ACS Publications. Most Trusted. Most Cited. Most Read
PyFluor: A Low-Cost, Stable, and Selective Deoxyfluorination Reagent
My Activity

Figure 1Loading Img
  • Open Access
Communication

PyFluor: A Low-Cost, Stable, and Selective Deoxyfluorination Reagent
Click to copy article linkArticle link copied!

View Author Information
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
Department of Imaging Research, Merck Research Laboratories, West Point, Pennsylvania 19486, United States
Open PDFSupporting Information (1)

Journal of the American Chemical Society

Cite this: J. Am. Chem. Soc. 2015, 137, 30, 9571–9574
Click to copy citationCitation copied!
https://doi.org/10.1021/jacs.5b06307
Published July 15, 2015

Copyright © 2015 American Chemical Society. This publication is licensed under these Terms of Use.

Abstract

Click to copy section linkSection link copied!

We report an inexpensive, thermally stable deoxyfluorination reagent that fluorinates a broad range of alcohols without substantial formation of elimination side products. This combination of selectivity, safety, and economic viability enables deoxyfluorination on preparatory scale. We employ the [18F]-labeled reagent in the first example of a no-carrier-added deoxy-radiofluorination.

Copyright © 2015 American Chemical Society

Organofluorine compounds are featured prominently throughout industry owing to the unique properties that fluorine substitution confers on organic molecules. (1, 2) Notably, in the context of drug design, the introduction of carbon–fluorine bonds can dramatically improve the metabolic stability, solubility, and activity of pharmaceutical candidates. (3) Deoxyfluorination of alcohols is one of the most attractive methods for installing aliphatic C–F bonds due to the abundance and accessibility of alcohol-containing precursors. (4-7) In this technique, a deoxyfluorination reagent generates both an activated leaving group and a nucleophilic fluoride source that react in situ to afford product (Figure 1). Although this transformation may also be achieved through multistep sequences, (8) a one-pot deoxyfluorination often proceeds under milder conditions with broader functional group tolerance.

Figure 1

Figure 1. (a) The popular deoxyfluorination reagent DAST frequently affords elimination side products and displays poor thermal stability. (b) PyFluor is a stable and affordable alternative that demonstrates high selectivity against elimination, thus enabling rapid and facile purification.

Introduced in the 1970s, diethylaminosulfur trifluoride (DAST) remains the most popular deoxyfluorination reagent due to its availability and general scope. DAST readily fluorinates alcohols and will also convert ketones and aldehydes to geminal difluorides. (5b, 5c) However, the reagent’s cost and propensity for violent decomposition render it unsuitable for process chemistry. (9) Furthermore, DAST reactions feature limited functional group tolerance and afford elimination side products that complicate purification (Figure 1A). Much effort has been dedicated toward developing thermally stable variants such as Deoxo-Fluor, XtalFluor, and Fluolead, (5d-5f) but these options are more expensive and offer only marginal improvements in chemoselectivity. The recently disclosed PhenoFluor exhibits remarkable versatility in the late-stage fluorination of complex natural products, but its high cost and poor shelf stability hinder widespread adoption. (6b) In addition, the inaccessibility of no-carrier-added 18F variants of all of these reagents has precluded adaptation of this powerful transformation to radiolabeling procedures.

Our goal was to identify an inexpensive, operationally convenient, stable, and chemoselective deoxyfluorination reagent that would also be amenable to deoxy-radiofluorination. In this paper, we report a new reagent, 2-pyridinesulfonyl fluoride (PyFluor), which satisfies these criteria (Figure 1B). Previously, our laboratory developed catalytic hydrofluorinations wherein nucleophilic fluoride was generated via esterification of benzoyl fluoride with a sacrificial alcohol. (10) We speculated that increasing the electron-withdrawing nature of the acyl fluoride might instead lead to substitution of the newly formed ester, resulting in a formal deoxyfluorination. The utility of preformed sulfonate esters in multistep fluorination and radiofluorination reactions led us to the investigation of sulfonyl fluorides. Although Vorbrüggen has reported the use of perfluorobutanesulfonyl fluoride (PBSF), (7b) this reagent has failed to gain traction because it produces copious quantities of elimination side products that can render recrystallization or chromatographic separation impossible. (11) Furthermore, in the presence of amines and heterocycles, PBSF liberates gaseous perfluorobutane that can lead to dangerous pressure spikes, making this reagent no more attractive than DAST from a safety perspective. (12) Notwithstanding, we hypothesized that a stable, general, and selective deoxyfluorination using an arylsulfonyl fluoride could be identified based on early literature highlighting their stability toward reduction, hydrolysis, and thermolysis. (13)

We evaluated a broad range of sulfonyl fluorides in the fluorination of alcohol 1 (Table 1; see Supporting Information (SI)). In combination with the amidine base 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), PBSF furnished product 2 in 57% yield with 10% elimination side product, a selectivity of 6:1 that is consistent with previous reports (entry 3). (14) We were pleased to find that most electron-deficient aryl- and heteroaryl-sulfonyl fluorides outperformed PBSF in terms of both yield and selectivity. Notably, 2-pyridinesulfonyl fluoride afforded 2 in 79% yield with greater than 20:1 selectivity (entry 7). By comparison, commercially available DAST and Deoxo-Fluor are markedly less selective, providing 13–19% elimination (entries 1, 2). (14, 15) Previous reports have suggested that 2-pyridinesulfonate esters can act as nucleophile-assisted leaving groups in substitution reactions; however the success of both 3- and 4-pyridine-sulfonyl fluorides indicates that pyridine serves primarily as an inductive electron-withdrawing group (entries 8, 9). (16) Consistent with this proposal, incorporation of electron-withdrawing substituents on the pyridine does not attenuate reactivity and may lead to modest improvements in yield (entry 10); however, we chose to pursue our studies with 2-pyridinesulfonyl fluoride (hereafter referred to as PyFluor), as we felt it represented the best combination of cost (vide infra) and efficiency.

Table 1. Sulfonyl Fluorides as Deoxyfluorination Reagents
Table a

Yield of 2 determined by GC using 1-fluoro-naphthalene as an internal standard; average of two runs.

Table b

Ratio of 2 to combined elimination side products as determined by GC.

Table c

1.8 equiv in CH2Cl2, 0 °C; ref 15.

Table d

1.2 equiv in CH2Cl2, −78 °C; ref 14.

In our investigation of reaction conditions, we found that strong amidine and guanidine bases such as DBU and 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD) are uniquely effective. Optimal conditions employ just 1.1 equiv of PyFluor with 2 equiv of base. Interestingly, the reaction is not highly solvent dependent; toluene and cyclic ethers perform best, but reasonable yields are obtained in DMSO and acetonitrile. It is also noteworthy that this method does not require exclusion of air or moisture. Over the course of a typical reaction, the sulfonate ester forms quantitatively in minutes and is then gradually converted to product within 48 h (see SI for optimization and reaction profile). The only side product detected by LC-MS is cation 3, which arises from nucleophilic attack by DBU on the sulfonate ester intermediate and accounts for the mass balance.

DBU and MTBD are known to behave as both Brønsted bases or nucleophilic acyl transfer catalysts. (17) When PyFluor is mixed with DBU, complex 4 is observed by LC-MS, but it forms several orders of magnitude slower than the sulfonate ester under standard reaction conditions. Moreover, 4 is incompetent for deoxyfluorination of alcohol 1. Taken together, these data suggest that DBU and MTBD function principally as Brønsted bases. We propose that deoxyfluorination proceeds by base-assisted addition of the substrate alcohol to the sulfonyl fluoride. The protonated base then stabilizes the developing fluoride ion leaving group. This proposal is in line with observations by Sharpless that the S–F bond in sulfonyl fluorides must be activated by a protic species in order to be labile. (18) Sulfonyl transfer produces the reactive amidine hydrogen fluoride, which mediates fluorination of the sulfonate ester intermediate.

With optimal conditions in hand, we proceeded to delineate the reagent’s substrate scope (Table 2). PyFluor serves as a general deoxyfluorination reagent for both primary (5) and secondary alcohols (2). Complex biomolecules including carbohydrates (6, 7), steroids (8), and amino acids (9) can be fluorinated in high yield. PyFluor also tolerates a broad range of basic functionality including phthalimides (10), heterocycles (11, 21), and protected and even unprotected amines and anilines (9, 1215). Furthermore, difluorination can be achieved in good yield (16). Most reactions proceed at room temperature, although cyclic or sterically encumbered substrates may require moderate heating. Additionally, the diastereoselectivity observed with 8, 9, and 14 indicates that fluorination occurs with inversion and without epimerization. (19) These results compare favorably to those obtained using commercially available reagents and highlight the potential of the method for late-stage diversification of natural products and drug-like molecules. (20)

Table 2. Scope of the Deoxyfluorination with PyFluor
Table a

Isolated yield of fluorinated product; average of two runs. Experiments conducted on 0.1–1 mmol scale.

Table b

Heated at 50 °C.

Table c

2.1 equiv of PyFluor, 3.5 equiv of base.

A number of examples of PyFluor’s chemoselectivity are also of note: Primary and secondary alcohols can be fluorinated in the presence of tertiary alcohols (17). Substrates possessing carbonyls do not undergo competing gem-difluorination or form acyl fluorides as with DAST and its derivatives. (5) Homobenzylic alcohols (20, 21), which are highly susceptible to elimination with DAST, perform well under the standard conditions, although some elimination is observed (8–10%). Unhindered benzylic alcohols (22, 23) also deliver fluorinated product, albeit in only moderate yield due to competitive nucleophilic attack by the base on the sulfonate intermediate. In contrast, β-hydroxy carbonyl compounds bearing acidic α protons (24) afford exclusively elimination, exposing a limit of the reagent’s chemoselectivity. Aside from these exceptions, most substrates do not generate elimination side products. This results in trivial purifications; the crude reaction mixture can simply be flushed through a short silica column to remove the ionic side products. As a demonstration of scalability, alcohol 1 can be fluorinated on 5 g scale with no diminution in yield (79%).

The positive attributes of PyFluor extend beyond its reactivity and selectivity profile. PyFluor can be synthesized on multigram scale via the oxidation of 2-mercaptopyridine and halide exchange with potassium bifluoride (Figure 2). This unoptimized procedure consumes only $180 of materials per mol of reagent produced, which suggests that PyFluor could be manufactured at a price competitive to that of DAST ($443 per mol, Oakwood). (21) Yet unlike DAST, PyFluor is remarkably stable. The reagent is a low-melting solid (mp 23–26 °C) that can be handled and stored on the benchtop for over 30 days with no detectable decomposition. Furthermore, the sulfonyl fluoride does not hydrolyze in aqueous emulsion and is even stable on silica gel. DAST, however, must be refrigerated and will react violently with trace moisture. Almost all reported deoxyfluorination reagents exhibit exothermic thermal decomposition; for example, differential scanning calorimetry (DSC) indicates that DAST decomposes explosively at 155 °C with an exotherm of 63 kcal/mol. (9b) In contrast, PyFluor does not undergo exothermic decomposition in the range 0–350 °C (see SI for DSC data). Taken as a whole, PyFluor demonstrates a substantially better safety profile than other low-cost deoxyfluorination reagents.

Figure 2

Figure 2. Multigram synthesis of PyFluor.

Deoxyfluorination with PyFluor is also translatable to 18F radiolabeling (Figure 3). Substitution of alkyl sulfonates with [18F]KF/K222 forms the basis for the majority of radiotracer syntheses in PET imaging applications. (22) Nevertheless, this methodology fails in the presence of numerous biologically relevant functional groups, requires high temperatures to induce reasonable rates (>100 °C), and often leads to elimination products that are challenging to separate from the radiolabeled target. A 18F-variant of a deoxyfluorination remains an attractive but elusive alternative approach to aliphatic C–18F bond formation. Thus far, all reported deoxy-radiofluorinations require a 19F carrier in the form of an unlabeled reagent in order to generate enough activated electrophile to react with the nanomolar quantities of 18F available under labeling conditions. (23) Furthermore, deoxyfluorination reagents featuring multiple reactive fluorine equivalents (such as DAST) cannot be made isotopically pure, again due to low 18F concentration. Overall, these methods produce radiolabeled products with low specific activity (i.e., a high concentration of stable isotope). In preliminary studies, we found that reaction of 2-pyridinesulfonyl chloride with [18F]KF/K222 at 80 °C for 5 minutes afforded [18F]PyFluor in 88% radiochemical conversion (RCC). (24) Using this reagent, we were able to achieve deoxy-radiofluorination under comparatively mild conditions, delivering [18F]6 in 15% RCC after 20 min at 80 °C. This exciting proof of concept represents the first example of a no-carrier-added deoxy-radiofluorination. By performing both the reagent synthesis and deoxy-radiofluorination in a single pot, the unreacted 2-pyridinesulfonyl chloride enables stoichiometric formation of the sulfonate intermediate, thus obviating the need for carrier addition. Moreover, [18F]6 is inaccessible via conventional radiofluorination methods owing to the instability of the tosylate precursor. (25) This labeling protocol could be particularly useful with substrates for which the sulfonate ester cannot be isolated.

Figure 3

Figure 3. Radiosynthesis of [18F]PyFluor and its application to deoxy-radiofluorination.

In conclusion, we have developed a low-cost deoxyfluorination reagent that exhibits high chemical and thermal stability. In addition to tolerating a wide range of functionality, PyFluor is highly selective against elimination, allowing for straightforward purifications. Although this method requires longer reaction times and basic conditions, we expect that it will complement existing methods in laboratory screening. Furthermore, we envision that PyFluor will enable preparatory fluorination of alcohols on previously unattainable scale. Finally, we have demonstrated the first example of a no-carrier-added deoxy-radiofluorination with [18F]PyFluor. Our efforts are ongoing to optimize this procedure and interrogate its scope for PET imaging applications.

Supporting Information

Click to copy section linkSection link copied!

Experimental procedures, additional reaction optimization, and spectroscopic data for all new compounds. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b06307.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
    • Abigail G. Doyle - Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States Email: [email protected]
  • Authors
    • Matthew K. Nielsen - Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
    • Christian R. Ugaz - Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
    • Wenping Li - Department of Imaging Research, Merck Research Laboratories, West Point, Pennsylvania 19486, United States
  • Notes
    The authors declare no competing financial interest.

Acknowledgment

Click to copy section linkSection link copied!

We thank Dr. Thomas J. A. Graham (University of Pennsylvania) for helpful discussions and assistance with DSC measurements and R. Frederick Lambert (Harvard School of Dental Medicine) for experimental assistance. We acknowledge Dr. Eric Hostetler (Merck & Co., Inc., West Point, PA) for furnishing access to radiosynthesis facilities. Financial support was provided by the NSF (CAREER-1148750) and BMS (Innovation Award).

References

Click to copy section linkSection link copied!

This article references 25 other publications.

  1. 1
    (a) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432 DOI: 10.1021/cr4002879
    (b) Ilardi, E. A.; Vitaku, E.; Njardarson, J. T. J. Med. Chem. 2014, 57, 2832 DOI: 10.1021/jm401375q
    (c) Jeschke, P. ChemBioChem 2004, 5, 570 DOI: 10.1002/cbic.200300833
  2. 2
    O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308 DOI: 10.1039/B711844A
  3. 3
    Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320 DOI: 10.1039/B610213C
  4. 4

    Fluoroalkylamine (FAR) reagents – Yarovenko’s reagent:

    (a) Yarovenko, N. N.; Raksha, M. A.; Shemanina, V. N.; Vasileva, A. S. J. Gen. Chem. USSR 1957, 27, 2246

    Ishikawa’s reagent:

    (b) Takaoka, A.; Iwakiri, H.; Ishikawa, N. Bull. Chem. Soc. Jpn. 1979, 52, 3377 DOI: 10.1246/bcsj.52.3377
  5. 5

    Sulfur (IV) reagents – Sulfur tetrafluoride:

    (a) Hasek, W. R.; Smith, W. C.; Engelhardt, V. A. J. Am. Chem. Soc. 1960, 82, 543 DOI: 10.1021/ja01488a012

    DAST:

    (b) Middleton, W. J. J. Org. Chem. 1975, 40, 574 DOI: 10.1021/jo00893a007
    (c) Markovskij, L. N.; Pashinnik, V. E.; Kirsanov, A. V. Synthesis 1973, 1973, 787 DOI: 10.1055/s-1973-22302

    Deoxo-Fluor:

    (d) Lal, G. S.; Pez, G. P.; Pesaresi, R. J.; Prozonic, F. M.; Cheng, H. J. Org. Chem. 1999, 64, 7048 DOI: 10.1021/jo990566+

    XtalFluor:

    (e) Beaulieu, F.; Beauregard, L.-P.; Courchesne, G.; Couturier, M.; LaFlamme, F.; L’Heureux, A. Org. Lett. 2009, 11, 5050 DOI: 10.1021/ol902039q

    Fluolead:

    (f) Umemoto, T.; Singh, R. P.; Xu, Y.; Saito, N. J. Am. Chem. Soc. 2010, 132, 18199 DOI: 10.1021/ja106343h
  6. 6

    Azolium fluorides – DFI:

    (a) Hayashi, H.; Sonoda, H.; Fukumura, K.; Nagata, T. Chem. Commun. 2002, 1618 DOI: 10.1039/b204471d

    PhenoFluor:

    (b) Sladojevich, F.; Arlow, S. I.; Tang, P.; Ritter, T. J. Am. Chem. Soc. 2013, 135, 2470 DOI: 10.1021/ja3125405
  7. 7

    Sulfonyl fluorides – p-Toluenesulfonyl fluoride:

    (a) Shimizu, M.; Nakahara, Y.; Yoshioka, H. Tetrahedron Lett. 1985, 26, 4207 DOI: 10.1016/S0040-4039(00)98993-7

    Perfluorobutanesulfonyl fluoride:

    (b) Bennua-Skalmowski, B.; Vorbrüggen, H. Tetrahedron Lett. 1995, 36, 2611 DOI: 10.1016/0040-4039(95)00355-G
  8. 8

    Substitution of halides – with AgF:

    (a) Moissan, H. Ann. Chim. Phys. 1890, 19, 266

    With KF:

    (b) Hoffmann, F. W. J. Am. Chem. Soc. 1948, 70, 2596 DOI: 10.1021/ja01187a505

    With KF/18-crown-6:

    (c) Liotta, C. L.; Harris, H. P. J. Am. Chem. Soc. 1974, 96, 2250 DOI: 10.1021/ja00814a044

    Substitution of sulfonate esters – with KF:

    (d) Edgell, W. F.; Parts, L. J. Am. Chem. Soc. 1955, 77, 4899 DOI: 10.1021/ja01623a065

    With TBAF:

    (e) Henbest, H. B.; Jackson, W. R. J. Chem. Soc. 1962, 954 DOI: 10.1039/jr9620000954
  9. 9

    DAST solutions may detonate explosively at temperatures as low as 108 °C; see:

    (a) Messina, P. A.; Mange, K. C.; Middleton, W. J. J. Fluorine Chem. 1989, 42, 137 DOI: 10.1016/S0022-1139(00)83974-3
    (b) L’Heureux, A.; Beaulieu, F.; Bennett, C.; Bill, D. R.; Clayton, S.; LaFlamme, F.; Mirmehrabi, M.; Tadayon, S.; Tovell, D.; Couturier, M. J. Org. Chem. 2010, 75, 3401 DOI: 10.1021/jo100504x
  10. 10
    (a) Kalow, J. A.; Doyle, A. G. J. Am. Chem. Soc. 2010, 132, 3268 DOI: 10.1021/ja100161d
    (b) Kalow, J. A.; Schmitt, D. E.; Doyle, A. G. J. Org. Chem. 2012, 77, 4177 DOI: 10.1021/jo300433a
  11. 11
    Egli, M.; Pallan, P. S.; Allerson, C. R.; Prakash, T. P.; Berdeja, A.; Yu, J.; Lee, S.; Watt, A.; Gaus, H.; Bhat, B.; Swayze, E. E.; Seth, P. P. J. Am. Chem. Soc. 2011, 133, 16642 DOI: 10.1021/ja207086x
  12. 12
    Bennua-Skalmowski, B.; Klar, U.; Vorbrüggen, H. Synthesis 2008, 2008, 1175 DOI: 10.1055/s-2008-1067007
  13. 13
    Steinkopf, W. J. Prakt. Chem. 1927, 117, 1 DOI: 10.1002/prac.19271170101
  14. 14
    Yin, J.; Zarkowsky, D. S.; Thomas, D. W.; Zhao, M. M.; Huffman, M. A. Org. Lett. 2004, 6, 1465 DOI: 10.1021/ol049672a
  15. 15
    Kim, K.-Y.; Kim, B. C.; Lee, H. B.; Shin, H. J. Org. Chem. 2008, 73, 8106 DOI: 10.1021/jo8015659
  16. 16
    (a) Hanessian, S.; Kagotani, M.; Komaglou, K. Heterocycles 1989, 28, 1115 DOI: 10.3987/COM-88-S134
    (b) Lepore, S. D.; Mondal, D.; Li, S. Y.; Bhunia, A. K. Angew. Chem., Int. Ed. 2008, 47, 7511 DOI: 10.1002/anie.200802472
    (c) Ortega, N.; Feher-Voelger, A.; Brovetto, M.; Padrón, J. I.; Martín, V. S.; Martín, T. Adv. Synth. Catal. 2011, 353, 963 DOI: 10.1002/adsc.201000740
  17. 17
    Taylor, J. E.; Bull, S. D.; Williams, J. M. J. Chem. Soc. Rev. 2012, 41, 2109 DOI: 10.1039/c2cs15288f
  18. 18
    Dong, J.; Krasnova, L.; Finn, M. G.; Sharpless, B. K. Angew. Chem., Int. Ed. 2014, 53, 9430 DOI: 10.1002/anie.201309399
  19. 19

    Deoxyfluorination of enantioenriched alcohol 1 afforded inverted product 2 with 94% enantiospecificity; see SI for details.

  20. 20

    As another comparison of PyFluor to commercially available deoxyfluorination reagents, DAST affords product 8 in 47% yield with 44% elimination side product whereas PhenoFluor generates 8 in 84% yield with 11% elimination (ref 6b).

    Bird, T. G. C.; Fredericks, P. M.; Jones, E. R. H.; Meakins, G. D. J. Chem. Soc., Chem. Commun. 1979, 65 DOI: 10.1039/c39790000065
  21. 21

    PyFluor will be commercially available from Sigma-Aldrich.

  22. 22
    Ametamey, S. M.; Honer, M.; Schubiger, P. A. Chem. Rev. 2008, 108, 1501 DOI: 10.1021/cr0782426
  23. 23
    (a) Straatmann, M. G.; Welch, M. J. J. Nucl. Med. 1977, 18, 151
    (b) Jelinski, M.; Hamacher, K.; Coenen, H. H. J. Labelled Compd. Radiopharm. 2001, 44, S151 DOI: 10.1002/jlcr.2580440153
  24. 24
    (a) Matesic, L.; Wyatt, N. A.; Fraser, B. H.; Roberts, M. P.; Pham, T. Q.; Greguric, I. J. Org. Chem. 2013, 78, 11262 DOI: 10.1021/jo401759z
    (b) Inkster, J. A. H.; Liu, K.; Ait-Mohand, S.; Schaffer, P.; Guérin, B.; Ruth, T. J.; Storr, T. Chem. - Eur. J. 2012, 18, 11079 DOI: 10.1002/chem.201103450
  25. 25
    Eby, R.; Schuerch, C. Carbohydr. Res. 1974, 34, 79 DOI: 10.1016/S0008-6215(00)80372-9

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 252 publications.

  1. Rulin Zhao, Zhenqiu Hong, Bei Wang, Daniel Smith, Joseph M. Pawluczyk, Shishir Chourey, Roshan Y Nimje, Basavraj Koli, Manibalan Chidambaram, Ramakrishna Panchakharla, Anuradha Gupta, Pravin Shirude, Brian Fink, James Kempson, Arvind Mathur. Efficient and Scalable Diastereoselective Synthesis of ((2R,7aS)-2-fluorotetrahydro-1H-pyrrolizin-7a(5H)-yl)methanol Hydrochloride. Organic Process Research & Development 2025, 29 (3) , 704-715. https://doi.org/10.1021/acs.oprd.4c00462
  2. Eloah P. Ávila, Mauro V. de Almeida, Marcelo S. Valle, Josefredo R. Pliego. Effects of Hydrogen Bonding Solvation by Diverse Fluorinated Bulky Alcohols on the Reaction Rate and Selectivity in Crown Ether Mediated Nucleophilic Fluorination in an Aprotic Solvent. ACS Organic & Inorganic Au 2025, 5 (1) , 69-83. https://doi.org/10.1021/acsorginorgau.4c00081
  3. Jason D. Shields, Brian M. Aquila, David Emmons, M. Raymond V. Finlay, Eric T. Gangl, Chungang Gu, Scott N. Mlynarski, Jens Petersen, Petar Pop-Damkov, Li Sha, Iain Simpson, Siavash Tavakoli, Sharon Tentarelli, Haixia Wang, Qing Ye, XiaoLan Zheng. Design and Synthesis of Acyclic Boronic Acid Arginase Inhibitors. Journal of Medicinal Chemistry 2024, 67 (23) , 20799-20826. https://doi.org/10.1021/acs.jmedchem.4c02295
  4. Jianquan Hong, Xiaoyu Wang, Kui Zhao, Xifei Chen, Ruilong Feng, Chunxiang Li, Chongbin Wei, Xinxin Gong, Feng Zheng, Changge Zheng. Nickel-Catalyzed Direct Fluorosulfonylation of Vinyl Bromides and Benzyl Bromides for Sulfonyl Fluorides. Organic Letters 2024, 26 (46) , 9967-9972. https://doi.org/10.1021/acs.orglett.4c03820
  5. Padma Priya V R, Antony Haritha Mercy A, Natarajan K, Sugapriya S, Ganesh Chandra Nandi. A Rapid, Mild and Direct Route to Sulfonimidoyl Fluoride from Sulfenamide. The Journal of Organic Chemistry 2024, 89 (22) , 16426-16432. https://doi.org/10.1021/acs.joc.4c01644
  6. Caroline A. Blakemore, John M. Humphrey, Eddie Yang, Jeffrey T. Kohrt, Peter Daniel Morse, Roger M. Howard, Hatice G. Yayla, Thomas Knauber, Longfei Xie, Teresa Makowski, Jeffrey W. Raggon, Rebecca B. Watson, Christopher W. am Ende, Tim Ryder, Ormacinda White, Martin R. M. Koos, Rajesh Kumar, Feng Shi, Jie Li, Huan Wang, Like Chen, Julai Wang. Synthesis of Enantiopure Fluoropiperidines via Biocatalytic Desymmetrization and Flow Photochemical Decarboxylative Fluorination. Organic Process Research & Development 2024, 28 (10) , 3801-3807. https://doi.org/10.1021/acs.oprd.4c00139
  7. Sho Yamahara, Mohamed S. H. Salem, Takuma Kawai, Mai Watanabe, Yugo Sakamoto, Tomohide Okada, Yoshikazu Kimura, Shinobu Takizawa, Masayuki Kirihara. Green and Efficient Protocols for the Synthesis of Sulfonyl Fluorides Using Potassium Fluoride as the Sole Fluorine Source. ACS Sustainable Chemistry & Engineering 2024, 12 (32) , 12135-12142. https://doi.org/10.1021/acssuschemeng.4c03951
  8. Amaechi Shedrack Odoh, Courtney Keeler, Byoungmoo Kim. SuFEx-Enabled Direct Deoxy-Diversification of Alcohols. Organic Letters 2024, 26 (18) , 4013-4017. https://doi.org/10.1021/acs.orglett.4c01016
  9. May R. Merino, Xinlan A. F. Cook, David C. Blakemore, Ian B. Moses, Neal W. Sach, Andre Shavnya, Michael C. Willis. Copper-Catalyzed Synthesis of Masked (Hetero)Aryl Sulfinates. Organic Letters 2024, 26 (14) , 2817-2820. https://doi.org/10.1021/acs.orglett.3c03621
  10. James A. Vogel, Kirya F. Miller, Eunjeong Shin, Jenna M. Krussman, Patrick R. Melvin. Expanded Access to Fluoroformamidines via a Modular Synthetic Pathway. Organic Letters 2024, 26 (6) , 1277-1281. https://doi.org/10.1021/acs.orglett.4c00131
  11. Dominik Polterauer, Paul Hanselmann, Ryan Littich, Michael Bersier, Dominique M. Roberge, Simon Wagschal, Christopher A. Hone, C. Oliver Kappe. Sulfur Tetrafluoride (SF4) as a Deoxyfluorination Reagent for Organic Synthesis in Continuous Flow Mode. Organic Process Research & Development 2023, 27 (12) , 2385-2392. https://doi.org/10.1021/acs.oprd.3c00422
  12. Bjarne Silkenath, Dennis Kläge, Hanna Altwein, Nina Schmidhäuser, Günter Mayer, Jörg S. Hartig, Valentin Wittmann. Phosphonate and Thiasugar Analogues of Glucosamine-6-phosphate: Activation of the glmS Riboswitch and Antibiotic Activity. ACS Chemical Biology 2023, 18 (10) , 2324-2334. https://doi.org/10.1021/acschembio.3c00452
  13. Hye Won Moon, Marissa N. Lavagnino, Soohyun Lim, Maximilian D. Palkowitz, Michael D. Mandler, Gregory L. Beutner, Myles J. Drance, Jeffrey M. Lipshultz, Paul M. Scola, Alexander T. Radosevich. Deoxyfluorination of 1°, 2°, and 3° Alcohols by Nonbasic O–H Activation and Lewis Acid-Catalyzed Fluoride Shuttling. Journal of the American Chemical Society 2023, 145 (41) , 22735-22744. https://doi.org/10.1021/jacs.3c08373
  14. Xiaoyun Deng, Xiaohua Zhu. Recent Advances of S–18F Radiochemistry for Positron Emission Tomography. ACS Omega 2023, 8 (41) , 37720-37730. https://doi.org/10.1021/acsomega.3c05594
  15. Weijin Wang, Hongye Wang, Rongheng Dai, Yachong Wang, Zhaoting Li, Xiaoxue Yang, Bin Lu, Ning Jiao, Song Song. Organocatalytic Deoxyhalogenation of Alcohols with Inorganic Halides. ACS Catalysis 2023, 13 (13) , 9033-9040. https://doi.org/10.1021/acscatal.3c02078
  16. Jan Jelen, Gašper Tavčar. Deoxyfluorination of Electron-Deficient Phenols. Organic Letters 2023, 25 (20) , 3649-3653. https://doi.org/10.1021/acs.orglett.3c01018
  17. Isabelle Nathalie-Marie Leibler, Shivaani S. Gandhi, Makeda A. Tekle-Smith, Abigail G. Doyle. Strategies for Nucleophilic C(sp3)–(Radio)Fluorination. Journal of the American Chemical Society 2023, 145 (18) , 9928-9950. https://doi.org/10.1021/jacs.3c01824
  18. Marco T. Passia, Mostafa M. Amer, Joachim Demaerel, Carsten Bolm. Synthesis of Sulfonyl, Sulfonimidoyl, and Sulfoxyl Fluorides under Solvent-Free Mechanochemical Conditions in a Mixer Mill by Imidazole-to-Fluorine Exchange. ACS Sustainable Chemistry & Engineering 2023, 11 (18) , 6838-6843. https://doi.org/10.1021/acssuschemeng.3c00590
  19. Lucy P. Miller, James A. Vogel, Shiraz Harel, Jenna M. Krussman, Patrick R. Melvin. Rapid Generation of P(V)–F Bonds Through the Use of Sulfone Iminium Fluoride Reagents. Organic Letters 2023, 25 (11) , 1834-1838. https://doi.org/10.1021/acs.orglett.3c00274
  20. Xianqiang Kong, Yiyi Chen, Qianwen Liu, WenJie Wang, Shuangquan Zhang, Qian Zhang, Xiaohui Chen, Yuan-Qing Xu, Zhong-Yan Cao. Selective Fluorosulfonylation of Thianthrenium Salts Enabled by Electrochemistry. Organic Letters 2023, 25 (4) , 581-586. https://doi.org/10.1021/acs.orglett.2c03956
  21. Bryan C. Figula, D. Lucas Kane, Kaluvu Balaraman, Christian Wolf. Organocuprate Cross–Coupling Reactions with Alkyl Fluorides. Organic Letters 2022, 24 (47) , 8719-8723. https://doi.org/10.1021/acs.orglett.2c03775
  22. James A. Vogel, Rania Hammami, Ara Ko, Hiya Datta, Yael N. Eiben, Karley J. Labenne, Ellis C. McCarver, Ebrar Z. Yilmaz, Patrick R. Melvin. Synthesis of Highly Reactive Sulfone Iminium Fluorides and Their Use in Deoxyfluorination and Sulfur Fluoride Exchange Chemistry. Organic Letters 2022, 24 (32) , 5962-5966. https://doi.org/10.1021/acs.orglett.2c02232
  23. Wei Zhang, Xiaoyun Deng, Feng-Xu Zhang, Jin-Hong Lin, Ji-Chang Xiao, Steven H. Liang. Synthesis and 18F Labeling of Alkenyl Sulfonyl Fluorides via an Unconventional Elimination Pathway. Organic Letters 2022, 24 (27) , 4992-4997. https://doi.org/10.1021/acs.orglett.2c02091
  24. Pavel K. Mykhailiuk. Fluorine-Containing Prolines: Synthetic Strategies, Applications, and Opportunities. The Journal of Organic Chemistry 2022, 87 (11) , 6961-7005. https://doi.org/10.1021/acs.joc.1c02956
  25. Jun Xu, Chao Peng, Bolin Yao, Hua-Jian Xu, Qiang Xie. Direct Deoxyfluorination of Alcohols with KF as the Fluorine Source. The Journal of Organic Chemistry 2022, 87 (9) , 6471-6478. https://doi.org/10.1021/acs.joc.2c00388
  26. Michael Pirnot, Kevin Stone, Timothy J. Wright, David J. Lamberto, Jochen Schoell, Yu-hong Lam, Kerstin Zawatzky, Xiao Wang, Stephen M. Dalby, Adam J. Fine, Jonathan P. McMullen. Manufacturing Process Development for Belzutifan, Part 6: Ensuring Scalability for a Deoxyfluorination Reaction. Organic Process Research & Development 2022, 26 (3) , 551-559. https://doi.org/10.1021/acs.oprd.1c00239
  27. Catherine M. Alder, Matthew Gray, Chelsea A. Huff, Calvin O. Manning, Alex Preston, Philip Rushworth, Leanna E. Shuster, Robert J. Watson, Katherine M. P. Wheelhouse, Glynn D. Williams, Emmanuel H. Demont. Multigram Synthesis of Tetrasubstituted Dihydrobenzofuran GSK973 Enabled by High-Throughput Experimentation and a Claisen Rearrangement in Flow. Organic Process Research & Development 2022, 26 (2) , 365-379. https://doi.org/10.1021/acs.oprd.1c00422
  28. Renxiang Liu, Xiao-Cong Zhou, Xin-Yi He, Yuan-Qiang Li, Weiqin Zheng, Xiu Wang, Junkai Guo, Chuanfa Ni, Jinbo Hu. Modified and Scalable Synthesis of N-Tosyl-4-Chlorobenzenesulfonimidoyl Fluoride (SulfoxFluor): Direct Imidation of Sulfinyl Chlorides with Chloramine-T Trihydrate. Organic Process Research & Development 2022, 26 (2) , 380-386. https://doi.org/10.1021/acs.oprd.1c00431
  29. František Zálešák, Ondřej Kováč, Eliška Lachetová, Nikola Št’astná, Jiří Pospíšil. Unified Approach to Benzo[d]thiazol-2-yl-Sulfonamides. The Journal of Organic Chemistry 2021, 86 (17) , 11291-11309. https://doi.org/10.1021/acs.joc.1c00317
  30. Yanyao Cai, Wenjie Zhu, Shujuan Zhao, Chanjuan Dong, Zhenchuang Xu, Yanchuan Zhao. Difluorocarbene-Mediated Cascade Cyclization: The Multifunctional Role of Ruppert–Prakash Reagent. Organic Letters 2021, 23 (9) , 3546-3551. https://doi.org/10.1021/acs.orglett.1c00962
  31. Wan-Yin Fang, Shi-Meng Wang, Zai-Wei Zhang, Hua-Li Qin. Clickable Transformation of Nitriles (RCN) to Oxazolyl Sulfonyl Fluoride Warheads. Organic Letters 2020, 22 (22) , 8904-8909. https://doi.org/10.1021/acs.orglett.0c03298
  32. Shiyu Zhao, Yong Guo, Zhaoben Su, Wei Cao, Chengying Wu, Qing-Yun Chen. A Series of Deoxyfluorination Reagents Featuring OCF2 Functional Groups. Organic Letters 2020, 22 (21) , 8634-8637. https://doi.org/10.1021/acs.orglett.0c03238
  33. Alexandre M. Sorlin, Fuad O. Usman, Connor K. English, Hien M. Nguyen. Advances in Nucleophilic Allylic Fluorination. ACS Catalysis 2020, 10 (20) , 11980-12010. https://doi.org/10.1021/acscatal.0c03493
  34. Yasinalli Tamboli, Bharat Kashid, Ram Prasad Yadav, Mohammad Rafeeq, Arvind Y Merwade. Large-Scale Practical Synthesis of Boc-Protected 4-Fluoro-l-Proline. Organic Process Research & Development 2020, 24 (9) , 1609-1613. https://doi.org/10.1021/acs.oprd.0c00080
  35. Wei Zhang, Yu-Cheng Gu, Jin-Hong Lin, Ji-Chang Xiao. Dehydroxylative Fluorination of Tertiary Alcohols. Organic Letters 2020, 22 (16) , 6642-6646. https://doi.org/10.1021/acs.orglett.0c02438
  36. Eric W. Webb, John B. Park, Erin L. Cole, David J. Donnelly, Samuel J. Bonacorsi, William R. Ewing, Abigail G. Doyle. Nucleophilic (Radio)Fluorination of Redox-Active Esters via Radical-Polar Crossover Enabled by Photoredox Catalysis. Journal of the American Chemical Society 2020, 142 (20) , 9493-9500. https://doi.org/10.1021/jacs.0c03125
  37. Tao Zhong, Meng-Ke Pang, Zhi-Da Chen, Bin Zhang, Jiang Weng, Gui Lu. Copper-free Sandmeyer-type Reaction for the Synthesis of Sulfonyl Fluorides. Organic Letters 2020, 22 (8) , 3072-3078. https://doi.org/10.1021/acs.orglett.0c00823
  38. Yongan Liu, Donghai Yu, Yong Guo, Ji-Chang Xiao, Qing-Yun Chen, Chao Liu. Arenesulfonyl Fluoride Synthesis via Copper-Catalyzed Fluorosulfonylation of Arenediazonium Salts. Organic Letters 2020, 22 (6) , 2281-2286. https://doi.org/10.1021/acs.orglett.0c00484
  39. Toshio Fuchigami, Shinsuke Inagi. Recent Advances in Electrochemical Systems for Selective Fluorination of Organic Compounds. Accounts of Chemical Research 2020, 53 (2) , 322-334. https://doi.org/10.1021/acs.accounts.9b00520
  40. Huaizhi Li, Bhoomireddy Rajendra Prasad Reddy, Xihe Bi. Transformation of Alkynes into α- or β-Difluorinated Alkyl Azides by an Efficient One-Pot Two-Step Procedure. Organic Letters 2019, 21 (23) , 9358-9362. https://doi.org/10.1021/acs.orglett.9b03593
  41. Alan M. Hyde, Ralph Calabria, Rebecca Arvary, Xiao Wang, Artis Klapars. Investigating the Underappreciated Hydrolytic Instability of 1,8-Diazabicyclo[5.4.0]undec-7-ene and Related Unsaturated Nitrogenous Bases. Organic Process Research & Development 2019, 23 (9) , 1860-1871. https://doi.org/10.1021/acs.oprd.9b00187
  42. Gabriele Laudadio, Aloisio de A. Bartolomeu, Lucas M. H. M. Verwijlen, Yiran Cao, Kleber T. de Oliveira, Timothy Noël. Sulfonyl Fluoride Synthesis through Electrochemical Oxidative Coupling of Thiols and Potassium Fluoride. Journal of the American Chemical Society 2019, 141 (30) , 11832-11836. https://doi.org/10.1021/jacs.9b06126
  43. Fumihiro Kawagoe, Kaori Yasuda, Sayuri Mototani, Toru Sugiyama, Motonari Uesugi, Toshiyuki Sakaki, Atsushi Kittaka. Synthesis and CYP24A1-Dependent Metabolism of 23-Fluorinated Vitamin D3 Analogues. ACS Omega 2019, 4 (6) , 11332-11337. https://doi.org/10.1021/acsomega.9b01500
  44. Nuo-Yi Wu, Xiu-Hua Xu, Feng-Ling Qing. Copper-Catalyzed Regioselective Borylfluoromethylation of Alkenes. ACS Catalysis 2019, 9 (6) , 5726-5731. https://doi.org/10.1021/acscatal.9b01530
  45. Patrick R. Melvin, Devin M. Ferguson, Sydonie D. Schimler, Douglas C. Bland, Melanie S. Sanford. Room Temperature Deoxyfluorination of Benzaldehydes and α-Ketoesters with Sulfuryl Fluoride and Tetramethylammonium Fluoride. Organic Letters 2019, 21 (5) , 1350-1353. https://doi.org/10.1021/acs.orglett.9b00054
  46. Francisco de Azambuja, Sydney M. Lovrien, Patrick Ross, Brett R. Ambler, Ryan A. Altman. Catalytic One-Step Deoxytrifluoromethylation of Alcohols. The Journal of Organic Chemistry 2019, 84 (4) , 2061-2071. https://doi.org/10.1021/acs.joc.8b03072
  47. Uma S. Singh, Varughese A. Mulamoottil, Chung K. Chu. Synthesis of an Anti-hepatitis B Agent, 2′-Fluoro-6′-methylene-carbocyclic Adenosine (FMCA) and Its Phosphoramidate (FMCAP). The Journal of Organic Chemistry 2019, 84 (2) , 752-759. https://doi.org/10.1021/acs.joc.8b02599
  48. Jungmin Kwon, B. Moon Kim. Synthesis of Arenesulfonyl Fluorides via Sulfuryl Fluoride Incorporation from Arynes. Organic Letters 2019, 21 (2) , 428-433. https://doi.org/10.1021/acs.orglett.8b03610
  49. Jason C. Mixdorf, Alexandre M. Sorlin, David W. Dick, Hien M. Nguyen. Iridium-Catalyzed Radiosynthesis of Branched Allylic [18F]Fluorides. Organic Letters 2019, 21 (1) , 60-64. https://doi.org/10.1021/acs.orglett.8b03496
  50. Ciaran P. Seath, David B. Vogt, Zihao Xu, Allyson J. Boyington, Nathan T. Jui. Radical Hydroarylation of Functionalized Olefins and Mechanistic Investigation of Photocatalytic Pyridyl Radical Reactions. Journal of the American Chemical Society 2018, 140 (45) , 15525-15534. https://doi.org/10.1021/jacs.8b10238
  51. Joice Thomas, Valery V. Fokin. Regioselective Synthesis of Fluorosulfonyl 1,2,3-Triazoles from Bromovinylsulfonyl Fluoride. Organic Letters 2018, 20 (13) , 3749-3752. https://doi.org/10.1021/acs.orglett.8b01309
  52. Matthew K. Nielsen, Derek T. Ahneman, Orestes Riera, Abigail G. Doyle. Deoxyfluorination with Sulfonyl Fluorides: Navigating Reaction Space with Machine Learning. Journal of the American Chemical Society 2018, 140 (15) , 5004-5008. https://doi.org/10.1021/jacs.8b01523
  53. Daniel Willén, Dennis Bengtsson, Sebastian Clementson, Emil Tykesson, Sophie Manner, and Ulf Ellervik . Synthesis of Double-Modified Xyloside Analogues for Probing the β4GalT7 Active Site. The Journal of Organic Chemistry 2018, 83 (3) , 1259-1277. https://doi.org/10.1021/acs.joc.7b02809
  54. Constanze N. Neumann and Tobias Ritter . Facile C–F Bond Formation through a Concerted Nucleophilic Aromatic Substitution Mediated by the PhenoFluor Reagent. Accounts of Chemical Research 2017, 50 (11) , 2822-2833. https://doi.org/10.1021/acs.accounts.7b00413
  55. Peng Long, Yiyu Feng, Yu Li, Chen Cao, Shuangwen Li, Haoran An, Chengqun Qin, Junkai Han, and Wei Feng . Solid-State Fluorescence of Fluorine-Modified Carbon Nanodots Aggregates Triggered by Poly(ethylene glycol). ACS Applied Materials & Interfaces 2017, 9 (43) , 37981-37990. https://doi.org/10.1021/acsami.7b13138
  56. Megan A. Cismesia, Sarah J. Ryan, Douglas C. Bland, and Melanie S. Sanford . Multiple Approaches to the In Situ Generation of Anhydrous Tetraalkylammonium Fluoride Salts for SNAr Fluorination Reactions. The Journal of Organic Chemistry 2017, 82 (10) , 5020-5026. https://doi.org/10.1021/acs.joc.7b00481
  57. Ariana L. Tribby, Ismeraí Rodríguez, Shamira Shariffudin, and Nicholas D. Ball . Pd-Catalyzed Conversion of Aryl Iodides to Sulfonyl Fluorides Using SO2 Surrogate DABSO and Selectfluor. The Journal of Organic Chemistry 2017, 82 (4) , 2294-2299. https://doi.org/10.1021/acs.joc.7b00051
  58. Praveen K. Chinthakindi, Kimberleigh B. Govender, A. Sanjeeva Kumar, Hendrik G. Kruger, Thavendran Govender, Tricia Naicker, and Per I. Arvidsson . A Synthesis of “Dual Warhead” β-Aryl Ethenesulfonyl Fluorides and One-Pot Reaction to β-Sultams. Organic Letters 2017, 19 (3) , 480-483. https://doi.org/10.1021/acs.orglett.6b03634
  59. Ibrayim Saidalimu, Shugo Suzuki, Takuya Yoshioka, Etsuko Tokunaga, and Norio Shibata . Perfluoroalkyl Analogues of Diethylaminosulfur Trifluoride: Reagents for Perfluoroalkylthiolation of Active Methylene Compounds under Mild Conditions. Organic Letters 2016, 18 (24) , 6404-6407. https://doi.org/10.1021/acs.orglett.6b03301
  60. Nathaniel W. Goldberg, Xiao Shen, Jiakun Li, and Tobias Ritter . AlkylFluor: Deoxyfluorination of Alcohols. Organic Letters 2016, 18 (23) , 6102-6104. https://doi.org/10.1021/acs.orglett.6b03086
  61. Lucas W. Erickson, Erika L. Lucas, Emily J. Tollefson, and Elizabeth R. Jarvo . Nickel-Catalyzed Cross-Electrophile Coupling of Alkyl Fluorides: Stereospecific Synthesis of Vinylcyclopropanes. Journal of the American Chemical Society 2016, 138 (42) , 14006-14011. https://doi.org/10.1021/jacs.6b07567
  62. Brian J. Groendyke, Deyaa I. AbuSalim, and Silas P. Cook . Iron-Catalyzed, Fluoroamide-Directed C–H Fluorination. Journal of the American Chemical Society 2016, 138 (39) , 12771-12774. https://doi.org/10.1021/jacs.6b08171
  63. Kuiyong Dong, Bin Yan, Sailan Chang, Yongjian Chi, Lihua Qiu, and Xinfang Xu . Transition-Metal-Free Fluoroarylation of Diazoacetamides: A Complementary Approach to 3-Fluorooxindoles. The Journal of Organic Chemistry 2016, 81 (15) , 6887-6892. https://doi.org/10.1021/acs.joc.6b01286
  64. Sean Preshlock, Matthew Tredwell, and Véronique Gouverneur . 18F-Labeling of Arenes and Heteroarenes for Applications in Positron Emission Tomography. Chemical Reviews 2016, 116 (2) , 719-766. https://doi.org/10.1021/acs.chemrev.5b00493
  65. Christopher Sandford, Ramesh Rasappan, and Varinder K. Aggarwal . Synthesis of Enantioenriched Alkylfluorides by the Fluorination of Boronate Complexes. Journal of the American Chemical Society 2015, 137 (32) , 10100-10103. https://doi.org/10.1021/jacs.5b05848
  66. Jan Jelen, Gašper Tavčar. Deoxyfluorination: A Detailed Overview of Recent Developments. Synthesis 2025, 57 (09) , 1517-1541. https://doi.org/10.1055/a-2412-1398
  67. Min Pyeong Kim, Manoj Kumar Sahoo, Joong-Hyun Chun, Sung You Hong. The First Decade of SuFEx Chemistry: Advancements in SuFEx Polymerization, Non-Canonical SuFEx Reactions, and SuFEx Radiochemistry. Synthesis 2025, 57 (09) , 1551-1568. https://doi.org/10.1055/a-2435-5669
  68. Zhihang Wei, Fang Zhang, Qichao Zhang, Zhihua Cai, Lin He, Guangfen Du. N-Heterocyclic carbene-catalyzed SuFEx reactions of fluoroalkylated secondary benzylic alcohols. Organic & Biomolecular Chemistry 2025, 23 (14) , 3465-3469. https://doi.org/10.1039/D5OB00113G
  69. Guang Tao, Eman Fayad, Ola A. Abu Ali, Bright Oyom, Hua-Li Qin. A Convenient One-Pot Process for Converting Thiols into Sulfonyl Fluorides Using H2O2 as an Oxidant. Synthesis 2025, 57 (05) , 991-998. https://doi.org/10.1055/s-0043-1775384
  70. Dominic R. Willcox, Nojus Cironis, Laura Winfrey, Sven Kirschner, Gary S. Nichol, Stephen P. Thomas, Michael J. Ingleson. Borane‐Mediated Highly Secondary Selective Deoxyfluorination of Alcohols. Angewandte Chemie 2025, 137 (6) https://doi.org/10.1002/ange.202418495
  71. Dominic R. Willcox, Nojus Cironis, Laura Winfrey, Sven Kirschner, Gary S. Nichol, Stephen P. Thomas, Michael J. Ingleson. Borane‐Mediated Highly Secondary Selective Deoxyfluorination of Alcohols. Angewandte Chemie International Edition 2025, 64 (6) https://doi.org/10.1002/anie.202418495
  72. Yugandhar Kothapalli, Tucker A. Lesperance, Ransom A. Jones, Chung K. Chu, Uma S. Singh. Chemical Space of Fluorinated Nucleosides/Nucleotides in Biomedical Research and Anticancer Drug Discovery. Chemistry 2025, 7 (1) , 7. https://doi.org/10.3390/chemistry7010007
  73. 季虹 俞. Applications of Sulfonyl Fluorides. Advances in Material Chemistry 2025, 13 (02) , 161-170. https://doi.org/10.12677/amc.2025.132018
  74. Fabrice G. Siméon, Sanjay Telu, Lisheng Cai, Shuiyu Lu, Victor W. Pike. Fluorine‐18 Radiochemistry for PET Imaging Applications—Fundamentals and Recent Advances. 2024, 1-120. https://doi.org/10.1002/9780470682531.pat1035
  75. Minlong Wang, Jiaman Hou, Hainam Do, Chao Wang, Xiaohe Zhang, Ying Du, Qixin Dong, Lijun Wang, Ke Ni, Fazheng Ren, Jie An. Intramolecular chalcogen bonding activated SuFEx click chemistry for efficient organic-inorganic linking. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-50922-9
  76. Dharmendra S. Vishwakarma, John E. Moses. Benzene‐1,3‐disulfonyl fluoride and Benzene‐1,3,5‐trisulfonyl fluoride: Low‐Cost, Stable, and Selective Reagents for SuFEx‐Driven Deoxyazidation. Advanced Synthesis & Catalysis 2024, 366 (21) , 4470-4477. https://doi.org/10.1002/adsc.202400680
  77. Sichang Wang, Chengxiang Zhou, Yunzi Han, Miao Li, Congyu Ke, Shenlin Huang. Applications of Sulfonyl Fluorides in Organic Transformations. Synthesis 2024, 53 https://doi.org/10.1055/a-2446-8203
  78. Xavier Bertrand, Doria Aissaoui, Océane Meryem Col, Mathieu Pucheault, Laurent Chabaud, Jean-François Paquin. Improved conditions for the synthesis of tertiary fluorides using a KF/H2SO4 combination. Journal of Fluorine Chemistry 2024, 279 , 110338. https://doi.org/10.1016/j.jfluchem.2024.110338
  79. Yi-Fan Zhang, Shan Zhu, Ya-Wen Zuo, Hang Liu, Ruo-Xing Jin, Xi-Sheng Wang. Visible light-induced photocatalytic deoxyfluorination of benzyl alcohol using SF 6 as a fluorinating reagent. Green Chemistry 2024, 26 (19) , 10324-10329. https://doi.org/10.1039/D4GC03324H
  80. Amardeep Singh, Haritha Sindhe, Akshay Kamble, Karthikeyan Rajkumar, Vanshika Agrawal, Satyasheel Sharma. Recent advances in late-stage monofluorination of natural products and their derivatives. Organic Chemistry Frontiers 2024, 11 (19) , 5605-5637. https://doi.org/10.1039/D4QO01111B
  81. Mingyan Ding, Charles Bell, Michael C. Willis. The Modular Synthesis of Sulfondiimidoyl Fluorides and their Application to Sulfondiimidamide and Sulfondiimine Synthesis. Angewandte Chemie International Edition 2024, 63 (38) https://doi.org/10.1002/anie.202409240
  82. Mingyan Ding, Charles Bell, Michael C. Willis. The Modular Synthesis of Sulfondiimidoyl Fluorides and their Application to Sulfondiimidamide and Sulfondiimine Synthesis. Angewandte Chemie 2024, 136 (38) https://doi.org/10.1002/ange.202409240
  83. Lukáš Maier, Dana Němečková, Naresh Akavaram, Erik Kalla, Hugo Semrád, Olivie Matyasková, Markéta Munzarová, Petra Daďová, Lukáš Kubala, Jakub Švenda, Kamil Paruch. Unexpectedly Regioselective Diels‐Alder Reactions of New Unsymmetrical Benzoquinones: A Convenient Synthetic Entry to Uniquely Substituted Decalins. Chemistry – A European Journal 2024, 11 https://doi.org/10.1002/chem.202401068
  84. Monday Peter Ajisafe, Eman Fayad, Ola A. Abu Ali, Hua-Li Qin. The construction of novel pyrrole-4 H -chromene-embedded vinyl sulfonyl fluorides via a three-component process. New Journal of Chemistry 2024, 48 (33) , 14532-14537. https://doi.org/10.1039/D4NJ02621G
  85. Natalie G. Charlesworth, Dhanarajan Arunprasath, Mark A. Graham, Stephen P. Argent, Oleksandr P. Datsenko, Pavel K. Mykhailiuk, Ross M. Denton. Modular synthesis of cyclic β-difluoroamines. Chemical Communications 2024, 60 (60) , 7701-7704. https://doi.org/10.1039/D4CC00640B
  86. Kiran Agrahari, Trenton J. Wolter, Evangelos Smith, Nicholas L. Abbott, Manos Mavrikakis, Jeffrey D. Mighion, Robert J. Twieg. Synthesis and examination of alkoxycyanobiphenyl mesogens with a single fluorine atom at specific locations in the tail. Liquid Crystals 2024, 51 (8-9) , 1496-1505. https://doi.org/10.1080/02678292.2024.2306306
  87. Stephen J. Sujansky, Garrett A. Hoteling, Jeffrey S. Bandar. A strategy for the controllable generation of organic superbases from benchtop-stable salts. Chemical Science 2024, 15 (26) , 10018-10026. https://doi.org/10.1039/D4SC02524E
  88. Lukas Veth, Albert D. Windhorst, Danielle J. Vugts. Synthesis of 18 F‐labeled Aryl Trifluoromethyl Sulfones, ‐Sulfoxides, and ‐Sulfides for Positron Emission Tomography. Angewandte Chemie 2024, 136 (27) https://doi.org/10.1002/ange.202404278
  89. Lukas Veth, Albert D. Windhorst, Danielle J. Vugts. Synthesis of 18 F‐labeled Aryl Trifluoromethyl Sulfones, ‐Sulfoxides, and ‐Sulfides for Positron Emission Tomography. Angewandte Chemie International Edition 2024, 63 (27) https://doi.org/10.1002/anie.202404278
  90. Mehul H. Jesani, Maria Schwarz, Shiwhu Kim, Finlay L. Evans, Alexander White, Alex Browning, Roman Abrams, Jonathan Clayden. Selective Defluorination of Trifluoromethyl Substituents by Conformationally Induced Remote Substitution. Angewandte Chemie 2024, 136 (24) https://doi.org/10.1002/ange.202403477
  91. Mehul H. Jesani, Maria Schwarz, Shiwhu Kim, Finlay L. Evans, Alexander White, Alex Browning, Roman Abrams, Jonathan Clayden. Selective Defluorination of Trifluoromethyl Substituents by Conformationally Induced Remote Substitution. Angewandte Chemie International Edition 2024, 63 (24) https://doi.org/10.1002/anie.202403477
  92. Anootha Neeliveettil, Soumyadip Dey, Vishnu Nomula, Swati Thakur, Debabrata Giri, Abhishek Santra, Abhijit Sau. Deoxyfluorinated amidation and esterification of carboxylic acid by pyridinesulfonyl fluoride. Chemical Communications 2024, 60 (36) , 4789-4792. https://doi.org/10.1039/D4CC00877D
  93. Xianqiang Kong, Qianwen Liu, Yiyi Chen, Wei Wang, Hong-Fa Chen, Wenjie Wang, Shuangquan Zhang, Xiaohui Chen, Zhong-Yan Cao. Direct electrochemical synthesis of arenesulfonyl fluorides from nitroarenes: a dramatic ionic liquid effect. Green Chemistry 2024, 26 (6) , 3435-3440. https://doi.org/10.1039/D3GC04528E
  94. Emily Henary, Stefanie Casa, Tyler L. Dost, Joseph C. Sloop, Maged Henary. The Role of Small Molecules Containing Fluorine Atoms in Medicine and Imaging Applications. Pharmaceuticals 2024, 17 (3) , 281. https://doi.org/10.3390/ph17030281
  95. Vinod K. Tiwari, Manoj K. Jaiswal, Sanchayita Rajkhowa, Sumit K. Singh. SuFEx Click Chemistry: Discovery to Applications. 2024, 239-270. https://doi.org/10.1007/978-981-97-4596-8_8
  96. A. Joosten, J. Brioche. 1.2 Deoxyfluorination of Aliphatic Alcohols. 2024https://doi.org/10.1055/sos-SD-243-00001
  97. J. Lai, B. J. Thomson, G. M. Sammis. 1.1 Sulfonyl Fluorides and Acyl Fluorides. 2024https://doi.org/10.1055/sos-SD-243-00109
  98. Jian Rong, Achi Haider, Troels E. Jeppesen, Lee Josephson, Steven H. Liang. Radiochemistry for positron emission tomography. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-36377-4
  99. Xing Wu, Wenbo Zhang, Guangwu Sun, Xi Zou, Xiaoru Sang, Yongmin He, Bing Gao. Turning sulfonyl and sulfonimidoyl fluoride electrophiles into sulfur(VI) radicals for alkene ligation. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-40615-0
  100. Taku Kitahara, Yuta Tagami, Yuto Haga, Santos Fustero, Tsuyuka Sugiishi, Hideki Amii. Alkylation and silylation of α-fluorobenzyl anion intermediates. Organic & Biomolecular Chemistry 2023, 21 (46) , 9210-9215. https://doi.org/10.1039/D3OB01586F
Load more citations

Journal of the American Chemical Society

Cite this: J. Am. Chem. Soc. 2015, 137, 30, 9571–9574
Click to copy citationCitation copied!
https://doi.org/10.1021/jacs.5b06307
Published July 15, 2015

Copyright © 2015 American Chemical Society. This publication is licensed under these Terms of Use.

Article Views

43k

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. (a) The popular deoxyfluorination reagent DAST frequently affords elimination side products and displays poor thermal stability. (b) PyFluor is a stable and affordable alternative that demonstrates high selectivity against elimination, thus enabling rapid and facile purification.

    Figure 2

    Figure 2. Multigram synthesis of PyFluor.

    Figure 3

    Figure 3. Radiosynthesis of [18F]PyFluor and its application to deoxy-radiofluorination.

  • References


    This article references 25 other publications.

    1. 1
      (a) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432 DOI: 10.1021/cr4002879
      (b) Ilardi, E. A.; Vitaku, E.; Njardarson, J. T. J. Med. Chem. 2014, 57, 2832 DOI: 10.1021/jm401375q
      (c) Jeschke, P. ChemBioChem 2004, 5, 570 DOI: 10.1002/cbic.200300833
    2. 2
      O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308 DOI: 10.1039/B711844A
    3. 3
      Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320 DOI: 10.1039/B610213C
    4. 4

      Fluoroalkylamine (FAR) reagents – Yarovenko’s reagent:

      (a) Yarovenko, N. N.; Raksha, M. A.; Shemanina, V. N.; Vasileva, A. S. J. Gen. Chem. USSR 1957, 27, 2246

      Ishikawa’s reagent:

      (b) Takaoka, A.; Iwakiri, H.; Ishikawa, N. Bull. Chem. Soc. Jpn. 1979, 52, 3377 DOI: 10.1246/bcsj.52.3377
    5. 5

      Sulfur (IV) reagents – Sulfur tetrafluoride:

      (a) Hasek, W. R.; Smith, W. C.; Engelhardt, V. A. J. Am. Chem. Soc. 1960, 82, 543 DOI: 10.1021/ja01488a012

      DAST:

      (b) Middleton, W. J. J. Org. Chem. 1975, 40, 574 DOI: 10.1021/jo00893a007
      (c) Markovskij, L. N.; Pashinnik, V. E.; Kirsanov, A. V. Synthesis 1973, 1973, 787 DOI: 10.1055/s-1973-22302

      Deoxo-Fluor:

      (d) Lal, G. S.; Pez, G. P.; Pesaresi, R. J.; Prozonic, F. M.; Cheng, H. J. Org. Chem. 1999, 64, 7048 DOI: 10.1021/jo990566+

      XtalFluor:

      (e) Beaulieu, F.; Beauregard, L.-P.; Courchesne, G.; Couturier, M.; LaFlamme, F.; L’Heureux, A. Org. Lett. 2009, 11, 5050 DOI: 10.1021/ol902039q

      Fluolead:

      (f) Umemoto, T.; Singh, R. P.; Xu, Y.; Saito, N. J. Am. Chem. Soc. 2010, 132, 18199 DOI: 10.1021/ja106343h
    6. 6

      Azolium fluorides – DFI:

      (a) Hayashi, H.; Sonoda, H.; Fukumura, K.; Nagata, T. Chem. Commun. 2002, 1618 DOI: 10.1039/b204471d

      PhenoFluor:

      (b) Sladojevich, F.; Arlow, S. I.; Tang, P.; Ritter, T. J. Am. Chem. Soc. 2013, 135, 2470 DOI: 10.1021/ja3125405
    7. 7

      Sulfonyl fluorides – p-Toluenesulfonyl fluoride:

      (a) Shimizu, M.; Nakahara, Y.; Yoshioka, H. Tetrahedron Lett. 1985, 26, 4207 DOI: 10.1016/S0040-4039(00)98993-7

      Perfluorobutanesulfonyl fluoride:

      (b) Bennua-Skalmowski, B.; Vorbrüggen, H. Tetrahedron Lett. 1995, 36, 2611 DOI: 10.1016/0040-4039(95)00355-G
    8. 8

      Substitution of halides – with AgF:

      (a) Moissan, H. Ann. Chim. Phys. 1890, 19, 266

      With KF:

      (b) Hoffmann, F. W. J. Am. Chem. Soc. 1948, 70, 2596 DOI: 10.1021/ja01187a505

      With KF/18-crown-6:

      (c) Liotta, C. L.; Harris, H. P. J. Am. Chem. Soc. 1974, 96, 2250 DOI: 10.1021/ja00814a044

      Substitution of sulfonate esters – with KF:

      (d) Edgell, W. F.; Parts, L. J. Am. Chem. Soc. 1955, 77, 4899 DOI: 10.1021/ja01623a065

      With TBAF:

      (e) Henbest, H. B.; Jackson, W. R. J. Chem. Soc. 1962, 954 DOI: 10.1039/jr9620000954
    9. 9

      DAST solutions may detonate explosively at temperatures as low as 108 °C; see:

      (a) Messina, P. A.; Mange, K. C.; Middleton, W. J. J. Fluorine Chem. 1989, 42, 137 DOI: 10.1016/S0022-1139(00)83974-3
      (b) L’Heureux, A.; Beaulieu, F.; Bennett, C.; Bill, D. R.; Clayton, S.; LaFlamme, F.; Mirmehrabi, M.; Tadayon, S.; Tovell, D.; Couturier, M. J. Org. Chem. 2010, 75, 3401 DOI: 10.1021/jo100504x
    10. 10
      (a) Kalow, J. A.; Doyle, A. G. J. Am. Chem. Soc. 2010, 132, 3268 DOI: 10.1021/ja100161d
      (b) Kalow, J. A.; Schmitt, D. E.; Doyle, A. G. J. Org. Chem. 2012, 77, 4177 DOI: 10.1021/jo300433a
    11. 11
      Egli, M.; Pallan, P. S.; Allerson, C. R.; Prakash, T. P.; Berdeja, A.; Yu, J.; Lee, S.; Watt, A.; Gaus, H.; Bhat, B.; Swayze, E. E.; Seth, P. P. J. Am. Chem. Soc. 2011, 133, 16642 DOI: 10.1021/ja207086x
    12. 12
      Bennua-Skalmowski, B.; Klar, U.; Vorbrüggen, H. Synthesis 2008, 2008, 1175 DOI: 10.1055/s-2008-1067007
    13. 13
      Steinkopf, W. J. Prakt. Chem. 1927, 117, 1 DOI: 10.1002/prac.19271170101
    14. 14
      Yin, J.; Zarkowsky, D. S.; Thomas, D. W.; Zhao, M. M.; Huffman, M. A. Org. Lett. 2004, 6, 1465 DOI: 10.1021/ol049672a
    15. 15
      Kim, K.-Y.; Kim, B. C.; Lee, H. B.; Shin, H. J. Org. Chem. 2008, 73, 8106 DOI: 10.1021/jo8015659
    16. 16
      (a) Hanessian, S.; Kagotani, M.; Komaglou, K. Heterocycles 1989, 28, 1115 DOI: 10.3987/COM-88-S134
      (b) Lepore, S. D.; Mondal, D.; Li, S. Y.; Bhunia, A. K. Angew. Chem., Int. Ed. 2008, 47, 7511 DOI: 10.1002/anie.200802472
      (c) Ortega, N.; Feher-Voelger, A.; Brovetto, M.; Padrón, J. I.; Martín, V. S.; Martín, T. Adv. Synth. Catal. 2011, 353, 963 DOI: 10.1002/adsc.201000740
    17. 17
      Taylor, J. E.; Bull, S. D.; Williams, J. M. J. Chem. Soc. Rev. 2012, 41, 2109 DOI: 10.1039/c2cs15288f
    18. 18
      Dong, J.; Krasnova, L.; Finn, M. G.; Sharpless, B. K. Angew. Chem., Int. Ed. 2014, 53, 9430 DOI: 10.1002/anie.201309399
    19. 19

      Deoxyfluorination of enantioenriched alcohol 1 afforded inverted product 2 with 94% enantiospecificity; see SI for details.

    20. 20

      As another comparison of PyFluor to commercially available deoxyfluorination reagents, DAST affords product 8 in 47% yield with 44% elimination side product whereas PhenoFluor generates 8 in 84% yield with 11% elimination (ref 6b).

      Bird, T. G. C.; Fredericks, P. M.; Jones, E. R. H.; Meakins, G. D. J. Chem. Soc., Chem. Commun. 1979, 65 DOI: 10.1039/c39790000065
    21. 21

      PyFluor will be commercially available from Sigma-Aldrich.

    22. 22
      Ametamey, S. M.; Honer, M.; Schubiger, P. A. Chem. Rev. 2008, 108, 1501 DOI: 10.1021/cr0782426
    23. 23
      (a) Straatmann, M. G.; Welch, M. J. J. Nucl. Med. 1977, 18, 151
      (b) Jelinski, M.; Hamacher, K.; Coenen, H. H. J. Labelled Compd. Radiopharm. 2001, 44, S151 DOI: 10.1002/jlcr.2580440153
    24. 24
      (a) Matesic, L.; Wyatt, N. A.; Fraser, B. H.; Roberts, M. P.; Pham, T. Q.; Greguric, I. J. Org. Chem. 2013, 78, 11262 DOI: 10.1021/jo401759z
      (b) Inkster, J. A. H.; Liu, K.; Ait-Mohand, S.; Schaffer, P.; Guérin, B.; Ruth, T. J.; Storr, T. Chem. - Eur. J. 2012, 18, 11079 DOI: 10.1002/chem.201103450
    25. 25
      Eby, R.; Schuerch, C. Carbohydr. Res. 1974, 34, 79 DOI: 10.1016/S0008-6215(00)80372-9
  • Supporting Information

    Supporting Information


    Experimental procedures, additional reaction optimization, and spectroscopic data for all new compounds. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b06307.


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.