ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

The Many Faces of Heterogeneous Ice Nucleation: Interplay Between Surface Morphology and Hydrophobicity

View Author Information
London Centre for Nanotechnology, Department of Chemistry and Thomas Young Centre, University College London, 17-19 Gordon Street, London WC1H 0AJ, United Kingdom
Cite this: J. Am. Chem. Soc. 2015, 137, 42, 13658–13669
Publication Date (Web):October 4, 2015
https://doi.org/10.1021/jacs.5b08748
Copyright © 2015 American Chemical Society

    Article Views

    5308

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    What makes a material a good ice nucleating agent? Despite the importance of heterogeneous ice nucleation to a variety of fields, from cloud science to microbiology, major gaps in our understanding of this ubiquitous process still prevent us from answering this question. In this work, we have examined the ability of generic crystalline substrates to promote ice nucleation as a function of the hydrophobicity and the morphology of the surface. Nucleation rates have been obtained by brute-force molecular dynamics simulations of coarse-grained water on top of different surfaces of a model fcc crystal, varying the water–surface interaction and the surface lattice parameter. It turns out that the lattice mismatch of the surface with respect to ice, customarily regarded as the most important requirement for a good ice nucleating agent, is at most desirable but not a requirement. On the other hand, the balance between the morphology of the surface and its hydrophobicity can significantly alter the ice nucleation rate and can also lead to the formation of up to three different faces of ice on the same substrate. We have pinpointed three circumstances where heterogeneous ice nucleation can be promoted by the crystalline surface: (i) the formation of a water overlayer that acts as an in-plane template; (ii) the emergence of a contact layer buckled in an ice-like manner; and (iii) nucleation on compact surfaces with very high interaction strength. We hope that this extensive systematic study will foster future experimental work aimed at testing the physiochemical understanding presented herein.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b08748.

    • Distribution of the 3(i) order parameter used for calculating Ncls, examples for dissimilar stretched exponential fits, critical nucleus size on the (111) substrate, snapshots of all classified regions, distribution of precritical nuclei, verification of the water model, notes on higher temperatures (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 182 publications.

    1. Melbert Jeem, Ryosuke Ishida, Minako Kondo, Yuto Shimizu, Takahiro Kawaguchi, Kaixin Dong, Ade Kurniawan, Yuji Kunisada, Norihito Sakaguchi, Takahiro Nomura. Shell-Driven Localized Oxide Nanoparticles Determine the Thermal Stability of Microencapsulated Phase Change Material. ACS Applied Materials & Interfaces 2024, 16 (3) , 3509-3519. https://doi.org/10.1021/acsami.3c17129
    2. Sean M. Marks, Zachariah Vicars, Aniket U. Thosar, Amish J. Patel. Characterizing Surface Ice-Philicity Using Molecular Simulations and Enhanced Sampling. The Journal of Physical Chemistry B 2023, 127 (27) , 6125-6135. https://doi.org/10.1021/acs.jpcb.3c01627
    3. Tianmu Yuan, Ryan S. DeFever, Jiarun Zhou, Ernesto Carlos Cortes-Morales, Sapna Sarupria. RSeeds: Rigid Seeding Method for Studying Heterogeneous Crystal Nucleation. The Journal of Physical Chemistry B 2023, 127 (18) , 4112-4125. https://doi.org/10.1021/acs.jpcb.3c00910
    4. Wenmei Liu, Jongmin Lee, Victoria Manzi-Orezzoli, Michail Ntalis, Thomas J. Schmidt, Pierre Boillat. Effects of Hydrophobicity Treatment of Gas Diffusion Layers on Ice Crystallization in Polymer Electrolyte Fuel Cells. ACS Applied Materials & Interfaces 2023, 15 (14) , 17779-17790. https://doi.org/10.1021/acsami.2c22155
    5. K. Mistry, N. Gerrard, A. Hodgson. Wetting of a Stepped Platinum (211) Surface. The Journal of Physical Chemistry C 2023, 127 (9) , 4741-4748. https://doi.org/10.1021/acs.jpcc.2c08360
    6. Zhikun Chen, Maria Elektorowicz, Chunjiang An, Xuelin Tian. Entrainment and Enrichment of Microplastics in Ice Formation Processes: Implications for the Transport of Microplastics in Cold Regions. Environmental Science & Technology 2023, 57 (8) , 3176-3186. https://doi.org/10.1021/acs.est.2c09340
    7. Mohammad Mousazadehkasin, Nick Mitchell, Emily Asenath-Smith, John G. Tsavalas. Ice Nucleation Promotion Impact on the Ice Recrystallization Inhibition Activity of Polyols. Biomacromolecules 2023, 24 (2) , 678-689. https://doi.org/10.1021/acs.biomac.2c01120
    8. Guoying Bai, Hang Li, Sijia Qin, Dong Gao. Quantitative Structure–Activity Relationship Studies on Alkane Chemistry Tuning Ice Nucleation. The Journal of Physical Chemistry Letters 2022, 13 (49) , 11564-11570. https://doi.org/10.1021/acs.jpclett.2c03183
    9. Yi Ren, Abhishek Soni, Anand Kumar, Allan K. Bertram, G. N. Patey. Effects of pH on Ice Nucleation by the α-Alumina (0001) Surface. The Journal of Physical Chemistry C 2022, 126 (46) , 19934-19946. https://doi.org/10.1021/acs.jpcc.2c06417
    10. Japandeep Kaur, Mainak Ganguly, Rodrigo Rangel-Alvardo, Devendra Pal, Ryan Hall, Parisa A. Ariya. Ice Nucleation of Pharmaceutical and Synthetic Organic Emerging Contaminants: The Impact of Selected Environmental Conditions. ACS Earth and Space Chemistry 2022, 6 (9) , 2236-2249. https://doi.org/10.1021/acsearthspacechem.2c00187
    11. Chuanbiao Zhang, Yanting Wang, Jianjun Wang, Xin Zhou. Size of Nanoscale Domains in Inhomogeneous Surfaces Determines Ice Nucleation. The Journal of Physical Chemistry C 2022, 126 (31) , 13373-13380. https://doi.org/10.1021/acs.jpcc.2c02647
    12. Abhishek Soni, G. N. Patey. Ice Nucleation by the Primary Prism Face of Silver Iodide. The Journal of Physical Chemistry C 2022, 126 (15) , 6716-6723. https://doi.org/10.1021/acs.jpcc.1c10227
    13. Abhishek Soni, G. N. Patey. Unraveling the Mechanism of Ice Nucleation by Mica (001) Surfaces. The Journal of Physical Chemistry C 2021, 125 (48) , 26927-26941. https://doi.org/10.1021/acs.jpcc.1c08269
    14. Kai Wang, Haoyang Huang, Yongsheng Han. Quantifying the Driving Force of Silver Crystallization by Chemical Potential Difference. Industrial & Engineering Chemistry Research 2021, 60 (40) , 14447-14454. https://doi.org/10.1021/acs.iecr.1c02725
    15. Zhuo Liu, Chu Li, Eshani C. Goonetilleke, Yi Cui, Xuhui Huang. Role of Surface Templating on Ice Nucleation Efficiency on a Silver Iodide Surface. The Journal of Physical Chemistry C 2021, 125 (34) , 18857-18865. https://doi.org/10.1021/acs.jpcc.1c01113
    16. Quanming Xu, Hao Wang, Jianyang Wu, Zhisen Zhang. How Does the Step on Graphite Surface Impact Ice Nucleation?. Crystal Growth & Design 2021, 21 (8) , 4354-4361. https://doi.org/10.1021/acs.cgd.1c00253
    17. Abhishek Soni, G. N. Patey. How Microscopic Features of Mineral Surfaces Critically Influence Heterogeneous Ice Nucleation. The Journal of Physical Chemistry C 2021, 125 (19) , 10723-10737. https://doi.org/10.1021/acs.jpcc.1c01740
    18. Panagiotis G. Georgiou, Huba L. Marton, Alexander N. Baker, Thomas R. Congdon, Thomas F. Whale, Matthew I. Gibson. Polymer Self-Assembly Induced Enhancement of Ice Recrystallization Inhibition. Journal of the American Chemical Society 2021, 143 (19) , 7449-7461. https://doi.org/10.1021/jacs.1c01963
    19. Atanu K. Metya, Valeria Molinero. Is Ice Nucleation by Organic Crystals Nonclassical? An Assessment of the Monolayer Hypothesis of Ice Nucleation. Journal of the American Chemical Society 2021, 143 (12) , 4607-4624. https://doi.org/10.1021/jacs.0c12012
    20. Evelyn Jantsch, Thomas Koop. Cloud Activation via Formation of Water and Ice on Various Types of Porous Aerosol Particles. ACS Earth and Space Chemistry 2021, 5 (3) , 604-617. https://doi.org/10.1021/acsearthspacechem.0c00330
    21. Mohammad Mousazadehkasin, John G. Tsavalas. Insights into Design of Biomimetic Glycerol-Grafted Polyol-Based Polymers for Ice Nucleation/Recrystallization Inhibition and Thermal Hysteresis Activity. Biomacromolecules 2020, 21 (11) , 4626-4637. https://doi.org/10.1021/acs.biomac.0c00907
    22. Shenglin Jin, Yuan Liu, Malte Deiseroth, Jie Liu, Ellen H. G. Backus, Hui Li, Han Xue, Lishan Zhao, Xiao Cheng Zeng, Mischa Bonn, Jianjun Wang. Use of Ion Exchange To Regulate the Heterogeneous Ice Nucleation Efficiency of Mica. Journal of the American Chemical Society 2020, 142 (42) , 17956-17965. https://doi.org/10.1021/jacs.0c00920
    23. Nurun Nahar Lata, Jiarun Zhou, Pearce Hamilton, Michael Larsen, Sapna Sarupria, Will Cantrell. Multivalent Surface Cations Enhance Heterogeneous Freezing of Water on Muscovite Mica. The Journal of Physical Chemistry Letters 2020, 11 (20) , 8682-8689. https://doi.org/10.1021/acs.jpclett.0c02121
    24. Zhi Huang, Sumanjeet Kaur, Musahid Ahmed, Ravi Prasher. Water Freezes at Near-Zero Temperatures Using Carbon Nanotube-Based Electrodes under Static Electric Fields. ACS Applied Materials & Interfaces 2020, 12 (40) , 45525-45532. https://doi.org/10.1021/acsami.0c11694
    25. Chongqin Zhu, Yurui Gao, Weiduo Zhu, Yuan Liu, Joseph S. Francisco, Xiao Cheng Zeng. Computational Prediction of Novel Ice Phases: A Perspective. The Journal of Physical Chemistry Letters 2020, 11 (17) , 7449-7461. https://doi.org/10.1021/acs.jpclett.0c01635
    26. Shuang Luo, Jun Wang, Zhigang Li. Homogeneous Ice Nucleation Under Shear. The Journal of Physical Chemistry B 2020, 124 (18) , 3701-3708. https://doi.org/10.1021/acs.jpcb.9b11209
    27. Golnaz Roudsari, Bernhard Reischl, Olli H. Pakarinen, Hanna Vehkamäki. Atomistic Simulation of Ice Nucleation on Silver Iodide (0001) Surfaces with Defects. The Journal of Physical Chemistry C 2020, 124 (1) , 436-445. https://doi.org/10.1021/acs.jpcc.9b08502
    28. Raouf Ikhenazene, Claire Pirim, Jennifer A. Noble, Cornelia Irimiea, Yvain Carpentier, Ismael K. Ortega, François-Xavier Ouf, Cristian Focsa, Bertrand Chazallon. Ice Nucleation Activities of Carbon-Bearing Materials in Deposition Mode: From Graphite to Airplane Soot Surrogates. The Journal of Physical Chemistry C 2020, 124 (1) , 489-503. https://doi.org/10.1021/acs.jpcc.9b08715
    29. Mainak Ganguly, Parisa A. Ariya. Ice Nucleation of Model Nanoplastics and Microplastics: A Novel Synthetic Protocol and the Influence of Particle Capping at Diverse Atmospheric Environments. ACS Earth and Space Chemistry 2019, 3 (9) , 1729-1739. https://doi.org/10.1021/acsearthspacechem.9b00132
    30. Shuang Luo, Chu Li, Fan Li, Jun Wang, Zhigang Li. Ice Crystallization in Shear Flows. The Journal of Physical Chemistry C 2019, 123 (34) , 21042-21049. https://doi.org/10.1021/acs.jpcc.9b06225
    31. Nikki Gerrard, Chiara Gattinoni, Fiona McBride, Angelos Michaelides, Andrew Hodgson. Strain Relief during Ice Growth on a Hexagonal Template. Journal of the American Chemical Society 2019, 141 (21) , 8599-8607. https://doi.org/10.1021/jacs.9b03311
    32. Han Xue, Youhua Lu, Hongya Geng, Bin Dong, Shuwang Wu, Qingrui Fan, Zhen Zhang, Xiaojun Li, Xin Zhou, Jianjun Wang. Hydroxyl Groups on the Graphene Surfaces Facilitate Ice Nucleation. The Journal of Physical Chemistry Letters 2019, 10 (10) , 2458-2462. https://doi.org/10.1021/acs.jpclett.9b01033
    33. Yuqing Qiu, Arpa Hudait, Valeria Molinero. How Size and Aggregation of Ice-Binding Proteins Control Their Ice Nucleation Efficiency. Journal of the American Chemical Society 2019, 141 (18) , 7439-7452. https://doi.org/10.1021/jacs.9b01854
    34. Esther Chong, Megan King, Katherine E. Marak, Miriam Arak Freedman. The Effect of Crystallinity and Crystal Structure on the Immersion Freezing of Alumina. The Journal of Physical Chemistry A 2019, 123 (12) , 2447-2456. https://doi.org/10.1021/acs.jpca.8b12258
    35. Kyle Wm. Hall, Zhengcai Zhang, Christian J. Burnham, Guang-Jun Guo, Sheelagh Carpendale, Niall J. English, Peter G. Kusalik. Does Local Structure Bias How a Crystal Nucleus Evolves?. The Journal of Physical Chemistry Letters 2018, 9 (24) , 6991-6998. https://doi.org/10.1021/acs.jpclett.8b03115
    36. Chenfang Lin, Gefen Corem, Oded Godsi, Gil Alexandrowicz, George R. Darling, Andrew Hodgson. Ice Nucleation on a Corrugated Surface. Journal of the American Chemical Society 2018, 140 (46) , 15804-15811. https://doi.org/10.1021/jacs.8b08796
    37. Chu Li, Ran Tao, Shuang Luo, Xiang Gao, Kai Zhang, Zhigang Li. Enhancing and Impeding Heterogeneous Ice Nucleation through Nanogrooves. The Journal of Physical Chemistry C 2018, 122 (45) , 25992-25998. https://doi.org/10.1021/acs.jpcc.8b07779
    38. Christopher Walker, Sebastian Lerch, Matthias Reininger, Hadi Eghlidi, Athanasios Milionis, Thomas M. Schutzius, Dimos Poulikakos. Desublimation Frosting on Nanoengineered Surfaces. ACS Nano 2018, 12 (8) , 8288-8296. https://doi.org/10.1021/acsnano.8b03554
    39. Atanu K. Metya, Jayant K. Singh. Ice Nucleation on a Graphite Surface in the Presence of Nanoparticles. The Journal of Physical Chemistry C 2018, 122 (33) , 19056-19066. https://doi.org/10.1021/acs.jpcc.8b05989
    40. Mainak Ganguly, Simon Dib, Uday Kurien, Rodrigo Benjamin Rangel-Alvarado, Yoichi Miyahara, Parisa A. Ariya. Influence of Environmentally Relevant Physicochemical Conditions on a Highly Efficient Inorganic Ice Nucleating Particle. The Journal of Physical Chemistry C 2018, 122 (32) , 18690-18704. https://doi.org/10.1021/acs.jpcc.8b03551
    41. Yibing Dai, Xiaofei Xu. New Nanostructure in a Metastable Ice Phase. The Journal of Physical Chemistry C 2018, 122 (27) , 15729-15732. https://doi.org/10.1021/acs.jpcc.8b03233
    42. Chu Li, Xiang Gao, Zhigang Li. Surface Energy-Mediated Multistep Pathways for Heterogeneous Ice Nucleation. The Journal of Physical Chemistry C 2018, 122 (17) , 9474-9479. https://doi.org/10.1021/acs.jpcc.8b01358
    43. Atanu K. Metya, Jayant K. Singh. Nucleation of Aqueous Salt Solutions on Solid Surfaces. The Journal of Physical Chemistry C 2018, 122 (15) , 8277-8287. https://doi.org/10.1021/acs.jpcc.7b12495
    44. Merve Yeşilbaş, Cheng Choo Lee, Jean-François Boily. Ice and Cryosalt Formation in Saline Microporous Clay Gels. ACS Earth and Space Chemistry 2018, 2 (4) , 314-319. https://doi.org/10.1021/acsearthspacechem.7b00134
    45. Mainak Ganguly, Simon Dib, and Parisa A. Ariya . Purely Inorganic Highly Efficient Ice Nucleating Particle. ACS Omega 2018, 3 (3) , 3384-3395. https://doi.org/10.1021/acsomega.7b01830
    46. Daniel A. Knopf, Peter A. Alpert, Bingbing Wang. The Role of Organic Aerosol in Atmospheric Ice Nucleation: A Review. ACS Earth and Space Chemistry 2018, 2 (3) , 168-202. https://doi.org/10.1021/acsearthspacechem.7b00120
    47. Stephen J. Cox, Diana J. F. Taylor, Tristan G. A. Youngs, Alan K. Soper, Tim S. Totton, Richard G. Chapman, Mosayyeb Arjmandi, Michael G. Hodges, Neal T. Skipper, Angelos Michaelides. Formation of Methane Hydrate in the Presence of Natural and Synthetic Nanoparticles. Journal of the American Chemical Society 2018, 140 (9) , 3277-3284. https://doi.org/10.1021/jacs.7b12050
    48. Brittany Glatz and Sapna Sarupria . Heterogeneous Ice Nucleation: Interplay of Surface Properties and Their Impact on Water Orientations. Langmuir 2018, 34 (3) , 1190-1198. https://doi.org/10.1021/acs.langmuir.7b02859
    49. Zhiyuan He, Liuchun Zheng, Zhenqi Liu, Shenglin Jin, Chuncheng Li, and Jianjun Wang . Inhibition of Heterogeneous Ice Nucleation by Bioinspired Coatings of Polyampholytes. ACS Applied Materials & Interfaces 2017, 9 (35) , 30092-30099. https://doi.org/10.1021/acsami.7b10014
    50. Chu Li, Xiang Gao, and Zhigang Li . Roles of Surface Energy and Temperature in Heterogeneous Ice Nucleation. The Journal of Physical Chemistry C 2017, 121 (21) , 11552-11559. https://doi.org/10.1021/acs.jpcc.7b02848
    51. Yuqing Qiu, Nathan Odendahl, Arpa Hudait, Ryan Mason, Allan K. Bertram, Francesco Paesani, Paul J. DeMott, and Valeria Molinero . Ice Nucleation Efficiency of Hydroxylated Organic Surfaces Is Controlled by Their Structural Fluctuations and Mismatch to Ice. Journal of the American Chemical Society 2017, 139 (8) , 3052-3064. https://doi.org/10.1021/jacs.6b12210
    52. Alexander J. Bourque, C. Rebecca Locker, and Gregory C. Rutledge . Heterogeneous Nucleation of an n-Alkane on Tetrahedrally Coordinated Crystals. The Journal of Physical Chemistry B 2017, 121 (4) , 904-911. https://doi.org/10.1021/acs.jpcb.6b12590
    53. Kristen N. Collier and Sarah D. Brooks . Role of Organic Hydrocarbons in Atmospheric Ice Formation via Contact Freezing. The Journal of Physical Chemistry A 2016, 120 (51) , 10169-10180. https://doi.org/10.1021/acs.jpca.6b11890
    54. Gabriele C. Sosso, Tianshu Li, Davide Donadio, Gareth A. Tribello, and Angelos Michaelides . Microscopic Mechanism and Kinetics of Ice Formation at Complex Interfaces: Zooming in on Kaolinite. The Journal of Physical Chemistry Letters 2016, 7 (13) , 2350-2355. https://doi.org/10.1021/acs.jpclett.6b01013
    55. Gabriele C. Sosso, Ji Chen, Stephen J. Cox, Martin Fitzner, Philipp Pedevilla, Andrea Zen, and Angelos Michaelides . Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations. Chemical Reviews 2016, 116 (12) , 7078-7116. https://doi.org/10.1021/acs.chemrev.5b00744
    56. Philipp Pedevilla, Stephen J. Cox, Ben Slater, and Angelos Michaelides . Can Ice-Like Structures Form on Non-Ice-Like Substrates? The Example of the K-feldspar Microcline. The Journal of Physical Chemistry C 2016, 120 (12) , 6704-6713. https://doi.org/10.1021/acs.jpcc.6b01155
    57. Yuanfei Bi, Raffaela Cabriolu, and Tianshu Li . Heterogeneous Ice Nucleation Controlled by the Coupling of Surface Crystallinity and Surface Hydrophilicity. The Journal of Physical Chemistry C 2016, 120 (3) , 1507-1514. https://doi.org/10.1021/acs.jpcc.5b09740
    58. Benjamin Rotenberg and Mathieu Salanne . Structural Transitions at Ionic Liquid Interfaces. The Journal of Physical Chemistry Letters 2015, 6 (24) , 4978-4985. https://doi.org/10.1021/acs.jpclett.5b01889
    59. Yixiang Wang, Jingwen Mo, Shuang Luo, Yu Zhang, Baoling Huang, Zhigang Li. Effects of convex surface roughness on heterogeneous ice nucleation. AIP Advances 2024, 14 (5) https://doi.org/10.1063/5.0201339
    60. M. Camarillo, J. Oller-Iscar, M. M. Conde, J. Ramírez, E. Sanz. Effect of substrate mismatch, orientation, and flexibility on heterogeneous ice nucleation. The Journal of Chemical Physics 2024, 160 (13) https://doi.org/10.1063/5.0188929
    61. Jyotirmoy Sarma, Deepak Monga, Zongqi Guo, Fangying Chen, Xianming Dai. Coarsening droplets for frosting delay on hydrophilic slippery liquid‐infused porous surfaces. Droplet 2024, 3 (2) https://doi.org/10.1002/dro2.106
    62. Abhishek Soni, G. N. Patey. Using machine learning with atomistic surface and local water features to predict heterogeneous ice nucleation. The Journal of Chemical Physics 2024, 160 (12) https://doi.org/10.1063/5.0177706
    63. Abhay Vincent, Marie Pervier, Hugo Pervier, Devaiah Nalianda. Computational approach for investigating nanoscale interfacial ice adhesion trends. RSC Advances 2023, 13 (51) , 36088-36097. https://doi.org/10.1039/D3RA04854C
    64. Kenji Mochizuki, Ken-ichiro Murata, Xuan Zhang. Microscopic ordering of supercooled water on the ice basal face. Communications Materials 2023, 4 (1) https://doi.org/10.1038/s43246-023-00359-2
    65. Jincheng Zeng, Ziyue Zhou, Zixuan Song, Hao Lu, Yisi Liu, Shi Qiao, Yuequn Fu, Jianyang Wu, Zhisen Zhang. Electric field as a crystallization switch of heterogeneous ice formation. Journal of Physics: Condensed Matter 2023, 35 (44) , 445401. https://doi.org/10.1088/1361-648X/ace5ff
    66. A. S. Averkina, N. B. Kondrashova, E. V. Saenko, A. Sh. Shamsutdinov, V. A. Valtsifer, D. Stopar. Comparative study of texture and rheological properties of AgI-SiO2 hybrid powders with different pore structure. Journal of Sol-Gel Science and Technology 2023, 108 (2) , 339-351. https://doi.org/10.1007/s10971-023-06086-x
    67. Lingfeng Zhao, Yizhou Shen, Weilan Liu, Jie Tao, Senyun Liu. Solid-liquid-ice interfaces for anti-icing materials. Surfaces and Interfaces 2023, 42 , 103510. https://doi.org/10.1016/j.surfin.2023.103510
    68. A. S. Averkina, N. B. Kondrashova, E. V. Saenko, V. A. Val’tsifer. Synthesis and Properties of AgI–SiO2 Precipitate-Reforming Reagents Based on SBA-15 Mesoporous Silicon-Oxide Matrix. Polymer Science, Series D 2023, 16 (3) , 558-562. https://doi.org/10.1134/S1995421223030036
    69. Akash Singh, Yumeng Li. Reliable machine learning potentials based on artificial neural network for graphene. Computational Materials Science 2023, 227 , 112272. https://doi.org/10.1016/j.commatsci.2023.112272
    70. Aindrila Indra, Mangesh Bhendale, Jayant K. Singh. Understanding the role of polymers on the nucleating behavior of water in dilute supercooled solutions. The Journal of Chemical Physics 2023, 159 (4) https://doi.org/10.1063/5.0153670
    71. Xiao Meng, Yunhe Diao, Ranran Zhu, Fan Zhang, Xuying Liu, Jinzhou Chen, Huige Yang. Tuning ice nucleation with pH-modulated Fe 3+ cross-linked hydrogel surfaces. Chemical Communications 2023, 59 (60) , 9271-9274. https://doi.org/10.1039/D3CC02047A
    72. Vitalii Mutsenko, Elias Anastassopoulos, Dimitris Zaragotas, Anastasia Simaioforidou, Dmytro Tarusin, Lothar Lauterboeck, Bulat Sydykov, Ricarda Brunotte, Kai Brunotte, Corinna Rozanski, Alexander Y. Petrenko, Ido Braslavsky, Birgit Glasmacher, Oleksandr Gryshkov. Monitoring of freezing patterns within 3D collagen-hydroxyapatite scaffolds using infrared thermography. Cryobiology 2023, 111 , 57-69. https://doi.org/10.1016/j.cryobiol.2023.02.001
    73. Abhijit H. Phakatkar, Constantine M. Megaridis, Tolou Shokuhfar, Reza Shahbazian-Yassar. Real-time TEM observations of ice formation in graphene liquid cell. Nanoscale 2023, 15 (15) , 7006-7013. https://doi.org/10.1039/D3NR00097D
    74. Wanyu Zhao, Tianshu Li. On the challenge of sampling multiple nucleation pathways: A case study of heterogeneous ice nucleation on FCC (211) surface. The Journal of Chemical Physics 2023, 158 (12) https://doi.org/10.1063/5.0144712
    75. Walid Samah, Pascal Clain, François Rioual, Laurence Fournaison, Anthony Delahaye. Review on ice crystallization and adhesion to optimize ice slurry generators without moving components. Applied Thermal Engineering 2023, 223 , 119974. https://doi.org/10.1016/j.applthermaleng.2023.119974
    76. Nan Li, Jing Jiang, M.Y. Yang, Hao Wang, Yuan Ma, Zhe Li, G.H. Tang. Anti-icing mechanism of combined active ethanol spraying and passive surface wettability. Applied Thermal Engineering 2023, 220 , 119805. https://doi.org/10.1016/j.applthermaleng.2022.119805
    77. Xuanhao Fu, Xin Zhou. Different roles of surfaces’ interaction on lattice mismatched/matched surfaces in facilitating ice nucleation. Chinese Physics B 2023, 32 (2) , 028202. https://doi.org/10.1088/1674-1056/aca202
    78. Elise Rosky, Will Cantrell, Tianshu Li, Issei Nakamura, Raymond A. Shaw. Molecular simulations reveal that heterogeneous ice nucleation occurs at higher temperatures in water under capillary tension. Atmospheric Chemistry and Physics 2023, 23 (18) , 10625-10642. https://doi.org/10.5194/acp-23-10625-2023
    79. Xin Wu, Jianying Gong, Long Jin, Jianqiang Hou, Gaoyi Liu. Experimental study on the freezing process of a supercooled horizontal water bridge between cold fins. International Journal of Refrigeration 2023, 145 , 481-491. https://doi.org/10.1016/j.ijrefrig.2022.09.019
    80. Franziska Sabath, Christian Aleff, Annamaria Latus, Ralf Bechstein, Angelika Kühnle. Atomic‐Resolution Imaging of the Ice Nucleating Silver Iodide Surface: Does this Polar Surface Reconstruct at the Atomic Scale?. Advanced Materials Interfaces 2022, 9 (34) https://doi.org/10.1002/admi.202201065
    81. Sang Yup Lee, Minseong Kim, Tae Kyung Won, Seung Hyuk Back, Youngjoo Hong, Byeong-Su Kim, Dong June Ahn. Janus regulation of ice growth by hyperbranched polyglycerols generating dynamic hydrogen bonding. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-34300-x
    82. Yoshitaka Ueki, Satoshi Matsuo, Masahiko Shibahara. Molecular dynamic study of local interfacial thermal resistance of solid-liquid and solid-solid interfaces: Water and nanotextured surface. International Communications in Heat and Mass Transfer 2022, 137 , 106232. https://doi.org/10.1016/j.icheatmasstransfer.2022.106232
    83. Yoshitaka Ueki, Yuta Tsutsumi, Masahiko Shibahara. Molecular dynamics study of instantaneous interfacial thermal resistance of droplets on flat crystalline surface during cooling and ice formation. International Journal of Heat and Mass Transfer 2022, 194 , 123004. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123004
    84. Michael Benedict Davies, Martin Fitzner, Angelos Michaelides. Accurate prediction of ice nucleation from room temperature water. Proceedings of the National Academy of Sciences 2022, 119 (31) https://doi.org/10.1073/pnas.2205347119
    85. Zhenhong Ye, Wei Wang, Xinhua Li, Yunyang He, Jiangping Chen. Molecular dynamics simulation and experimental study of heat transfer and phase change of water with slit effect. Applied Thermal Engineering 2022, 211 , 118430. https://doi.org/10.1016/j.applthermaleng.2022.118430
    86. Eduardo Duque-Redondo, Patrick A. Bonnaud, Hegoi Manzano. A comprehensive review of C-S-H empirical and computational models, their applications, and practical aspects. Cement and Concrete Research 2022, 156 , 106784. https://doi.org/10.1016/j.cemconres.2022.106784
    87. Wei Huang, Jinxia Huang, Zhiguang Guo, Weimin Liu. Icephobic/anti-icing properties of superhydrophobic surfaces. Advances in Colloid and Interface Science 2022, 304 , 102658. https://doi.org/10.1016/j.cis.2022.102658
    88. Gabriele C. Sosso, Prerna Sudera, Anna T. Backes, Thomas F. Whale, Janine Fröhlich-Nowoisky, Mischa Bonn, Angelos Michaelides, Ellen H. G. Backus. The role of structural order in heterogeneous ice nucleation. Chemical Science 2022, 13 (17) , 5014-5026. https://doi.org/10.1039/D1SC06338C
    89. Piero Gasparotto, Martin Fitzner, Stephen James Cox, Gabriele Cesare Sosso, Angelos Michaelides. How do interfaces alter the dynamics of supercooled water?. Nanoscale 2022, 14 (11) , 4254-4262. https://doi.org/10.1039/D2NR00387B
    90. Christopher M. Miles, Pin-Chia Hsu, Ann M. Dixon, Syma Khalid, Gabriele C. Sosso. Lipid bilayers as potential ice nucleating agents. Physical Chemistry Chemical Physics 2022, 24 (11) , 6476-6491. https://doi.org/10.1039/D1CP05465A
    91. Yu-Kai Weng, Seungha Shin, Kenneth D. Kihm, Mohammad Bahzad, Douglas S. Aaron. Investigation of microscopic mechanisms for water-ice phase change propagation control. International Journal of Heat and Mass Transfer 2022, 184 , 122357. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122357
    92. Irene Tagliaro, Alessio Cerpelloni, Vasileios-Martin Nikiforidis, Rohit Pillai, Carlo Antonini. On the Development of Icephobic Surfaces: Bridging Experiments and Simulations. 2022, 235-272. https://doi.org/10.1007/978-3-030-82992-6_8
    93. Biao Jiang, Yizhou Shen, Jie Tao, Yangjiangshan Xu, Haifeng Chen, Senyun Liu, Weilan Liu, Xinyu Xie. Patterning Configuration of Surface Hydrophilicity by Graphene Nanosheet towards the Inhibition of Ice Nucleation and Growth. Coatings 2022, 12 (1) , 52. https://doi.org/10.3390/coatings12010052
    94. Elzbieta Pach, Albert Verdaguer. Studying Ice with Environmental Scanning Electron Microscopy. Molecules 2022, 27 (1) , 258. https://doi.org/10.3390/molecules27010258
    95. Vasileios-Martin Nikiforidis, Saikat Datta, Matthew K. Borg, Rohit Pillai. Impact of surface nanostructure and wettability on interfacial ice physics. The Journal of Chemical Physics 2021, 155 (23) https://doi.org/10.1063/5.0069896
    96. Anton Tamtögl, Emanuel Bahn, Marco Sacchi, Jianding Zhu, David J. Ward, Andrew P. Jardine, Stephen J. Jenkins, Peter Fouquet, John Ellis, William Allison. Motion of water monomers reveals a kinetic barrier to ice nucleation on graphene. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-23226-5
    97. Chu Li, Zhuo Liu, Eshani C. Goonetilleke, Xuhui Huang. Temperature-dependent kinetic pathways of heterogeneous ice nucleation competing between classical and non-classical nucleation. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-25267-2
    98. Hao Lu, Quanming Xu, Jianyang Wu, Rongdun Hong, Zhisen Zhang. Effect of interfacial dipole on heterogeneous ice nucleation. Journal of Physics: Condensed Matter 2021, 33 (37) , 375001. https://doi.org/10.1088/1361-648X/ac0f2c
    99. Amrita Goswami, Jayant K. Singh. Homogeneous nucleation of sheared liquids: advances and insights from simulations and theory. Physical Chemistry Chemical Physics 2021, 23 (29) , 15402-15419. https://doi.org/10.1039/D1CP02617H
    100. Guobing Zhou, Liangliang Huang. A review of recent advances in computational and experimental analysis of first adsorbed water layer on solid substrate. Molecular Simulation 2021, 47 (10-11) , 925-941. https://doi.org/10.1080/08927022.2020.1786086
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect