ACS Publications. Most Trusted. Most Cited. Most Read
Mechanistic Investigations of Water Oxidation by a Molecular Cobalt Oxide Analogue: Evidence for a Highly Oxidized Intermediate and Exclusive Terminal Oxo Participation
My Activity

Figure 1Loading Img
    Article

    Mechanistic Investigations of Water Oxidation by a Molecular Cobalt Oxide Analogue: Evidence for a Highly Oxidized Intermediate and Exclusive Terminal Oxo Participation
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, University of California at Berkeley, Berkeley, California 94720-1460, United States
    Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
    § Department of Chemistry and Physics, University of Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
    Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
    Other Access OptionsSupporting Information (4)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2015, 137, 40, 12865–12872
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.5b08396
    Published September 21, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Artificial photosynthesis (AP) promises to replace society’s dependence on fossil energy resources via conversion of sunlight into sustainable, carbon-neutral fuels. However, large-scale AP implementation remains impeded by a dearth of cheap, efficient catalysts for the oxygen evolution reaction (OER). Cobalt oxide materials can catalyze the OER and are potentially scalable due to the abundance of cobalt in the Earth’s crust; unfortunately, the activity of these materials is insufficient for practical AP implementation. Attempts to improve cobalt oxide’s activity have been stymied by limited mechanistic understanding that stems from the inherent difficulty of characterizing structure and reactivity at surfaces of heterogeneous materials. While previous studies on cobalt oxide revealed the intermediacy of the unusual Co(IV) oxidation state, much remains unknown, including whether bridging or terminal oxo ligands form O2 and what the relevant oxidation states are. We have addressed these issues by employing a homogeneous model for cobalt oxide, the [Co(III)4] cubane (Co4O4(OAc)4py4, py = pyridine, OAc = acetate), that can be oxidized to the [Co(IV)Co(III)3] state. Upon addition of 1 equiv of sodium hydroxide, the [Co(III)4] cubane is regenerated with stoichiometric formation of O2. Oxygen isotopic labeling experiments demonstrate that the cubane core remains intact during this stoichiometric OER, implying that terminal oxo ligands are responsible for forming O2. The OER is also examined with stopped-flow UV–visible spectroscopy, and its kinetic behavior is modeled, to surprisingly reveal that O2 formation requires disproportionation of the [Co(IV)Co(III)3] state to generate an even higher oxidation state, formally [Co(V)Co(III)3] or [Co(IV)2Co(III)2]. The mechanistic understanding provided by these results should accelerate the development of OER catalysts leading to increasingly efficient AP systems.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b08396. CIF files can also be obtained free of charge from the Cambridge Crystallographic Data Centre under reference numbers CCDC-1054644, CCDC-1054645, and CCDC-1054646.

    • Full experimental details and spectroscopic data (PDF)

    • X-ray crystallographic data for [1H]PF6·2H2O (CIF)

    • X-ray crystallographic data for [1]PF6 (CIF)

    • X-ray crystallographic data for [1H]OTs (CIF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 137 publications.

    1. Alaina C. Hartnett, Ryan J. Evenson, Agnes E. Thorarinsdottir, Samuel S. Veroneau, Daniel G. Nocera. Lanthanum-Promoted Electrocatalyst for the Oxygen Evolution Reaction: Unique Catalyst or Oxide Deconstruction?. Journal of the American Chemical Society 2025, 147 (1) , 1123-1133. https://doi.org/10.1021/jacs.4c14696
    2. Yingxu Gong, Zhonglin Chen, Yining Wu, Aijie Wang, Shengxin Zhao. Revisiting the Iron(II)/Cobalt(II)-Based Homogenous Fenton-like Processes from the Standpoint of Diverse Metal–Oxygen Complexes. Environmental Science & Technology 2024, 58 (37) , 16589-16599. https://doi.org/10.1021/acs.est.4c03211
