ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

α/β-Peptide Foldamers Targeting Intracellular Protein–Protein Interactions with Activity in Living Cells

View Author Information
Department of Chemistry, Department of Biomedical Engineering, Department of Biochemistry, and Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
§ Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
Department of Chemistry and Physics, La Trobe Institute of Molecular Science, Melbourne, Victoria 3086, Australia
Cite this: J. Am. Chem. Soc. 2015, 137, 35, 11365–11375
Publication Date (Web):August 28, 2015
https://doi.org/10.1021/jacs.5b05896
Copyright © 2015 American Chemical Society

    Article Views

    5004

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (5 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Peptides can be developed as effective antagonists of protein–protein interactions, but conventional peptides (i.e., oligomers of l-α-amino acids) suffer from significant limitations in vivo. Short half-lives due to rapid proteolytic degradation and an inability to cross cell membranes often preclude biological applications of peptides. Oligomers that contain both α- and β-amino acid residues (“α/β-peptides”) manifest decreased susceptibility to proteolytic degradation, and when properly designed these unnatural oligomers can mimic the protein-recognition properties of analogous “α-peptides”. This report documents an extension of the α/β-peptide approach to target intracellular protein–protein interactions. Specifically, we have generated α/β-peptides based on a “stapled” Bim BH3 α-peptide, which contains a hydrocarbon cross-link to enhance α-helix stability. We show that a stapled α/β-peptide can structurally and functionally mimic the parent stapled α-peptide in its ability to enter certain types of cells and block protein–protein interactions associated with apoptotic signaling. However, the α/β-peptide is nearly 100-fold more resistant to proteolysis than is the parent stapled α-peptide. These results show that backbone modification, a strategy that has received relatively little attention in terms of peptide engineering for biomedical applications, can be combined with more commonly deployed peripheral modifications such as side chain cross-linking to produce synergistic benefits.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b05896.

    • Additional details for experimental protocols, Figures S1–S7, and Table S1 (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 93 publications.

    1. András Wacha, Zoltán Varga, Tamás Beke-Somfai. Comparative Study of Molecular Mechanics Force Fields for β-Peptidic Foldamers: Folding and Self-Association. Journal of Chemical Information and Modeling 2023, 63 (12) , 3799-3813. https://doi.org/10.1021/acs.jcim.3c00175
    2. Chuanliang Zhang, Xianmin Yang, Xinjia Meng, Lijuan Wu, Xiaochun Liu, Jiangming Gao, Shan Liu, Juan Wu, Dingmin Huang, Zhenwei Wang, Xianbin Su. Discovery of Novel PTP1B Inhibitors with Once-Weekly Therapeutic Potential for Type 2 Diabetes: Design, Synthesis, and In Vitro and In Vivo Investigations of BimBH3 Peptide Analogues. Journal of Medicinal Chemistry 2023, 66 (4) , 3030-3044. https://doi.org/10.1021/acs.jmedchem.2c02003
    3. Zhen Wang, Haitao Ji. Characterization of Hydrophilic α-Helical Hot Spots on the Protein–Protein Interaction Interfaces for the Design of α-Helix Mimetics. Journal of Chemical Information and Modeling 2022, 62 (8) , 1873-1890. https://doi.org/10.1021/acs.jcim.1c01556
    4. Chuanliang Zhang, Lijuan Wu, Xiaochun Liu, Jiangming Gao, Shan Liu, Juan Wu, Dingmin Huang, Zhenwei Wang, Xianbin Su. Discovery of Novel PTP1B Inhibitors Derived from the BH3 Domain of Proapoptotic Bcl-2 Proteins with Antidiabetic Potency. ACS Medicinal Chemistry Letters 2021, 12 (6) , 1017-1023. https://doi.org/10.1021/acsmedchemlett.1c00174
    5. Stephen E. Miller, Kohei Tsuji, Rachel P.M. Abrams, Terrence R. Burke, Jr., Joel P. Schneider. Uncoupling the Folding-Function Paradigm of Lytic Peptides to Deliver Impermeable Inhibitors of Intracellular Protein–Protein Interactions. Journal of the American Chemical Society 2020, 142 (47) , 19950-19955. https://doi.org/10.1021/jacs.0c07921
    6. Zhen Wang, Haitao Ji. Targeting the Side-Chain Convergence of Hydrophobic α-Helical Hot Spots To Design Small-Molecule Mimetics: Key Binding Features for i, i + 3, and i + 7. Journal of Medicinal Chemistry 2019, 62 (21) , 9906-9917. https://doi.org/10.1021/acs.jmedchem.9b01324
    7. Vijayalekshmi Sarojini, Alan J. Cameron, Kyriakos G. Varnava, William A. Denny, Gangadhar Sanjayan. Cyclic Tetrapeptides from Nature and Design: A Review of Synthetic Methodologies, Structure, and Function. Chemical Reviews 2019, 119 (17) , 10318-10359. https://doi.org/10.1021/acs.chemrev.8b00737
    8. Takashi Misawa, Yasunari Kanda, and Yosuke Demizu . Rational Design and Synthesis of Post-Functionalizable Peptide Foldamers as Helical Templates. Bioconjugate Chemistry 2017, 28 (12) , 3029-3035. https://doi.org/10.1021/acs.bioconjchem.7b00621
    9. Ross W. Cheloha, Bingming Chen, Niyanta N. Kumar, Tomoyuki Watanabe, Robert G. Thorne, Lingjun Li, Thomas J. Gardella, and Samuel H. Gellman . Development of Potent, Protease-Resistant Agonists of the Parathyroid Hormone Receptor with Broad β Residue Distribution. Journal of Medicinal Chemistry 2017, 60 (21) , 8816-8833. https://doi.org/10.1021/acs.jmedchem.7b00876
    10. Dongyue Xin, Andrew Jeffries, and Kevin Burgess . Interplay Of Stereochemistry, Conformational Rigidity, And Ease Of Synthesis For 13-Membered Cyclic Peptidomimetics Containing APC Residues. ACS Combinatorial Science 2017, 19 (6) , 414-421. https://doi.org/10.1021/acscombsci.7b00041
    11. Dóra K. Menyhárd, Ilona Hudáky, Imre Jákli, György Juhász, and András Perczel . Predictable Conformational Diversity in Foldamers of Sugar Amino Acids. Journal of Chemical Information and Modeling 2017, 57 (4) , 757-768. https://doi.org/10.1021/acs.jcim.6b00488
    12. Amanda Bongers, Christian Clavette, Wei Gan, Serge I. Gorelsky, Lyanne Betit, Kaitlyn Lavergne, Thomas Markiewicz, Patrick J. Moon, Nicolas Das Neves, Nimrat K. Obhi, Amy B. Toderian, and André M. Beauchemin . Intermolecular Aminocarbonylation of Alkenes using Concerted Cycloadditions of Iminoisocyanates. The Journal of Organic Chemistry 2017, 82 (2) , 1175-1194. https://doi.org/10.1021/acs.joc.6b02713
    13. Ranganath Gopalakrishnan, Andrey I. Frolov, Laurent Knerr, William J. Drury, III, and Eric Valeur . Therapeutic Potential of Foldamers: From Chemical Biology Tools To Drug Candidates?. Journal of Medicinal Chemistry 2016, 59 (21) , 9599-9621. https://doi.org/10.1021/acs.jmedchem.6b00376
    14. Philipp M. Cromm, Jochen Spiegel, Philipp Küchler, Laura Dietrich, Julia Kriegesmann, Mathias Wendt, Roger S. Goody, Herbert Waldmann, and Tom N. Grossmann . Protease-Resistant and Cell-Permeable Double-Stapled Peptides Targeting the Rab8a GTPase. ACS Chemical Biology 2016, 11 (8) , 2375-2382. https://doi.org/10.1021/acschembio.6b00386
    15. Nuria Mazo, Iván García-González, Claudio D. Navo, Francisco Corzana, Gonzalo Jiménez-Osés, Alberto Avenoza, Jesús H. Busto, and Jesús M. Peregrina . Synthesis of Mixed α/β2,2-Peptides by Site-Selective Ring-Opening of Cyclic Quaternary Sulfamidates. Organic Letters 2015, 17 (23) , 5804-5807. https://doi.org/10.1021/acs.orglett.5b02927
