon for Cr(VI) Removal: Mechanism and inhibition of inherent Side-reaction. Journal of Colloid and Interface Science 2022, 608 , 588-598. https://doi.org/10.1016/j.jcis.2021.09.138
    23. Stefano Racioppi, Martin Rahm. In‐Situ Electronegativity and the Bridging of Chemical Bonding Concepts. Chemistry – A European Journal 2021, 27 (72) , 18156-18167. https://doi.org/10.1002/chem.202103477
    24. Sture Nordholm. From Electronegativity towards Reactivity—Searching for a Measure of Atomic Reactivity. Molecules 2021, 26 (12) , 3680. https://doi.org/10.3390/molecules26123680
    25. Francesco Sessa, Martina Olsson, Fredrik Söderberg, Fang Wang, Martin Rahm. Experimental Quantum Chemistry: A Hammett‐inspired Fingerprinting of Substituent Effects. ChemPhysChem 2021, 22 (6) , 569-576. https://doi.org/10.1002/cphc.202001053
    26. Martin Rahm, Paul Erhart, Roberto Cammi. Relating atomic energy, radius and electronegativity through compression. Chemical Science 2021, 12 (7) , 2397-2403. https://doi.org/10.1039/D0SC06675C
    27. Mihai V. Putz. Chemical Bonding by the Chemical Orthogonal Space of Reactivity. International Journal of Molecular Sciences 2021, 22 (1) , 223. https://doi.org/10.3390/ijms22010223
    28. Stefano Racioppi, Angelo Sironi, Piero Macchi. On generalized partition methods for interaction energies. Physical Chemistry Chemical Physics 2020, 22 (42) , 24291-24298. https://doi.org/10.1039/D0CP03087B
    29. Paul J. Karol. Extending electronegativities to superheavy Main Group atoms. Chemistry International 2020, 42 (3) , 12-15. https://doi.org/10.1515/ci-2020-0305
    30. Juan Andrés, Paul W. Ayers, Roberto A. Boto, Ramon Carbó‐Dorca, Henry Chermette, Jerzy Cioslowski, Julia Contreras‐García, David L. Cooper, Gernot Frenking, Carlo Gatti, Farnaz Heidar‐Zadeh, Laurent Joubert, Ángel Martín Pendás, Eduard Matito, István Mayer, Alston J. Misquitta, Yirong Mo, Julien Pilmé, Paul L. A. Popelier, Martin Rahm, Eloy Ramos‐Cordoba, Pedro Salvador, W. H. Eugen Schwarz, Shant Shahbazian, Bernard Silvi, Miquel Solà, Krzysztof Szalewicz, Vincent Tognetti, Frank Weinhold, Émilie‐Laure Zins. Nine questions on energy decomposition analysis. Journal of Computational Chemistry 2019, 40 (26) , 2248-2283. https://doi.org/10.1002/jcc.26003
    31. . References. 2019, 547-617. https://doi.org/10.1002/9781119522850.ch12
    32. Victor García, David Zorrilla, Jesús Sánchez-Márquez, Manuel Fernández. Simplified box orbitals for molecules containing atoms beyond Ar. Molecular Physics 2018, 116 (18) , 2310-2320. https://doi.org/10.1080/00268976.2018.1481543
    33. László von Szentpály. Eliminating symmetry problems in electronegativity equalization and correcting self‐interaction errors in conceptual DFT. Journal of Computational Chemistry 2018, 39 (24) , 1949-1969. https://doi.org/10.1002/jcc.25356
    34. Filipe Teixeira, André Melo, M. Natália D. S. Cordeiro. Exploring rare chemical phenomena using fractional nuclear charges: The cis‐ effect in N 2 F 2. International Journal of Quantum Chemistry 2018, 118 (17) https://doi.org/10.1002/qua.25662
    35. Daniel S. Levine, Martin Head-Gordon. Energy decomposition analysis of single bonds within Kohn–Sham density functional theory. Proceedings of the National Academy of Sciences 2017, 114 (48) , 12649-12656. https://doi.org/10.1073/pnas.1715763114
    36. Sason Shaik. Bonds and Intermolecular Interactions – The Return of Cohesion to Chemistry. 2017, 1-68. https://doi.org/10.1039/BK9781782621737-00001
    37. Athanassios C. Tsipis. RETRACTED: DFT challenge of intermetallic interactions: From metallophilicity and metallaromaticity to sextuple bonding. Coordination Chemistry Reviews 2017, 345 , 229-262. https://doi.org/10.1016/j.ccr.2016.08.005
    38. Paul G. Mezey. The Holographic Electron Density Theorem, de-quantization, re-quantization, and nuclear charge space extrapolations of the Universal Molecule Model. 2017, 020001. https://doi.org/10.1063/1.5012279
    39. Victor García, David Zorrilla, Jesús Sánchez-Márquez, Manuel Fernández-Núñez. Simplified Box Orbitals (SBO) for H To Ar atoms: Exact expressions, SBO-3G approximations, and relations with the ZDO approximation. International Journal of Quantum Chemistry 2016, 116 (17) , 1303-1312. https://doi.org/10.1002/qua.25178
    40. Paul R. Horn, Martin Head-Gordon. Alternative definitions of the frozen energy in energy decomposition analysis of density functional theory calculations. The Journal of Chemical Physics 2016, 144 (8) https://doi.org/10.1063/1.4941849

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2015, 137, 32, 10282–10291
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.5b05600
    Published July 20, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    2945

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.