    3. Tulasi Prapakaran, Ananya Chowdhury, Sunita Sharma, Itisha Dwivedi, Gopalan Rajaraman, Chandramouli Subramaniam, Ramaswamy Murugavel. Converging Hydrogen-Bonded Water Transport Channel with External Magnetic Field in a Janus Molecular Cobalt Phosphate for Enhanced Oxygen Evolution Reaction (OER) Activity. ACS Materials Letters 2024, 6 (6) , 2126-2135. https://doi.org/10.1021/acsmaterialslett.4c00763
    4. Lin X. Chen, Junko Yano. Deciphering Photoinduced Catalytic Reaction Mechanisms in Natural and Artificial Photosynthetic Systems on Multiple Temporal and Spatial Scales Using X-ray Probes. Chemical Reviews 2024, 124 (9) , 5421-5469. https://doi.org/10.1021/acs.chemrev.3c00560
    5. Ezhava Manu Manohar, Hariharan N. Dhandapani, Soumalya Roy, Robert Pełka, Michał Rams, Piotr Konieczny, Srinu Tothadi, Subrata Kundu, Atanu Dey, Sourav Das. Tetranuclear CoII4O4 Cubane Complex: Effective Catalyst Toward Electrochemical Water Oxidation. Inorganic Chemistry 2024, 63 (11) , 4883-4897. https://doi.org/10.1021/acs.inorgchem.3c03956
    6. Jindou Yang, Guilherme L. Tripodi, Max T. G. M. Derks, Mi Sook Seo, Yong-Min Lee, Kendal W. Southwell, Jason Shearer, Jana Roithová, Wonwoo Nam. Generation, Spectroscopic Characterization, and Computational Analysis of a Six-Coordinate Cobalt(III)-Imidyl Complex with an Unusual S = 3/2 Ground State that Promotes N-Group and Hydrogen Atom-Transfer Reactions with Exogenous Substrates. Journal of the American Chemical Society 2023, 145 (48) , 26106-26121. https://doi.org/10.1021/jacs.3c08117
    7. Felix Depenbrock, Thomas Limpke, Eckhard Bill, Daniel J. SantaLucia, Maurice van Gastel, Stephan Walleck, Jan Oldengott, Anja Stammler, Hartmut Bögge, Thorsten Glaser. Reactivities and Electronic Structures of μ-1,2-Peroxo and μ-1,2-Superoxo CoIIICoIII Complexes: Electrophilic Reactivity and O2 Release Induced by Oxidation. Inorganic Chemistry 2023, 62 (43) , 17913-17930. https://doi.org/10.1021/acs.inorgchem.3c02782
    8. Aditya Borah, Jayeeta Saha, Sunita Sharma, Savi Chaudhary, Sandeep K. Gupta, Gopalan Rajaraman, Chandramouli Subramaniam, Ramaswamy Murugavel. Ligand-Field Directed Electronic Effects in Heterogenized Bifunctional Co(II) Molecular Clusters Accomplish Efficient Overall Water Splitting. ACS Catalysis 2023, 13 (13) , 8535-8550. https://doi.org/10.1021/acscatal.2c05942
    9. Yonggui Zhao, Devi Prasad Adiyeri Saseendran, Chong Huang, Carlos A. Triana, Walker R. Marks, Hang Chen, Han Zhao, Greta R. Patzke. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chemical Reviews 2023, 123 (9) , 6257-6358. https://doi.org/10.1021/acs.chemrev.2c00515
    10. Ludwig Schwiedrzik, Tina Rajkovic, Leticia González. Regeneration and Degradation in a Biomimetic Polyoxometalate Water Oxidation Catalyst. ACS Catalysis 2023, 13 (5) , 3007-3019. https://doi.org/10.1021/acscatal.2c06301
    11. Wanchao Kang, Ruifang Wei, Heng Yin, Dongfeng Li, Zheng Chen, Qinge Huang, Pengfei Zhang, Huanwang Jing, Xiuli Wang, Can Li. Unraveling Sequential Oxidation Kinetics and Determining Roles of Multi-Cobalt Active Sites on Co3O4 Catalyst for Water Oxidation. Journal of the American Chemical Society 2023, 145 (6) , 3470-3477. https://doi.org/10.1021/jacs.2c11508
    12. Abderrahim Titi, Rachid Touzani, Anna Moliterni, Carlotta Giacobbe, Francesco Baldassarre, Mustapha Taleb, Nabil Al-Zaqri, Abdelkader Zarrouk, Ismail Warad. Ultrasonic Clusterization Process to Prepare [(NNCO)6Co4Cl2] as a Novel Double-Open-Co4O6 Cubane Cluster: SXRD Interactions, DFT, Physicochemical, Thermal Behaviors, and Biomimicking of Catecholase Activity. ACS Omega 2022, 7 (37) , 32949-32958. https://doi.org/10.1021/acsomega.1c07032
    13. Colin Gates, Gennady Ananyev, Shatabdi Roy-Chowdhury, Brendan Cullinane, Mathias Miller, Petra Fromme, G. Charles Dismukes. Why Did Nature Choose Manganese over Cobalt to Make Oxygen Photosynthetically on the Earth?. The Journal of Physical Chemistry B 2022, 126 (17) , 3257-3268. https://doi.org/10.1021/acs.jpcb.2c00749
    14. Jaruwan Amtawong, Andy I. Nguyen, T. Don Tilley. Mechanistic Aspects of Cobalt–Oxo Cubane Clusters in Oxidation Chemistry. Journal of the American Chemical Society 2022, 144 (4) , 1475-1492. https://doi.org/10.1021/jacs.1c11445
    15. Ludwig Schwiedrzik, Vera Brieskorn, Leticia González. Flexibility Enhances Reactivity: Redox Isomerism and Jahn–Teller Effects in a Bioinspired Mn4O4 Cubane Water Oxidation Catalyst. ACS Catalysis 2021, 11 (21) , 13320-13329. https://doi.org/10.1021/acscatal.1c03566
    16. Jindou Yang, Hai T. Dong, Mi Sook Seo, Virginia A. Larson, Yong-Min Lee, Jason Shearer, Nicolai Lehnert, Wonwoo Nam. The Oxo-Wall Remains Intact: A Tetrahedrally Distorted Co(IV)–Oxo Complex. Journal of the American Chemical Society 2021, 143 (41) , 16943-16959. https://doi.org/10.1021/jacs.1c04919
    17. Jaruwan Amtawong, Bastian Bjerkem Skjelstad, Rex C. Handford, Benjamin A. Suslick, David Balcells, T. Don Tilley. C–H Activation by RuCo3O4 Oxo Cubanes: Effects of Oxyl Radical Character and Metal–Metal Cooperativity. Journal of the American Chemical Society 2021, 143 (31) , 12108-12119. https://doi.org/10.1021/jacs.1c04069
    18. Jayeeta Saha, Ranadeb Ball, Chandramouli Subramaniam. Premagnetized Carbon-Catalyst Interface Delivering 650% Enhancement in Electrocatalytic Kinetics of Hydrogen Evolution Reaction. ACS Sustainable Chemistry & Engineering 2021, 9 (23) , 7792-7802. https://doi.org/10.1021/acssuschemeng.1c01095
    19. Biswajit Mondal, Samir Chattopadhyay, Subal Dey, Atif Mahammed, Kaustuv Mittra, Atanu Rana, Zeev Gross, Abhishek Dey. Elucidation of Factors That Govern the 2e–/2H+ vs 4e–/4H+ Selectivity of Water Oxidation by a Cobalt Corrole. Journal of the American Chemical Society 2020, 142 (50) , 21040-21049. https://doi.org/10.1021/jacs.0c08654
    20. Yong-Sheng Wei, Mei Zhang, Ruqiang Zou, Qiang Xu. Metal–Organic Framework-Based Catalysts with Single Metal Sites. Chemical Reviews 2020, 120 (21) , 12089-12174. https://doi.org/10.1021/acs.chemrev.9b00757
    21. Silvia Gutiérrez-Tarriño, José Luis Olloqui-Sariego, Juan José Calvente, Guillermo Mínguez Espallargas, Fernando Rey, Avelino Corma, Pascual Oña-Burgos. Cobalt Metal–Organic Framework Based on Layered Double Nanosheets for Enhanced Electrocatalytic Water Oxidation in Neutral Media. Journal of the American Chemical Society 2020, 142 (45) , 19198-19208. https://doi.org/10.1021/jacs.0c08882
    22. Jaruwan Amtawong, Bastian B. Skjelstad, David Balcells, T. Don Tilley. Concerted Proton–Electron Transfer Reactivity at a Multimetallic Co4O4 Cubane Cluster. Inorganic Chemistry 2020, 59 (20) , 15553-15560. https://doi.org/10.1021/acs.inorgchem.0c02625
    23. Jin Huang, Ji-Qing Wu, Bing Shao, Bi-Liu Lan, Fu-Jie Yang, Yao Sun, Xiao-Qiong Tan, Chun-Ting He, Zhong Zhang. Ion-Induced Delamination of Layered Bulk Metal–Organic Frameworks into Ultrathin Nanosheets for Boosting the Oxygen Evolution Reaction. ACS Sustainable Chemistry & Engineering 2020, 8 (28) , 10554-10563. https://doi.org/10.1021/acssuschemeng.0c03376
    24. Hongfei Liu, Heinz Frei. Observation of O–O Bond Forming Step of Molecular Co4O4 Cubane Catalyst for Water Oxidation by Rapid-Scan FT-IR Spectroscopy. ACS Catalysis 2020, 10 (3) , 2138-2147. https://doi.org/10.1021/acscatal.9b03281
    25. Yan Li, Suhashini Handunneththige, Erik R. Farquhar, Yisong Guo, Marat R. Talipov, Feifei Li, Dong Wang. Highly Reactive CoIII,IV2(μ-O)2 Diamond Core Complex That Cleaves C–H Bonds. Journal of the American Chemical Society 2019, 141 (51) , 20127-20136. https://doi.org/10.1021/jacs.9b09531
    26. Silvia Gutiérrez-Tarriño, José Luis Olloqui-Sariego, Juan José Calvente, Miguel Palomino, Guillermo Mínguez Espallargas, José L. Jordá, Fernando Rey, Pascual Oña-Burgos. Cobalt Metal–Organic Framework Based on Two Dinuclear Secondary Building Units for Electrocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces 2019, 11 (50) , 46658-46665. https://doi.org/10.1021/acsami.9b13655
    27. Jaruwan Amtawong, David Balcells, Jarett Wilcoxen, Rex C. Handford, Naomi Biggins, Andy I. Nguyen, R. David Britt, T. Don Tilley. Isolation and Study of Ruthenium–Cobalt Oxo Cubanes Bearing a High-Valent, Terminal RuV–Oxo with Significant Oxyl Radical Character. Journal of the American Chemical Society 2019, 141 (50) , 19859-19869. https://doi.org/10.1021/jacs.9b10320
    28. Christopher J. Reed, Theodor Agapie. A Terminal FeIII–Oxo in a Tetranuclear Cluster: Effects of Distal Metal Centers on Structure and Reactivity. Journal of the American Chemical Society 2019, 141 (24) , 9479-9484. https://doi.org/10.1021/jacs.9b03157
    29. Fangyuan Song, Karrar Al-Ameed, Mauro Schilling, Thomas Fox, Sandra Luber, Greta R. Patzke. Mechanistically Driven Control over Cubane Oxo Cluster Catalysts. Journal of the American Chemical Society 2019, 141 (22) , 8846-8857. https://doi.org/10.1021/jacs.9b01356
    30. Chiara Pasquini, Ivelina Zaharieva, Diego González-Flores, Petko Chernev, Mohammad Reza Mohammadi, Leonardo Guidoni, Rodney D. L. Smith, Holger Dau. H/D Isotope Effects Reveal Factors Controlling Catalytic Activity in Co-Based Oxides for Water Oxidation. Journal of the American Chemical Society 2019, 141 (7) , 2938-2948. https://doi.org/10.1021/jacs.8b10002
    31. Lucie Nurdin, Denis M. Spasyuk, Laura Fairburn, Warren E. Piers, Laurent Maron. Oxygen–Oxygen Bond Cleavage and Formation in Co(II)-Mediated Stoichiometric O2 Reduction via the Potential Intermediacy of a Co(IV) Oxyl Radical. Journal of the American Chemical Society 2018, 140 (47) , 16094-16105. https://doi.org/10.1021/jacs.8b07726
    32. Soran Jahangiri, Nicholas J. Mosey. Computational Investigation of the Oxygen Evolution Reaction Catalyzed by Nickel (Oxy)hydroxide Complexes. The Journal of Physical Chemistry C 2018, 122 (45) , 25785-25795. https://doi.org/10.1021/acs.jpcc.8b06614
    33. Lisa Olshansky, Raúl Huerta-Lavorie, Andy I. Nguyen, Jaicy Vallapurackal, Ariel Furst, T. Don Tilley, and A. S. Borovik . Artificial Metalloproteins Containing Co4O4 Cubane Active Sites. Journal of the American Chemical Society 2018, 140 (8) , 2739-2742. https://doi.org/10.1021/jacs.7b13052
    34. Fangyuan Song, René Moré, Mauro Schilling, Grigory Smolentsev, Nicolo Azzaroli, Thomas Fox, Sandra Luber, and Greta R. Patzke . {Co4O4} and {CoxNi4–xO4} Cubane Water Oxidation Catalysts as Surface Cut-Outs of Cobalt Oxides. Journal of the American Chemical Society 2017, 139 (40) , 14198-14208. https://doi.org/10.1021/jacs.7b07361
    35. Zhiji Han, Kyle T. Horak, Heui Beom Lee, and Theodor Agapie . Tetranuclear Manganese Models of the OEC Displaying Hydrogen Bonding Interactions: Application to Electrocatalytic Water Oxidation to Hydrogen Peroxide. Journal of the American Chemical Society 2017, 139 (27) , 9108-9111. https://doi.org/10.1021/jacs.7b03044
    36. Georgia Zahariou . Characterization of the High-Spin Co(II) Intermediate Species of the O2-Evolving Co4O4 Cubic Molecules. Inorganic Chemistry 2017, 56 (11) , 6105-6113. https://doi.org/10.1021/acs.inorgchem.7b00079
    37. Xiaobo Li, Edwin B. Clatworthy, Stuart Bartlett, Anthony F. Masters, and Thomas Maschmeyer . Structural Investigation of Cobalt Oxide Clusters Derived from Molecular Cobalt Cubane, Trimer, and Dimer Oligomers in a Phosphate Electrolyte. The Journal of Physical Chemistry C 2017, 121 (21) , 11021-11026. https://doi.org/10.1021/acs.jpcc.6b11607
    38. Andy I. Nguyen, Daniel L. M. Suess, Lucy E. Darago, Paul H. Oyala, Daniel S. Levine, Micah S. Ziegler, R. David Britt, and T. Don Tilley . Manganese–Cobalt Oxido Cubanes Relevant to Manganese-Doped Water Oxidation Catalysts. Journal of the American Chemical Society 2017, 139 (15) , 5579-5587. https://doi.org/10.1021/jacs.7b01792
    39. Shivaiah Vaddypally, Sandeep K. Kondaveeti, Santosh Karki, Megan M. Van Vliet, Robert J. Levis, and Michael J. Zdilla . Reactive Pendant Mn═O in a Synthetic Structural Model of a Proposed S4 State in the Photosynthetic Oxygen Evolving Complex. Journal of the American Chemical Society 2017, 139 (13) , 4675-4681. https://doi.org/10.1021/jacs.6b05906
    40. Carolina Gimbert-Suriñach, Dooshaye Moonshiram, Laia Francàs, Nora Planas, Varinia Bernales, Fernando Bozoglian, Alexander Guda, Lorenzo Mognon, Isidoro López, Md Asmaul Hoque, Laura Gagliardi, Christopher J. Cramer, and Antoni Llobet . Structural and Spectroscopic Characterization of Reaction Intermediates Involved in a Dinuclear Co–Hbpp Water Oxidation Catalyst. Journal of the American Chemical Society 2016, 138 (47) , 15291-15294. https://doi.org/10.1021/jacs.6b08532
    41. Bryan M. Hunter, Harry B. Gray, and Astrid M. Müller . Earth-Abundant Heterogeneous Water Oxidation Catalysts. Chemical Reviews 2016, 116 (22) , 14120-14136. https://doi.org/10.1021/acs.chemrev.6b00398
    42. Abhishek Dey. The Way Forward in Molecular Electrocatalysis. Inorganic Chemistry 2016, 55 (21) , 10831-10834. https://doi.org/10.1021/acs.inorgchem.6b02502
    43. Ian G. McKendry, Akila C. Thenuwara, Jianwei Sun, Haowei Peng, John P. Perdew, Daniel R. Strongin, and Michael J. Zdilla . Water Oxidation Catalyzed by Cobalt Oxide Supported on the Mattagamite Phase of CoTe2. ACS Catalysis 2016, 6 (11) , 7393-7397. https://doi.org/10.1021/acscatal.6b01878
    44. Ryan G. Hadt, Dugan Hayes, Casey N. Brodsky, Andrew M. Ullman, Diego M. Casa, Mary H. Upton, Daniel G. Nocera, and Lin X. Chen . X-ray Spectroscopic Characterization of Co(IV) and Metal–Metal Interactions in Co4O4: Electronic Structure Contributions to the Formation of High-Valent States Relevant to the Oxygen Evolution Reaction. Journal of the American Chemical Society 2016, 138 (34) , 11017-11030. https://doi.org/10.1021/jacs.6b04663
    45. Marek Pruski, Aaron D. Sadow, and Igor I. Slowing , Christopher L. Marshall and Peter Stair , Jose Rodriguez and Alex Harris , Gabor A. Somorjai , Juergen Biener , Christopher Matranga and Congjun Wang , Joshua A. Schaidle, Gregg T. Beckham, Daniel A. Ruddy, Todd Deutsch, and Shaun M. Alia , Chaitanya Narula, Steve Overbury, and Todd Toops , R. Morris Bullock, Charles H. F. Peden, and Yong Wang , Mark D. Allendorf , Jens Nørskov and Thomas Bligaard . Virtual Special Issue on Catalysis at the U.S. Department of Energy’s National Laboratories. ACS Catalysis 2016, 6 (5) , 3227-3235. https://doi.org/10.1021/acscatal.6b00823
    46. Cyrille Costentin, Thomas R. Porter, and Jean-Michel Savéant . Conduction and Reactivity in Heterogeneous-Molecular Catalysis: New Insights in Water Oxidation Catalysis by Phosphate Cobalt Oxide Films. Journal of the American Chemical Society 2016, 138 (17) , 5615-5622. https://doi.org/10.1021/jacs.6b00737
    47. Andrew M. Ullman, Casey N. Brodsky, Nancy Li, Shao-Liang Zheng, and Daniel G. Nocera . Probing Edge Site Reactivity of Oxidic Cobalt Water Oxidation Catalysts. Journal of the American Chemical Society 2016, 138 (12) , 4229-4236. https://doi.org/10.1021/jacs.6b00762
    48. Florian H. Hodel and Sandra Luber . What Influences the Water Oxidation Activity of a Bioinspired Molecular CoII4O4 Cubane? An In-Depth Exploration of Catalytic Pathways. ACS Catalysis 2016, 6 (3) , 1505-1517. https://doi.org/10.1021/acscatal.5b02507
    49. Paul F. Smith, Liam Hunt, Anders B. Laursen, Viral Sagar, Shivam Kaushik, Karin U. D. Calvinho, Gabriele Marotta, Edoardo Mosconi, Filippo De Angelis, and G. Charles Dismukes . Water Oxidation by the [Co4O4(OAc)4(py)4]+ Cubium is Initiated by OH– Addition. Journal of the American Chemical Society 2015, 137 (49) , 15460-15468. https://doi.org/10.1021/jacs.5b09152
    50. Jia-Nan Chen, Zhong-Hua Pan, Fu-Li Sun, Jun-Ping Li, Gui-Lin Zhuang, La-Sheng Long, Lan-Sun Zheng, Xiang-Jian Kong. Synergistic mechanisms of oxygen evolution reaction in atomically precise LaCo6 clusters with distinct geometries. Science China Chemistry 2025, 68 (5) , 1832-1836. https://doi.org/10.1007/s11426-024-2570-y
    51. Inmaculada Márquez, Silvia Gutiérrez-Tarriño, Arismendy Portorreal-Bottier, Jose Luis del Río-Rodríguez, Sergio Hernández-Salvador, Juan José Calvente, Pascual Oña-Burgos, José Luis Olloqui-Sariego. Controlled formation of CoOOH/Co(III)-MOF active phase for boosting electrocatalytic alkaline water oxidation. Catalysis Today 2025, 445 , 115049. https://doi.org/10.1016/j.cattod.2024.115049
    52. Gabriel Bury, Yulia Pushkar. Insights from Ca2+→Sr2+ substitution on the mechanism of O-O bond formation in photosystem II. Photosynthesis Research 2024, 162 (2-3) , 331-351. https://doi.org/10.1007/s11120-024-01117-2
    53. Shangkun Li, Zeyi Zhang, Walker R. Marks, Xinan Huang, Hang Chen, Dragos C. Stoian, Rolf Erni, Carlos A. Triana, Greta R. Patzke. {Co4O4} Cubanes in a conducting polymer matrix as bio-inspired molecular oxygen evolution catalysts. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-52514-z
    54. Zhi-Kai Shen, Kang Li, Zi-Jian Li, Yong-Jun Yuan, Jie Guan, Zhigang Zou, Zhen-Tao Yu. Mechanistic insights into multimetal synergistic and electronic effects in a hexanuclear iron catalyst with a [Fe 3 (μ 3 -O)(μ 2 -OH)] 2 core for enhanced water oxidation. Dalton Transactions 2024, 53 (43) , 17536-17546. https://doi.org/10.1039/D4DT02749C
    55. Jin Xiong, Christopher Reed, Barbara Lavina, Michael Y. Hu, Jiyong Zhao, Esen E. Alp, Theodor Agapie, Yisong Guo. 57 Fe nuclear resonance vibrational spectroscopic studies of tetranuclear iron clusters bearing terminal iron( iii )–oxido/hydroxido moieties. Chemical Science 2024, 15 (39) , 16222-16233. https://doi.org/10.1039/D4SC03396E
    56. Zuozhong Liang, Guojun Zhou, Huang Tan, Yonghong Mou, Jieling Zhang, Hongbo Guo, Shujiao Yang, Haitao Lei, Haoquan Zheng, Wei Zhang, Haiping Lin, Rui Cao. Constructing Co 4 (SO 4 ) 4 Clusters within Metal–Organic Frameworks for Efficient Oxygen Electrocatalysis. Advanced Materials 2024, 36 (38) https://doi.org/10.1002/adma.202408094
    57. Zhiyou Lin, Wei Lin. Molecular structures of carbon nitrides for photocatalysis. Surfaces and Interfaces 2024, 48 , 104320. https://doi.org/10.1016/j.surfin.2024.104320
    58. Yan He, Zheng Zhou, Haixiang Han. Steric Effects of Alcohols on the [Mn4O4] Cubane-Type Structures. Crystals 2024, 14 (5) , 478. https://doi.org/10.3390/cryst14050478
    59. Shouhua Feng, Beining Zheng, Keke Huang. State transition in chemical condensation. 2024, 353-377. https://doi.org/10.1016/B978-0-443-16140-7.00011-0
    60. Chengli Rong, Kamran Dastafkan, Yuan Wang, Chuan Zhao. Breaking the Activity and Stability Bottlenecks of Electrocatalysts for Oxygen Evolution Reactions in Acids. Advanced Materials 2023, 35 (49) https://doi.org/10.1002/adma.202211884
    61. Bapan Samanta, Riya Ghosh, Rakesh Mazumdar, Shankhadeep Saha, Sayani Maity, Biplab Mondal. Reaction of a Co( iii )-peroxo complex with nitric oxide: putative formation of a peroxynitrite intermediate. Dalton Transactions 2023, 52 (43) , 15815-15821. https://doi.org/10.1039/D3DT02261G
    62. Hong‐Tao Zhang, Yu‐Hua Guo, Yao Xiao, Hao‐Yi Du, Ming‐Tian Zhang. Heterobimetallic NiFe Cooperative Molecular Water Oxidation Catalyst. Angewandte Chemie 2023, 135 (18) https://doi.org/10.1002/ange.202218859
    63. Hong‐Tao Zhang, Yu‐Hua Guo, Yao Xiao, Hao‐Yi Du, Ming‐Tian Zhang. Heterobimetallic NiFe Cooperative Molecular Water Oxidation Catalyst. Angewandte Chemie International Edition 2023, 62 (18) https://doi.org/10.1002/anie.202218859
    64. Jiangquan Lv, Jiafang Xie, Aya Gomaa Abdelkader Mohamed, Xiang Zhang, Yangyang Feng, Lei Jiao, Enbo Zhou, Daqiang Yuan, Yaobing Wang. Solar utilization beyond photosynthesis. Nature Reviews Chemistry 2023, 7 (2) , 91-105. https://doi.org/10.1038/s41570-022-00448-9
    65. Yu Guo, Alexander Kravberg, Licheng Sun. Water oxidation catalysis in natural and artificial photosynthesis. 2023, 317-355. https://doi.org/10.1016/B978-0-12-823144-9.00114-X
    66. Mehdi Khosravi, Mohammad Reza Mohammadi. Trends and progress in application of cobalt-based materials in catalytic, electrocatalytic, photocatalytic, and photoelectrocatalytic water splitting. Photosynthesis Research 2022, 154 (3) , 329-352. https://doi.org/10.1007/s11120-022-00965-0
    67. Arismendy Portorreal-Bottier, Silvia Gutiérrez-Tarriño, Juan José Calvente, Rafael Andreu, Emilio Roldán, Pascual Oña-Burgos, José Luis Olloqui-Sariego. Enzyme-like activity of cobalt-MOF nanosheets for hydrogen peroxide electrochemical sensing. Sensors and Actuators B: Chemical 2022, 368 , 132129. https://doi.org/10.1016/j.snb.2022.132129
    68. Ting-Ting Guo, Xiu-Ling Zhang, Lin-Zhi Wu, Dan Zhao, Juan-Zhi Yan. Resorcin[4]arene-based [Co12] supermolecule cage functionalized by bio-inspired [Co4O4] cubanes for visible light-driven water oxidation. Inorganic Chemistry Communications 2022, 141 , 109514. https://doi.org/10.1016/j.inoche.2022.109514
    69. Yun‐Fei Su, Wen‐Zhi Luo, Wang‐Qiang Lin, Yi‐Bing Su, Zi‐Jian Li, Yong‐Jun Yuan, Jian‐Feng Li, Guang‐Hui Chen, Zhaosheng Li, Zhen‐Tao Yu, Zhigang Zou. A Water‐Soluble Highly Oxidizing Cobalt Molecular Catalyst Designed for Bioinspired Water Oxidation. Angewandte Chemie 2022, 134 (20) https://doi.org/10.1002/ange.202201430
    70. Yun‐Fei Su, Wen‐Zhi Luo, Wang‐Qiang Lin, Yi‐Bing Su, Zi‐Jian Li, Yong‐Jun Yuan, Jian‐Feng Li, Guang‐Hui Chen, Zhaosheng Li, Zhen‐Tao Yu, Zhigang Zou. A Water‐Soluble Highly Oxidizing Cobalt Molecular Catalyst Designed for Bioinspired Water Oxidation. Angewandte Chemie International Edition 2022, 61 (20) https://doi.org/10.1002/anie.202201430
    71. Connor A. Koellner, Michael R. Gau, Aleksander Polyak, Manish Bayana, Michael J. Zdilla. Hemicubane topological analogs of the oxygen-evolving complex of photosystem II mediating water-assisted propylene carbonate oxidation. Chemical Communications 2022, 58 (15) , 2532-2535. https://doi.org/10.1039/D1CC05825H
    72. Zaki N. Zahran, Yuta Tsubonouchi, Eman A. Mohamed, Masayuki Yagi. Water Oxidation Using Molecular Photocatalysts. 2022, 1397-1428. https://doi.org/10.1007/978-3-030-63713-2_47
    73. Q. Yin, Yurii V. Geletii, Tianquan Lian, Djamaladdin G. Musaev, Craig L. Hill. Polyoxometalate systems to probe catalyst environment and structure in water oxidation catalysis. 2022, 355-376. https://doi.org/10.1016/bs.adioch.2021.12.009
    74. Alec Bigness, Shivaiah Vaddypally, Michael J. Zdilla, Jose L. Mendoza-Cortes. Ubiquity of cubanes in bioinorganic relevant compounds. Coordination Chemistry Reviews 2022, 450 , 214168. https://doi.org/10.1016/j.ccr.2021.214168
    75. Qi-Fa Chen, Yu-Hua Guo, Yi-Han Yu, Ming-Tian Zhang. Bioinspired molecular clusters for water oxidation. Coordination Chemistry Reviews 2021, 448 , 214164. https://doi.org/10.1016/j.ccr.2021.214164
    76. Silvia Gutiérrez-Tarriño, José Gaona-Miguélez, Pascual Oña-Burgos. Tailoring the electron density of cobalt oxide clusters to provide highly selective superoxide and peroxide species for aerobic cyclohexane oxidation. Dalton Transactions 2021, 50 (42) , 15370-15379. https://doi.org/10.1039/D1DT02347K
    77. Yusef Shari'ati, Josh Vura-Weis. Polymer thin films as universal substrates for extreme ultraviolet absorption spectroscopy of molecular transition metal complexes. Journal of Synchrotron Radiation 2021, 28 (6) , 1850-1857. https://doi.org/10.1107/S1600577521010596
    78. Ana C. García-Álvarez, Stefani Gamboa-Ramírez, Diego Martínez-Otero, Maylis Orio, Ivan Castillo. Self-assembled nickel cubanes as oxygen evolution catalysts. Chemical Communications 2021, 57 (69) , 8608-8611. https://doi.org/10.1039/D1CC03227E
    79. Gang Fan, Pris Wasuwanich, Ariel L. Furst. Biohybrid Systems for Improved Bioinspired, Energy‐Relevant Catalysis. ChemBioChem 2021, 22 (14) , 2353-2367. https://doi.org/10.1002/cbic.202100037
    80. Roman Ezhov, Alireza Karbakhsh Ravari, Gabriel Bury, Paul F. Smith, Yulia Pushkar. Do multinuclear 3d metal catalysts achieve O–O bond formation via radical coupling or via water nucleophilic attack? WNA leads the way in [Co4O4]n+. Chem Catalysis 2021, 1 (2) , 407-422. https://doi.org/10.1016/j.checat.2021.03.013
    81. Mio Kondo, Hayato Tatewaki, Shigeyuki Masaoka. Design of molecular water oxidation catalysts with earth-abundant metal ions. Chemical Society Reviews 2021, 50 (12) , 6790-6831. https://doi.org/10.1039/D0CS01442G
    82. Agnes E. Thorarinsdottir, Daniel G. Nocera. Energy catalysis needs ligands with high oxidative stability. Chem Catalysis 2021, 1 (1) , 32-43. https://doi.org/10.1016/j.checat.2021.05.012
    83. Jinmiao Wang, Xiangmin Meng, Wangjing Xie, Xia Zhang, Yuhua Fan, Mei Wang. Two biologically inspired tetranuclear nickel(II) catalysts: effect of the geometry of Ni4 core on electrocatalytic water oxidation. JBIC Journal of Biological Inorganic Chemistry 2021, 26 (2-3) , 205-216. https://doi.org/10.1007/s00775-020-01846-4
    84. Biaobiao Zhang, Oleksandr Kravchenko, Licheng Sun. Bio-Inspired Water Oxidation Catalysts. 2021, 589-610. https://doi.org/10.1016/B978-0-08-102688-5.00015-5
    85. M.K. Goetz, J.S. Anderson. Cobalt-Oxo Complexes. 2021, 825-845. https://doi.org/10.1016/B978-0-08-102688-5.00046-5
    86. Katrin Warm, Jennifer Deutscher, Kallol Ray. Metal-Ligand Multiple Bonds With Group 9–11 Metals. 2021, 171-187. https://doi.org/10.1016/B978-0-08-102688-5.00064-7
    87. Samarjeet Singh Siwal, Wenqiang Yang, Qibo Zhang. Recent progress of precious-metal-free electrocatalysts for efficient water oxidation in acidic media. Journal of Energy Chemistry 2020, 51 , 113-133. https://doi.org/10.1016/j.jechem.2020.03.079
    88. Ruocheng Han, Sandra Luber. Complete active space analysis of a reaction pathway: Investigation of the oxygen–oxygen bond formation. Journal of Computational Chemistry 2020, 41 (17) , 1586-1597. https://doi.org/10.1002/jcc.26201
    89. Jia-Ting Guo, Xu-Dong Chen. Templated syntheses of heterometal tungsten–cobalt–sulfur clusters with different nuclearities. Dalton Transactions 2020, 49 (17) , 5523-5530. https://doi.org/10.1039/D0DT00765J
    90. Atanu Dey, Vierandra Kumar, Shubhadeep Pal, Anku Guha, Sumit Bawari, Tharangattu N. Narayanan, Vadapalli Chandrasekhar. A tetranuclear cobalt( ii ) phosphate possessing a D4R core: an efficient water oxidation catalyst. Dalton Transactions 2020, 49 (15) , 4878-4886. https://doi.org/10.1039/D0DT00010H
    91. Rong Chen, Zhi‐Hao Yan, Xiang‐Jian Kong. Recent Advances in First‐Row Transition Metal Clusters for Photocatalytic Water Splitting. ChemPhotoChem 2020, 4 (3) , 157-167. https://doi.org/10.1002/cptc.201900237
    92. Jayeeta Saha, Sonam Verma, Ranadeb Ball, Chandramouli Subramaniam, Ramaswamy Murugavel. Compositional Control as the Key for Achieving Highly Efficient OER Electrocatalysis with Cobalt Phosphates Decorated Nanocarbon Florets. Small 2020, 16 (12) https://doi.org/10.1002/smll.201903334
    93. Sheng Ye, Chunmei Ding, Mingyao Liu, Aoqi Wang, Qinge Huang, Can Li. Water Oxidation Catalysts for Artificial Photosynthesis. Advanced Materials 2019, 31 (50) https://doi.org/10.1002/adma.201902069
    94. Yifan Zhang, Soo-Jin Park. Stabilizing CuPd bimetallic alloy nanoparticles deposited on holey carbon nitride for selective hydroxylation of benzene to phenol. Journal of Catalysis 2019, 379 , 154-163. https://doi.org/10.1016/j.jcat.2019.09.032
    95. Qiuxia Ma, Bolin Li, Furong Huang, Qi Pang, Yibo Chen, Jin Zhong Zhang. Incorporating iron in nickel cobalt layered double hydroxide nanosheet arrays as efficient oxygen evolution electrocatalyst. Electrochimica Acta 2019, 317 , 684-693. https://doi.org/10.1016/j.electacta.2019.06.019
    96. Oleh Stetsiuk, Valentyn Synytsia, Svitlana R. Petrusenko, Vladimir N. Kokozay, Abdelkrim El-Ghayoury, Joan Cano, Francesc Lloret, Miguel Julve, Benoit Fleury, Narcis Avarvari. Co-existence of ferro- and antiferromagnetic interactions in a hexanuclear mixed-valence CoIII2MnII2MnIV2 cluster sustained by a multidentate Schiff base ligand. Dalton Transactions 2019, 48 (31) , 11862-11871. https://doi.org/10.1039/C9DT02503K
    97. Telles Cardoso Silva, Maíra dos Santos Pires, Alexandre Alves de Castro, Lívia Clara Tavares Lacerda, Marcus Vinícius Juliaci Rocha, Teodorico Castro Ramalho. Methane Activation by (n=0, 1, 2; m= 1, 2): Reactivity Parameters, Electronic Properties and Binding Energy Analysis. ChemistrySelect 2019, 4 (27) , 7912-7921. https://doi.org/10.1002/slct.201901166
    98. Degao Wang, Thomas J. Meyer. A strategy for stabilizing the catalyst Co 4 O 4 in a metal–organic framework. Proceedings of the National Academy of Sciences 2019, 116 (28) , 13719-13720. https://doi.org/10.1073/pnas.1909543116
    99. Erik Andris, Rafael Navrátil, Juraj Jašík, Martin Srnec, Mònica Rodríguez, Miquel Costas, Jana Roithová. M−O Bonding Beyond the Oxo Wall: Spectroscopy and Reactivity of Cobalt(III)‐Oxyl and Cobalt(III)‐Oxo Complexes. Angewandte Chemie 2019, 131 (28) , 9721-9726. https://doi.org/10.1002/ange.201904546
    100. Erik Andris, Rafael Navrátil, Juraj Jašík, Martin Srnec, Mònica Rodríguez, Miquel Costas, Jana Roithová. M−O Bonding Beyond the Oxo Wall: Spectroscopy and Reactivity of Cobalt(III)‐Oxyl and Cobalt(III)‐Oxo Complexes. Angewandte Chemie International Edition 2019, 58 (28) , 9619-9624. https://doi.org/10.1002/anie.201904546
    Load all citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2015, 137, 40, 12865–12872
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.5b08396
    Published September 21, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    7150

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.