    16. Syed Kabir Hussain Shah, Unnati Modi, Karma Patel, Anjima James, Sreerag N, Susmita De, Rajesh Vasita, Panchami Prabhakaran. Site-selective post-modification of short α/γ hybrid foldamers: a powerful approach for molecular diversification towards biomedical applications. Biomaterials Science 2023, 11 (18) , 6210-6222. https://doi.org/10.1039/D3BM00766A
    17. Takayuki Katoh, Hiroaki Suga. Translation initiation with exotic amino acids using EF-P-responsive artificial initiator tRNA. Nucleic Acids Research 2023, 51 (15) , 8169-8180. https://doi.org/10.1093/nar/gkad496
    18. David T.J. Morris, Jonathan Clayden. Hydrogen Bond Chains in Foldamers and Dynamic Foldamers. 2023, 479-520. https://doi.org/10.1002/9783527834914.ch15
    19. Friedericke S. Menke, Daniela Mazzier, Barbara Wicher, Lars Allmendinger, Brice Kauffmann, Victor Maurizot, Ivan Huc. Molecular torsion springs: alteration of helix curvature in frustrated tertiary folds. Organic & Biomolecular Chemistry 2023, 21 (6) , 1275-1283. https://doi.org/10.1039/D2OB02109A
    20. Tzong-Hsien Lee, James W. Checco, Tess Malcolm, Chelcie H. Eller, Ronald T. Raines, Samuel H. Gellman, Erinna F. Lee, W. Douglas Fairlie, Marie-Isabel Aguilar, . Differential membrane binding of α/β-peptide foldamers: implications for cellular delivery and mitochondrial targeting. Australian Journal of Chemistry 2023, 76 (8) , 482-492. https://doi.org/10.1071/CH23063
    21. Junaid Ur Rahim, Syed Mudabir Ahmad, Tanzeeba Amin, Rubina Chowdhary, Anindya Goswami, Rajkishor Rai. Synthesis, conformation and cytotoxic activity of short hybrid peptides containing conformationally constrained 1-(aminomethyl)cyclohexanecarboxylic acid and gabapentin. Peptides 2022, 158 , 170897. https://doi.org/10.1016/j.peptides.2022.170897
    22. Jingcheng Zou, Min Zhou, Ximian Xiao, Runhui Liu. Advance in Hybrid Peptides Synthesis. Macromolecular Rapid Communications 2022, 43 (23) https://doi.org/10.1002/marc.202200575
    23. Ali Moazzam, Vesna Stanojlovic, Arthur Hinterholzer, Christoph Holzner, Cornelia Roschger, Andreas Zierer, Markus Wiederstein, Mario Schubert, Chiara Cabrele. Backbone distortions in lactam‐bridged helical peptides. Journal of Peptide Science 2022, 28 (7) https://doi.org/10.1002/psc.3400
    24. George Shapovalov, Abigaël Ritaine, Nadege Charlene Essonghe, Ian de Ridder, Hristina Ivanova, Spyridoula Karamanou, Anastassios Economou, Geert Bultynck, Roman Skryma, Natalia Prevarskaya. Allosteric cross-talk between the hydrophobic cleft and the BH4 domain of Bcl-2 in control of inositol 1,4,5-trisphosphate receptor activity. Exploration of Targeted Anti-tumor Therapy 2022, , 375-391. https://doi.org/10.37349/etat.2022.00088
    25. Takayuki Katoh, Hiroaki Suga. In Vitro Genetic Code Reprogramming for the Expansion of Usable Noncanonical Amino Acids. Annual Review of Biochemistry 2022, 91 (1) , 221-243. https://doi.org/10.1146/annurev-biochem-040320-103817
    26. Jae Sung Lee, Ping Guo, Katarina Klett, MacGregor Hall, Krishna Sinha, Sudheer Ravuri, Johnny Huard, William L. Murphy. VEGF-attenuated platelet-rich plasma improves therapeutic effect on cartilage repair. Biomaterials Science 2022, 10 (9) , 2172-2181. https://doi.org/10.1039/D1BM01873F
    27. Keisuke Tsuchiya, Takashi Kurohara, Kiyoshi Fukuhara, Takashi Misawa, Yosuke Demizu. Helical Foldamers and Stapled Peptides as New Modalities in Drug Discovery: Modulators of Protein-Protein Interactions. Processes 2022, 10 (5) , 924. https://doi.org/10.3390/pr10050924
    28. Gwendylan Turner, Dani Long, Elizabeth Owens, Emil Iqbal, Matthew C.T. Hartman, John C. Poutsma. Acid/base properties of α-methyl and gem-dimethyl derivatives of cysteine and serine from the extended kinetic method. International Journal of Mass Spectrometry 2022, 475 , 116833. https://doi.org/10.1016/j.ijms.2022.116833
    29. Young-Hee Shin, Hyunjun Yang. Exploration of α/β/γ-peptidomimetics design for BH3 helical domains. Chemical Communications 2022, 58 (7) , 945-948. https://doi.org/10.1039/D1CC05758H
    30. Alpana Boruah, Arup Roy. Advances in hybrid peptide-based self-assembly systems and their applications. Biomaterials Science 2022, 121 https://doi.org/10.1039/D2BM00775D
    31. Suchetana Gupta, Noora Azadvari, Parisa Hosseinzadeh. Design of Protein Segments and Peptides for Binding to Protein Targets. BioDesign Research 2022, 2022 https://doi.org/10.34133/2022/9783197
    32. Erinna F. Lee, W. Douglas Fairlie. Discovery, development and application of drugs targeting BCL-2 pro-survival proteins in cancer. Biochemical Society Transactions 2021, 49 (5) , 2381-2395. https://doi.org/10.1042/BST20210749
    33. . Introduction. 2021, 1-33. https://doi.org/10.1002/9783527343430.ch1
    34. Yuteng Wu, Jack Williams, Ewen D. D. Calder, Louise J. Walport. Strategies to expand peptide functionality through hybridisation with a small molecule component. RSC Chemical Biology 2021, 2 (1) , 151-165. https://doi.org/10.1039/D0CB00167H
    35. Takayuki Katoh, Hiroaki Suga. Development of Bioactive Foldamers Using Ribosomally Synthesized Nonstandard Peptide Libraries. Bulletin of the Chemical Society of Japan 2021, 94 (2) , 549-557. https://doi.org/10.1246/bcsj.20200326
    36. Rosario González-Muñiz, María Ángeles Bonache, María Jesús Pérez de Vega. Modulating Protein–Protein Interactions by Cyclic and Macrocyclic Peptides. Prominent Strategies and Examples. Molecules 2021, 26 (2) , 445. https://doi.org/10.3390/molecules26020445
    37. Wenning Chu, Raphael Prodromou, Kevin N. Day, John D. Schneible, Kaitlyn B. Bacon, John D. Bowen, Ryan E. Kilgore, Carly M. Catella, Brandyn D. Moore, Matthew D. Mabe, Kawthar Alashoor, Yiman Xu, Yuanxin Xiao, Stefano Menegatti. Peptides and pseudopeptide ligands: a powerful toolbox for the affinity purification of current and next-generation biotherapeutics. Journal of Chromatography A 2021, 1635 , 461632. https://doi.org/10.1016/j.chroma.2020.461632
    38. Sung Hyun Yoo, Bo Li, Christel Dolain, Morgane Pasco, Gilles Guichard. Urea based foldamers. 2021, 59-92. https://doi.org/10.1016/bs.mie.2021.04.019
    39. Krishna Mohan Poluri, Khushboo Gulati, Sharanya Sarkar. Structural and Functional Properties of Proteins. 2021, 1-60. https://doi.org/10.1007/978-981-16-1594-8_1
    40. Márton Zwillinger, Post Sai Reddy, Barbara Wicher, Pradeep K. Mandal, Márton Csékei, Lucile Fischer, András Kotschy, Ivan Huc. Aromatic Foldamer Helices as α‐Helix Extended Surface Mimetics. Chemistry – A European Journal 2020, 26 (72) , 17366-17370. https://doi.org/10.1002/chem.202004064
    41. Takayuki Katoh, Toru Sengoku, Kunio Hirata, Kazuhiro Ogata, Hiroaki Suga. Ribosomal synthesis and de novo discovery of bioactive foldamer peptides containing cyclic β-amino acids. Nature Chemistry 2020, 12 (11) , 1081-1088. https://doi.org/10.1038/s41557-020-0525-1
    42. Marc J. Lajoie, Scott E. Boyken, Alexander I. Salter, Jilliane Bruffey, Anusha Rajan, Robert A. Langan, Audrey Olshefsky, Vishaka Muhunthan, Matthew J. Bick, Mesfin Gewe, Alfredo Quijano-Rubio, JayLee Johnson, Garreck Lenz, Alisha Nguyen, Suzie Pun, Colin E. Correnti, Stanley R. Riddell, David Baker. Designed protein logic to target cells with precise combinations of surface antigens. Science 2020, 369 (6511) , 1637-1643. https://doi.org/10.1126/science.aba6527
    43. Yun Ding, Joey Paolo Ting, Jinsha Liu, Shams Al-Azzam, Priyanka Pandya, Sepideh Afshar. Impact of non-proteinogenic amino acids in the discovery and development of peptide therapeutics. Amino Acids 2020, 52 (9) , 1207-1226. https://doi.org/10.1007/s00726-020-02890-9
    44. Imola Cs. Szigyártó, Judith Mihály, András Wacha, Dóra Bogdán, Tünde Juhász, Gergely Kohut, Gitta Schlosser, Ferenc Zsila, Vlada Urlacher, Zoltán Varga, Ferenc Fülöp, Attila Bóta, István Mándity, Tamás Beke-Somfai. Membrane active Janus-oligomers of β 3 -peptides. Chemical Science 2020, 11 (26) , 6868-6881. https://doi.org/10.1039/D0SC01344G
    45. Kristina Hetherington, Zsofia Hegedus, Thomas A. Edwards, Richard B. Sessions, Adam Nelson, Andrew J. Wilson. Stapled Peptides as HIF‐1α/p300 Inhibitors: Helicity Enhancement in the Bound State Increases Inhibitory Potency. Chemistry – A European Journal 2020, 26 (34) , 7638-7646. https://doi.org/10.1002/chem.202000417
    46. Lakshmi Priya Datta, Shivaprasad Manchineella, Thimmaiah Govindaraju. Biomolecules-derived biomaterials. Biomaterials 2020, 230 , 119633. https://doi.org/10.1016/j.biomaterials.2019.119633
    47. Richard W. Birkinshaw, Jia-nan Gong, Cindy S. Luo, Daisy Lio, Christine A. White, Mary Ann Anderson, Piers Blombery, Guillaume Lessene, Ian J. Majewski, Rachel Thijssen, Andrew W. Roberts, David C. S. Huang, Peter M. Colman, Peter E. Czabotar. Structures of BCL-2 in complex with venetoclax reveal the molecular basis of resistance mutations. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-10363-1
    48. Wei Zhou, Qingwei Xiao, Yuanyuan Chang, Qifa Liu, Xiaohao Zang, Mengmeng Hu, Xi Zeng, Zhiyun Du, Guifa Zhong. Substrate-controlled Diastereoselective Michael Addition of Alkylidene Malonates by Grignard Reagents. Heterocyclic Communications 2019, 25 (1) , 116-121. https://doi.org/10.1515/hc-2019-0019
    49. Chihiro Goto, Motoharu Hirano, Katsuhiko Hayashi, Yutaka Kikuchi, Yukiko Hara‐Kudo, Takashi Misawa, Yosuke Demizu. Development of Amphipathic Antimicrobial Peptide Foldamers Based on Magainin 2 Sequence. ChemMedChem 2019, 14 (22) , 1911-1916. https://doi.org/10.1002/cmdc.201900460
    50. Lucia Ferrazzano, Dario Corbisiero, Roberto Greco, Eleonora Potenza, Giulia De Seriis, Andrea Garelli, Alessandra Tolomelli. Synthesis of α/β dipeptides containing linear or cyclic α-dehydro-β-amino acids as scaffolds for bioactive compounds. Amino Acids 2019, 51 (10-12) , 1475-1483. https://doi.org/10.1007/s00726-019-02782-7
    51. Marietta John-White, James Gardiner, Priscilla Johanesen, Dena Lyras, Geoffrey Dumsday, . β-Aminopeptidases: Insight into Enzymes without a Known Natural Substrate. Applied and Environmental Microbiology 2019, 85 (15) https://doi.org/10.1128/AEM.00318-19
    52. Takashi Misawa, Nobumichi Ohoka, Makoto Oba, Hiroko Yamashita, Masakazu Tanaka, Mikihiko Naito, Yosuke Demizu. Development of 2-aminoisobutyric acid (Aib)-rich cell-penetrating foldamers for efficient siRNA delivery. Chemical Communications 2019, 55 (54) , 7792-7795. https://doi.org/10.1039/C9CC02203A
    53. Vittoria Cicaloni, Alfonso Trezza, Francesco Pettini, Ottavia Spiga. Applications of in Silico Methods for Design and Development of Drugs Targeting Protein-Protein Interactions. Current Topics in Medicinal Chemistry 2019, 19 (7) , 534-554. https://doi.org/10.2174/1568026619666190304153901
    54. Erinna F. Lee, Nicholas A. Smith, Tatiana P. Soares da Costa, Nastaran Meftahi, Shenggen Yao, Tiffany J. Harris, Sharon Tran, Anne Pettikiriarachchi, Matthew A. Perugini, David W. Keizer, Marco Evangelista, Brian J. Smith, W. Douglas Fairlie. Structural insights into BCL2 pro-survival protein interactions with the key autophagy regulator BECN1 following phosphorylation by STK4/MST1. Autophagy 2019, 15 (5) , 785-795. https://doi.org/10.1080/15548627.2018.1564557
    55. Irene Arrata, Claire M. Grison, Heather M. Coubrough, Panchami Prabhakaran, Marc A. Little, Darren C. Tomlinson, Michael E. Webb, Andrew J. Wilson. Control of conformation in α-helix mimicking aromatic oligoamide foldamers through interactions between adjacent side-chains. Organic & Biomolecular Chemistry 2019, 17 (15) , 3861-3867. https://doi.org/10.1039/C9OB00123A
    56. Zsofia Hegedus, Claire M. Grison, Jennifer A. Miles, Silvia Rodriguez-Marin, Stuart L. Warriner, Michael E. Webb, Andrew J. Wilson. A catalytic protein–proteomimetic complex: using aromatic oligoamide foldamers as activators of RNase S. Chemical Science 2019, 10 (14) , 3956-3962. https://doi.org/10.1039/C9SC00374F
    57. Ketav Kulkarni, Nathan Habila, Mark P. Del Borgo, Marie-Isabel Aguilar. Novel Materials From the Supramolecular Self-Assembly of Short Helical β3-Peptide Foldamers. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00070
    58. Bhavesh Khatri, Venkateswara Rao Nuthakki, Jayanta Chatterjee. Strategies to Enhance Metabolic Stabilities. 2019, 17-40. https://doi.org/10.1007/978-1-4939-9504-2_2
    59. Abigaël Ritaine, George Shapovalov, Hristina Ivanova, Spyridoula Karamanou, Anastassios Economou, Geert Bultynck, Roman Skryma, Natalia Prevarskaya. Allosteric Cross-Talk between the Hydrophobic Cleft and the BH4 Domain of Bcl-2 in Control of IP3R Activity. SSRN Electronic Journal 2019, https://doi.org/10.2139/ssrn.3339906
    60. Sebastian Öther-Gee Pohl, Mark Agostino, Arun Dharmarajan, Shazib Pervaiz. Cross Talk Between Cellular Redox State and the Antiapoptotic Protein Bcl-2. Antioxidants & Redox Signaling 2018, 29 (13) , 1215-1236. https://doi.org/10.1089/ars.2017.7414
    61. Joseph M. Rogers, Toby Passioura, Hiroaki Suga. Nonproteinogenic deep mutational scanning of linear and cyclic peptides. Proceedings of the National Academy of Sciences 2018, 115 (43) , 10959-10964. https://doi.org/10.1073/pnas.1809901115
    62. Geoffrey A. Eddinger, Samuel H. Gellman. Differential Effects of β 3 ‐ versus β 2 ‐Amino Acid Residues on the Helicity and Recognition Properties of Bim BH3‐Derived α/β‐Peptides. Angewandte Chemie International Edition 2018, 57 (42) , 13829-13832. https://doi.org/10.1002/anie.201806909
    63. Geoffrey A. Eddinger, Samuel H. Gellman. Differential Effects of β 3 ‐ versus β 2 ‐Amino Acid Residues on the Helicity and Recognition Properties of Bim BH3‐Derived α/β‐Peptides. Angewandte Chemie 2018, 130 (42) , 14025-14028. https://doi.org/10.1002/ange.201806909
    64. Jordan M. Fletcher, Katherine A. Horner, Gail J. Bartlett, Guto G. Rhys, Andrew J. Wilson, Derek N. Woolfson. De novo coiled-coil peptides as scaffolds for disrupting protein–protein interactions. Chemical Science 2018, 9 (39) , 7656-7665. https://doi.org/10.1039/C8SC02643B
    65. Luigi Di Costanzo, Shuchismita Dutta, Stephen K. Burley. Amino acid modifications for conformationally constraining naturally occurring and engineered peptide backbones: Insights from the Protein Data Bank. Biopolymers 2018, 109 (10) https://doi.org/10.1002/bip.23230
    66. Wenjun Li, Dongyuan Wang, Xiaodong Shi, Jingxu Li, Yue Ma, Yanding Wang, Tingting Li, Jianing Zhang, Rongtong Zhao, Zhiqiang Yu, Feng Yin, Zigang Li. A siRNA-induced peptide co-assembly system as a peptide-based siRNA nanocarrier for cancer therapy. Materials Horizons 2018, 5 (4) , 745-752. https://doi.org/10.1039/C8MH00392K
    67. Aishling M. Doolan, Martin L. Rennie, Peter B. Crowley. Protein Recognition by Functionalized Sulfonatocalix[4]arenes. Chemistry - A European Journal 2018, 24 (4) , 984-991. https://doi.org/10.1002/chem.201704931
    68. Effrat L. Fayer, William M. Gilliland, J. Michael Ramsey, Nancy L. Allbritton, Marcey L. Waters. N-Gemini peptides: cytosolic protease resistance via N-terminal dimerization of unstructured peptides. Chemical Communications 2018, 54 (2) , 204-207. https://doi.org/10.1039/C7CC06819K
    69. Wenjun Li, Kuan Hu, Qingzhou Zhang, Dongyuan Wang, Yue Ma, Zhanfeng Hou, Feng Yin, Zigang Li. N terminal N -methylation modulates chiral centre induced helical (CIH) peptides’ biophysical properties. Chemical Communications 2018, 54 (15) , 1865-1868. https://doi.org/10.1039/C7CC09201F
    70. Emil S. Iqbal, Kara K. Dods, Matthew C. T. Hartman. Ribosomal incorporation of backbone modified amino acids via an editing-deficient aminoacyl-tRNA synthetase. Organic & Biomolecular Chemistry 2018, 16 (7) , 1073-1078. https://doi.org/10.1039/C7OB02931D
    71. Marta Pazo, Marisa Juanes, Irene Lostalé-Seijo, Javier Montenegro. Oligoalanine helical callipers for cell penetration. Chemical Communications 2018, 54 (50) , 6919-6922. https://doi.org/10.1039/C8CC02304B
    72. Yulei Li, Minghao Wu, Qi Chang, Xia Zhao. Stapling strategy enables improvement of antitumor activity and proteolytic stability of host-defense peptide hymenochirin-1B. RSC Advances 2018, 8 (39) , 22268-22275. https://doi.org/10.1039/C8RA03446J
    73. Mark Klein. Stabilized helical peptides: overview of the technologies and its impact on drug discovery. Expert Opinion on Drug Discovery 2017, 12 (11) , 1117-1125. https://doi.org/10.1080/17460441.2017.1372745
    74. Gabriella T. Perell, Rachel Lynn Staebell, Mehrdad Hairani, Alessandro Cembran, William C. K. Pomerantz. Tuning Sulfur Oxidation States on Thioether‐Bridged Peptide Macrocycles for Modulation of Protein Interactions. ChemBioChem 2017, 18 (18) , 1836-1844. https://doi.org/10.1002/cbic.201700222
    75. Chuan-Liang Zhang, Shan Liu, Xiao-Chun Liu, Jiang-Ming Gao, Shu-Lin Wang. Discovery of novel inhibitors of anti-apoptotic Bcl-2 proteins derived from Bim BH3 domain. Chinese Chemical Letters 2017, 28 (7) , 1523-1527. https://doi.org/10.1016/j.cclet.2017.03.010
    76. Saskia Neukirchen, Viktoria Krieger, Cornelia Roschger, Mario Schubert, Brigitta Elsässer, Chiara Cabrele. Impact of the amino acid sequence on the conformation of side chain lactam‐bridged octapeptides. Journal of Peptide Science 2017, 23 (7-8) , 587-596. https://doi.org/10.1002/psc.2997
    77. Tracy A. Stone, Charles M. Deber. Therapeutic design of peptide modulators of protein-protein interactions in membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes 2017, 1859 (4) , 577-585. https://doi.org/10.1016/j.bbamem.2016.08.013
    78. Monika Szefczyk, Ewelina Węglarz-Tomczak, Paulina Fortuna, Agnieszka Krzysztoń, Ewa Rudzińska-Szostak, Łukasz Berlicki. Controlling the Helix Handedness of ααβ-Peptide Foldamers through Sequence Shifting. Angewandte Chemie 2017, 129 (8) , 2119-2123. https://doi.org/10.1002/ange.201610154
    79. Monika Szefczyk, Ewelina Węglarz-Tomczak, Paulina Fortuna, Agnieszka Krzysztoń, Ewa Rudzińska-Szostak, Łukasz Berlicki. Controlling the Helix Handedness of ααβ-Peptide Foldamers through Sequence Shifting. Angewandte Chemie International Edition 2017, 56 (8) , 2087-2091. https://doi.org/10.1002/anie.201610154
    80. Z. Hegedüs, T.A. Martinek. Molecular Recognition Using Foldamers. 2017, 511-537. https://doi.org/10.1016/B978-0-12-409547-2.12547-8
    81. M. Pasco, C. Dolain, G. Guichard. Foldamers in Medicinal Chemistry. 2017, 89-125. https://doi.org/10.1016/B978-0-12-409547-2.12565-X
    82. Irene Arrata, Anna Barnard, Darren C. Tomlinson, Andrew J. Wilson. Interfacing native and non-native peptides: using Affimers to recognise α-helix mimicking foldamers. Chemical Communications 2017, 53 (19) , 2834-2837. https://doi.org/10.1039/C6CC09395G
    83. Yaqi Chen, Tao Li, Jianguo Li, Shiyan Cheng, Jinghui Wang, Chandra Verma, Yibing Zhao, Chuanliu Wu. Stabilization of peptides against proteolysis through disulfide-bridged conjugation with synthetic aromatics. Organic & Biomolecular Chemistry 2017, 15 (8) , 1921-1929. https://doi.org/10.1039/C6OB02786E
    84. Jingxu Li, Kuan Hu, Hailing Chen, YuJie Wu, Longjian Chen, Feng Yin, Yuan Tian, Zigang Li. An in-tether chiral center modulates the proapoptotic activity of the KLA peptide. Chemical Communications 2017, 53 (75) , 10452-10455. https://doi.org/10.1039/C7CC04923D
    85. Kagayaki Nogami, Hiroshi Tokumaru, Gouchi Isokawa, Takanori Oyoshi, Kazuhisa Fujimoto, Masahiko Inouye. Bcl-X L -binding helical peptides possessing d -Ala residues at their C-termini with the advantage of long-lasting intracellular stabilities. Chemical Communications 2017, 53 (89) , 12104-12107. https://doi.org/10.1039/C7CC06904A
    86. Ye Wu, Ye-Hua Li, Xiang Li, Yan Zou, Hong-Li Liao, Lei Liu, Ye-Guang Chen, Donald Bierer, Hong-Gang Hu. A novel peptide stapling strategy enables the retention of ring-closing amino acid side chains for the Wnt/β-catenin signalling pathway. Chem. Sci. 2017, 8 (11) , 7368-7373. https://doi.org/10.1039/C7SC02420G
    87. Claire M. Grison, Jennifer A. Miles, Sylvie Robin, Andrew J. Wilson, David J. Aitken. An α‐Helix‐Mimicking 12,13‐Helix: Designed α/β/γ‐Foldamers as Selective Inhibitors of Protein–Protein Interactions. Angewandte Chemie 2016, 128 (37) , 11262-11266. https://doi.org/10.1002/ange.201604517
    88. Claire M. Grison, Jennifer A. Miles, Sylvie Robin, Andrew J. Wilson, David J. Aitken. An α‐Helix‐Mimicking 12,13‐Helix: Designed α/β/γ‐Foldamers as Selective Inhibitors of Protein–Protein Interactions. Angewandte Chemie International Edition 2016, 55 (37) , 11096-11100. https://doi.org/10.1002/anie.201604517
    89. James W Checco, Samuel H Gellman. Targeting recognition surfaces on natural proteins with peptidic foldamers. Current Opinion in Structural Biology 2016, 39 , 96-105. https://doi.org/10.1016/j.sbi.2016.06.014
    90. Raghu Vannam, Mark W. Peczuh. How to Homologate Your Sugar: Synthetic Approaches to Septanosyl Containing Carbohydrates. European Journal of Organic Chemistry 2016, 2016 (10) , 1800-1812. https://doi.org/10.1002/ejoc.201600052
    91. May Bakail, Francoise Ochsenbein. Targeting protein–protein interactions, a wide open field for drug design. Comptes Rendus Chimie 2016, 19 (1-2) , 19-27. https://doi.org/10.1016/j.crci.2015.12.004
    92. Jennifer A. Miles, David J. Yeo, Philip Rowell, Silvia Rodriguez-Marin, Christopher M. Pask, Stuart L. Warriner, Thomas A. Edwards, Andrew J. Wilson. Hydrocarbon constrained peptides – understanding preorganisation and binding affinity. Chemical Science 2016, 7 (6) , 3694-3702. https://doi.org/10.1039/C5SC04048E
    93. Nicholas E. Shepherd, Rosemary S. Harrison, Gloria Ruiz-Gomez, Giovanni Abbenante, Jody M. Mason, David P. Fairlie. Downsizing the BAD BH3 peptide to small constrained α-helices with improved ligand efficiency. Organic & Biomolecular Chemistry 2016, 14 (46) , 10939-10945. https://doi.org/10.1039/C6OB02185A

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect