ACS Publications. Most Trusted. Most Cited. Most Read
Intercluster Reactions between Au25(SR)18 and Ag44(SR)30
My Activity

Figure 1Loading Img
    Article

    Intercluster Reactions between Au25(SR)18 and Ag44(SR)30
    Click to copy article linkArticle link copied!

    View Author Information
    DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, India
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2016, 138, 1, 140–148
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.5b09401
    Published December 17, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We present the first example of intercluster reactions between atomically precise, monolayer protected noble metal clusters using Au25(SR)18 and Ag44(SR)30 (RS– = alkyl/aryl thiolate) as model compounds. These clusters undergo spontaneous reaction in solution at ambient conditions. Mass spectrometric measurements both by electrospray ionization and matrix assisted laser desorption ionization show that the reaction occurs through the exchange of metal atoms and protecting ligands of the clusters. Intercluster alloying is demonstrated to be a much more facile method for heteroatom doping into Au25(SR)18, as observed by doping up to 20 Ag atoms. We investigated the thermodynamic feasibility of the reaction using DFT calculations and a tentative mechanism has been presented. Metal core-thiolate interfaces in these clusters play a crucial role in inducing these reactions and also affect rates of these reactions. We hope that our work will help accelerate activities in this area to establish chemistry of monolayer protected clusters.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b09401.

    • Instrumentation, general methods of ESI MS and MALDI MS measurements, computational details, temporal changes in absorption and emission spectra during intercluster reactions, additional ESI MS and MALDI MS spectra, discussion on the charge state of the alloy clusters formed and the position of the Ag atoms in them. (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 178 publications.

    1. Swetashree Acharya, Jayoti Roy, Diptendu Roy, Biswarup Pathak, Thalappil Pradeep. Stable Dimer Intermediates during Intercluster Reactions of Atomically Precise Nanoclusters. The Journal of Physical Chemistry C 2025, 129 (12) , 5840-5850. https://doi.org/10.1021/acs.jpcc.4c07077
    2. Paulami Bose, Jayoti Roy, Vikash Khokhar, Biswajit Mondal, Ganapati Natarajan, Sujan Manna, Vivek Yadav, Anupriya Nyayban, Sharma S. R. K. C. Yamijala, Nonappa, Thalappil Pradeep. Interparticle Antigalvanic Reactions of Atomically Precise Silver Nanoclusters with Plasmonic Gold Nanoparticles: Interfacial Control of Atomic Exchange. Chemistry of Materials 2024, 36 (15) , 7581-7594. https://doi.org/10.1021/acs.chemmater.4c00620
    3. B. S. Sooraj, Jayoti Roy, Manish Mukherjee, Anagha Jose, Thalappil Pradeep. Extensive Polymerization of Atomically Precise Alloy Metal Clusters During Solid-State Reactions. Langmuir 2024, 40 (29) , 15244-15251. https://doi.org/10.1021/acs.langmuir.4c01737
    4. Caitlin A. McCandler, Antti Pihlajamäki, Sami Malola, Hannu Häkkinen, Kristin A. Persson. Gold–Thiolate Nanocluster Dynamics and Intercluster Reactions Enabled by a Machine Learned Interatomic Potential. ACS Nano 2024, 18 (29) , 19014-19023. https://doi.org/10.1021/acsnano.4c03094
    5. Si Li, Na-Na Li, Xi-Yan Dong, Shuang-Quan Zang, Thomas C. W. Mak. Chemical Flexibility of Atomically Precise Metal Clusters. Chemical Reviews 2024, 124 (11) , 7262-7378. https://doi.org/10.1021/acs.chemrev.3c00896
    6. Hengzhi Liu, Pu Wang, Yong Pei. Mechanism Insight into Metal Exchange between Au25(SR)18–/Ag25(SR)18– Clusters and Metal Ions from Ab Initio Molecular Dynamics Simulations. Inorganic Chemistry 2024, 63 (19) , 8625-8635. https://doi.org/10.1021/acs.inorgchem.4c00010
    7. Sarita Kolay, Sikta Chakraborty, Susmita Pramanik, Amitava Patra. Cumulative Impact of Ligands on the Optical Properties of Ag21 Nanoclusters: Insights into the Relaxation Dynamics. The Journal of Physical Chemistry C 2024, 128 (18) , 7643-7651. https://doi.org/10.1021/acs.jpcc.4c02336
    8. Xu Liu, Xiao Cai, Yan Zhu. Catalysis Synergism by Atomically Precise Bimetallic Nanoclusters Doped with Heteroatoms. Accounts of Chemical Research 2023, 56 (12) , 1528-1538. https://doi.org/10.1021/acs.accounts.3c00118
    9. Jiaojiao Han, Hao Li, Honglei Shen, Ying Xu, Xuejuan Zou, Xi Kang, Manzhou Zhu. (AuAg)44(SPhtBu)26 versus (AuAg)44(SPhF2)30: Tailoring the Geometric Structures and Optical Properties of Nanocluster Analogues. Precision Chemistry 2023, 1 (3) , 139-145. https://doi.org/10.1021/prechem.2c00007
    10. Sarita Kolay, Subarna Maity, Sikta Chakraborty, Srijon Ghosh, Amitava Patra. Electronegativity of the Substituent on Surface Motifs Influences the Ultrafast Relaxation Dynamics of Ag44(SR)304– Nanoclusters. The Journal of Physical Chemistry C 2023, 127 (7) , 3769-3777. https://doi.org/10.1021/acs.jpcc.2c08280
    11. Nadesh Fiuza-Maneiro, Kun Sun, Iago López-Fernández, Sergio Gómez-Graña, Peter Müller-Buschbaum, Lakshminarayana Polavarapu. Ligand Chemistry of Inorganic Lead Halide Perovskite Nanocrystals. ACS Energy Letters 2023, 8 (2) , 1152-1191. https://doi.org/10.1021/acsenergylett.2c02363
    12. Shengli Zhuang, Dong Chen, Wentao Fan, Jinyun Yuan, Lingwen Liao, Yan Zhao, Jin Li, Haiteng Deng, Jun Yang, Jinlong Yang, Zhikun Wu. Single-Atom-Kernelled Nanocluster Catalyst. Nano Letters 2022, 22 (17) , 7144-7150. https://doi.org/10.1021/acs.nanolett.2c02290
    13. Veikko Linko, Hang Zhang, Nonappa, Mauri A. Kostiainen, Olli Ikkala. From Precision Colloidal Hybrid Materials to Advanced Functional Assemblies. Accounts of Chemical Research 2022, 55 (13) , 1785-1795. https://doi.org/10.1021/acs.accounts.2c00093
    14. Abhijit Nag, Thalappil Pradeep. Assembling Atomically Precise Noble Metal Nanoclusters Using Supramolecular Interactions. ACS Nanoscience Au 2022, 2 (3) , 160-178. https://doi.org/10.1021/acsnanoscienceau.1c00046
    15. Xiao-Hong Ma, Yubing Si, Lan-Lan Luo, Zhao-Yang Wang, Shuang-Quan Zang, Thomas C. W. Mak. Directional Doping and Cocrystallizing an Open-Shell Ag39 Superatom via Precursor Engineering. ACS Nano 2022, 16 (4) , 5507-5514. https://doi.org/10.1021/acsnano.1c09911
    16. Papri Chakraborty, Paulami Bose, Jayoti Roy, Abhijit Nag, Biswajit Mondal, Amrita Chakraborty, Thalappil Pradeep. Isotopic Exchange of Atomically Precise Nanoclusters with Materials of Varying Dimensions: From Nanoscale to Bulk. The Journal of Physical Chemistry C 2021, 125 (29) , 16110-16117. https://doi.org/10.1021/acs.jpcc.1c02264
    17. Patricia López-Caballero, Ricardo Garsed, María Pilar de Lara-Castells. Computational Characterization of the Intermixing of Iron Triade (Fe, Co, and Ni) Surfaces and Sub-nanometric Clusters with Atomic Gold. ACS Omega 2021, 6 (24) , 16165-16175. https://doi.org/10.1021/acsomega.1c02116
    18. Marco Neumaier, Ananya Baksi, Patrick Weis, Erik K. Schneider, Papri Chakraborty, Horst Hahn, Thalappil Pradeep, Manfred M. Kappes. Kinetics of Intercluster Reactions between Atomically Precise Noble Metal Clusters [Ag25(DMBT)18]− and [Au25(PET)18]− in Room Temperature Solutions. Journal of the American Chemical Society 2021, 143 (18) , 6969-6980. https://doi.org/10.1021/jacs.1c01140
    19. Li Tang, Xi Kang, Xiangyu Wang, Xianhui Zhang, Xun Yuan, Shuxin Wang. Dynamic Metal Exchange between a Metalloid Silver Cluster and Silver(I) Thiolate. Inorganic Chemistry 2021, 60 (5) , 3037-3045. https://doi.org/10.1021/acs.inorgchem.0c03269
    20. Esma Khatun, Thalappil Pradeep. New Routes for Multicomponent Atomically Precise Metal Nanoclusters. ACS Omega 2021, 6 (1) , 1-16. https://doi.org/10.1021/acsomega.0c04832
    21. Clara Garcia, Vera Truttmann, Irene Lopez, Thomas Haunold, Carlo Marini, Christoph Rameshan, Ernst Pittenauer, Peter Kregsamer, Klaus Dobrezberger, Michael Stöger-Pollach, Noelia Barrabés, Günther Rupprechter. Dynamics of Pd Dopant Atoms inside Au Nanoclusters during Catalytic CO Oxidation. The Journal of Physical Chemistry C 2020, 124 (43) , 23626-23636. https://doi.org/10.1021/acs.jpcc.0c05735
    22. Sakiat Hossain, Daiki Suzuki, Takeshi Iwasa, Ryo Kaneko, Taiyo Suzuki, Sayuri Miyajima, Yuki Iwamatsu, Stephan Pollitt, Tokuhisa Kawawaki, Noelia Barrabés, Günther Rupprechter, Yuichi Negishi. Determining and Controlling Cu-Substitution Sites in Thiolate-Protected Gold-Based 25-Atom Alloy Nanoclusters. The Journal of Physical Chemistry C 2020, 124 (40) , 22304-22313. https://doi.org/10.1021/acs.jpcc.0c06858
    23. Papri Chakraborty, Abhijit Nag, Biswajit Mondal, Esma Khatun, Ganesan Paramasivam, Thalappil Pradeep. Fullerene-Mediated Aggregation of M25(SR)18– (M = Ag, Au) Nanoclusters. The Journal of Physical Chemistry C 2020, 124 (27) , 14891-14900. https://doi.org/10.1021/acs.jpcc.0c03383
    24. Yoshiki Niihori, Naoya Takahashi, Masaaki Mitsui. Photophysical and Thermodynamic Properties of Ag29(BDT)12(TPP)x (x = 0–4) Clusters in Secondary Ligand Binding–Dissociation Equilibria Unraveled by Photoluminescence Analysis. The Journal of Physical Chemistry C 2020, 124 (10) , 5880-5886. https://doi.org/10.1021/acs.jpcc.9b11928
    25. Pilar Carro, Evangelina Pensa, Tim Albrecht, Roberto C. Salvarezza. Dynamics of RS-(Au-SR)x Staple Motifs on Metal Surfaces: From Nanoclusters to 2D Surfaces. The Journal of Physical Chemistry C 2020, 124 (9) , 5452-5459. https://doi.org/10.1021/acs.jpcc.9b11369
    26. Wenjun Du, Xi Kang, Shan Jin, Danyu Liu, Shuxin Wang, Manzhou Zhu. Different Types of Ligand Exchange Induced by Au Substitution in a Maintained Nanocluster Template. Inorganic Chemistry 2020, 59 (3) , 1675-1681. https://doi.org/10.1021/acs.inorgchem.9b02792
    27. Yuanxin Du, Hongting Sheng, Didier Astruc, Manzhou Zhu. Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties. Chemical Reviews 2020, 120 (2) , 526-622. https://doi.org/10.1021/acs.chemrev.8b00726
    28. Esma Khatun, Papri Chakraborty, Betsy Rachel Jacob, Ganesan Paramasivam, Mohammad Bodiuzzaman, Wakeel Ahmed Dar, Thalappil Pradeep. Intercluster Reactions Resulting in Silver-Rich Trimetallic Nanoclusters. Chemistry of Materials 2020, 32 (1) , 611-619. https://doi.org/10.1021/acs.chemmater.9b04530
    29. Wakeel Ahmed Dar, Mohammad Bodiuzzaman, Debasmita Ghosh, Ganesan Paramasivam, Esma Khatun, Korath Shivan Sugi, Thalappil Pradeep. Interparticle Reactions between Silver Nanoclusters Leading to Product Cocrystals by Selective Cocrystallization. ACS Nano 2019, 13 (11) , 13365-13373. https://doi.org/10.1021/acsnano.9b06740
    30. Ananya Baksi, Erik Karsten Schneider, Patrick Weis, K. R. Krishnadas, Debasmita Ghosh, Horst Hahn, Thalappil Pradeep, Manfred M. Kappes. Nanogymnastics: Visualization of Intercluster Reactions by High-Resolution Trapped Ion Mobility Mass Spectrometry. The Journal of Physical Chemistry C 2019, 123 (46) , 28477-28485. https://doi.org/10.1021/acs.jpcc.9b08686
    31. Cercis Morera-Boado, Francisco Hidalgo, Cecilia Noguez. Stability and Electronic Charge Compensation of [Ag44–xAux(SR)30]4– Clusters. The Journal of Physical Chemistry C 2019, 123 (43) , 26633-26643. https://doi.org/10.1021/acs.jpcc.9b06738
    32. Kumaranchira Ramankutty Krishnadas, Ganapati Natarajan, Ananya Baksi, Atanu Ghosh, Esma Khatun, Thalappil Pradeep. Metal–Ligand Interface in the Chemical Reactions of Ligand-Protected Noble Metal Clusters. Langmuir 2019, 35 (35) , 11243-11254. https://doi.org/10.1021/acs.langmuir.8b03493
    33. Debasmita Ghosh, Sathish Kumar Mudedla, Md Rabiul Islam, Venkatesan Subramanian, Thalappil Pradeep. Conformational Changes of Protein upon Encapsulation of Noble Metal Clusters: An Investigation by Hydrogen/Deuterium Exchange Mass Spectrometry. The Journal of Physical Chemistry C 2019, 123 (28) , 17598-17605. https://doi.org/10.1021/acs.jpcc.9b04009
    34. Sami Malola, Hannu Häkkinen. Chiral Inversion of Thiolate-Protected Gold Nanoclusters via Core Reconstruction without Breaking a Au–S Bond. Journal of the American Chemical Society 2019, 141 (14) , 6006-6012. https://doi.org/10.1021/jacs.9b01204
    35. Miao-Miao Yin, Wen-Qi Chen, Yi Liu, Feng-Lei Jiang. AuxAg1–x Nanocomposites with 40-Fold Emission Enhancement Formed by the Electrostatic Assembly of Gold Nanoclusters and Silver Nanoclusters for Bioimaging and Bioanalysis. ACS Applied Nano Materials 2019, 2 (1) , 408-417. https://doi.org/10.1021/acsanm.8b01977
    36. Haifeng Su, Yu Wang, Liting Ren, Peng Yuan, Boon K. Teo, Shuichao Lin, Lansun Zheng, Nanfeng Zheng. Fractal Patterns in Nucleation and Growth of Icosahedral Core of [AunAg44–n(SC6H3F2)30]4– (n = 0–12) via ab Initio Synthesis: Continuously Tunable Composition Control. Inorganic Chemistry 2019, 58 (1) , 259-264. https://doi.org/10.1021/acs.inorgchem.8b02249
    37. Abhijit Nag, Papri Chakraborty, Ganesan Paramasivam, Mohammad Bodiuzzaman, Ganapati Natarajan, Thalappil Pradeep. Isomerism in Supramolecular Adducts of Atomically Precise Nanoparticles. Journal of the American Chemical Society 2018, 140 (42) , 13590-13593. https://doi.org/10.1021/jacs.8b08767
    38. Jianzhi Gao, Fangsen Li, Gangqiang Zhu, Zhibo Yang, Hongbing Lu, Haiping Lin, Qing Li, Youyong Li, Minghu Pan, Quanmin Guo. Spontaneous Breaking and Remaking of the RS–Au–SR Staple in Self-assembled Ethylthiolate/Au(111) Interface. The Journal of Physical Chemistry C 2018, 122 (34) , 19473-19480. https://doi.org/10.1021/acs.jpcc.8b04157
    39. Jianzhi Gao, Haiping Lin, Xuhui Qin, Xin Zhang, Haoxuan Ding, Yitao Wang, Mahroo Rokni Fard, Dogan Kaya, Gangqiang Zhu, Qing Li, Youyong Li, Minghu Pan, Quanmin Guo. Probing Phase Evolutions of Au-Methyl-Propyl-Thiolate Self-Assembled Monolayers on Au(111) at the Molecular Level. The Journal of Physical Chemistry B 2018, 122 (25) , 6666-6672. https://doi.org/10.1021/acs.jpcb.8b03390
    40. Meng Zhou, Chuanhao Yao, Matthew Y. Sfeir, Tatsuya Higaki, Zhikun Wu, Rongchao Jin. Excited-State Behaviors of M1Au24(SR)18 Nanoclusters: The Number of Valence Electrons Matters. The Journal of Physical Chemistry C 2018, 122 (25) , 13435-13442. https://doi.org/10.1021/acs.jpcc.7b11057
    41. Evangelina Pensa and Tim Albrecht . Controlling the Dynamic Instability of Capped Metal Nanoparticles on Metallic Surfaces. The Journal of Physical Chemistry Letters 2018, 9 (1) , 57-62. https://doi.org/10.1021/acs.jpclett.7b02994
    42. K. R. Krishnadas, Debasmita Ghosh, Atanu Ghosh, Ganapati Natarajan, and Thalappil Pradeep . Structure–Reactivity Correlations in Metal Atom Substitutions of Monolayer-Protected Noble Metal Alloy Clusters. The Journal of Physical Chemistry C 2017, 121 (41) , 23224-23232. https://doi.org/10.1021/acs.jpcc.7b07605
    43. K. R. Krishnadas, Ananya Baksi, Atanu Ghosh, Ganapati Natarajan, Anirban Som, and Thalappil Pradeep . Interparticle Reactions: An Emerging Direction in Nanomaterials Chemistry. Accounts of Chemical Research 2017, 50 (8) , 1988-1996. https://doi.org/10.1021/acs.accounts.7b00224
    44. Shridevi Bhat, Ananya Baksi, Sathish Kumar Mudedla, Ganapati Natarajan, V. Subramanian, and Thalappil Pradeep . Au22Ir3(PET)18: An Unusual Alloy Cluster through Intercluster Reaction. The Journal of Physical Chemistry Letters 2017, 8 (13) , 2787-2793. https://doi.org/10.1021/acs.jpclett.7b01052
    45. Indranath Chakraborty and Thalappil Pradeep . Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. Chemical Reviews 2017, 117 (12) , 8208-8271. https://doi.org/10.1021/acs.chemrev.6b00769
    46. K. R. Krishnadas, Ananya Baksi, Atanu Ghosh, Ganapati Natarajan, and Thalappil Pradeep . Manifestation of Geometric and Electronic Shell Structures of Metal Clusters in Intercluster Reactions. ACS Nano 2017, 11 (6) , 6015-6023. https://doi.org/10.1021/acsnano.7b01912
    47. Papri Chakraborty, Ananya Baksi, Esma Khatun, Abhijit Nag, Atanu Ghosh, and Thalappil Pradeep . Dissociation of Gas Phase Ions of Atomically Precise Silver Clusters Reflects Their Solution Phase Stability. The Journal of Physical Chemistry C 2017, 121 (20) , 10971-10981. https://doi.org/10.1021/acs.jpcc.6b12485
    48. Tatsuya Higaki, Chong Liu, Yuxiang Chen, Shuo Zhao, Chenjie Zeng, Renxi Jin, Shuxin Wang, Nathaniel L. Rosi, and Rongchao Jin . Oxidation-Induced Transformation of Eight-Electron Gold Nanoclusters: [Au23(SR)16]− to [Au28(SR)20]0. The Journal of Physical Chemistry Letters 2017, 8 (4) , 866-870. https://doi.org/10.1021/acs.jpclett.6b03061
    49. Megalamane S. Bootharaju, Sergey M. Kozlov, Zhen Cao, Moussab Harb, Niladri Maity, Aleksander Shkurenko, Manas R. Parida, Mohamed N. Hedhili, Mohamed Eddaoudi, Omar F. Mohammed, Osman M. Bakr, Luigi Cavallo, and Jean-Marie Basset . Doping-Induced Anisotropic Self-Assembly of Silver Icosahedra in [Pt2Ag23Cl7(PPh3)10] Nanoclusters. Journal of the American Chemical Society 2017, 139 (3) , 1053-1056. https://doi.org/10.1021/jacs.6b11875
    50. Megalamane S. Bootharaju, Raju Dey, Lieven E. Gevers, Mohamed N. Hedhili, Jean-Marie Basset, and Osman M. Bakr . A New Class of Atomically Precise, Hydride-Rich Silver Nanoclusters Co-Protected by Phosphines. Journal of the American Chemical Society 2016, 138 (42) , 13770-13773. https://doi.org/10.1021/jacs.6b05482
    51. Rongchao Jin, Chenjie Zeng, Meng Zhou, and Yuxiang Chen . Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. Chemical Reviews 2016, 116 (18) , 10346-10413. https://doi.org/10.1021/acs.chemrev.5b00703
    52. Indranath Chakraborty, Anirban Som, Tuhina Adit Maark, Biswajit Mondal, Depanjan Sarkar, and Thalappil Pradeep . Toward a Janus Cluster: Regiospecific Decarboxylation of Ag44(4-MBA)30@Ag Nanoparticles. The Journal of Physical Chemistry C 2016, 120 (28) , 15471-15479. https://doi.org/10.1021/acs.jpcc.6b04769
    53. Yoshiki Niihori, Makoto Eguro, Ayano Kato, Sachil Sharma, Bharat Kumar, Wataru Kurashige, Katsuyuki Nobusada, and Yuichi Negishi . Improvements in the Ligand-Exchange Reactivity of Phenylethanethiolate-Protected Au25 Nanocluster by Ag or Cu Incorporation. The Journal of Physical Chemistry C 2016, 120 (26) , 14301-14309. https://doi.org/10.1021/acs.jpcc.6b03812
    54. Megalamane S. Bootharaju, Chakra P. Joshi, Mohammad J. Alhilaly, and Osman M. Bakr . Switching a Nanocluster Core from Hollow to Nonhollow. Chemistry of Materials 2016, 28 (10) , 3292-3297. https://doi.org/10.1021/acs.chemmater.5b05008
    55. Hasem Ansari, Nishchal Bharadwaj, Goutam Pramanik, Indranath Chakraborty, Biswarup Pathak, Ananya Baksi. Enhancement of NIR II Emission of Au 12 Ag 32 Clusters by Tuning the Au Positions. Small 2025, 146 https://doi.org/10.1002/smll.202502758
    56. Yujiao Wang, Lin Xiong, Qian Cheng, Daqiao Hu, Shan Jin, Manzhou Zhu. Structural disproportionation of Ag 20 Cu 10 highlights the impact of cluster structure on electrocatalytic properties for CO 2 reduction. Inorganic Chemistry Frontiers 2025, 12 (6) , 2495-2505. https://doi.org/10.1039/D4QI03264K
    57. Zhipu Zhang, Rongrong Yin, Ziyang Song, Manxi Zhang, Bihan Zhang, Shanshan Lu, Qiaofeng Yao, De‐en Jiang, Jianping Xie, Wenping Hu. Efficient Electrocatalytic Semi‐Hydrogenation of Alkynes by Interfacial Engineering of Atomically Precise Silver Nanoclusters. Angewandte Chemie 2025, https://doi.org/10.1002/ange.202500389
    58. Zhipu Zhang, Rongrong Yin, Ziyang Song, Manxi Zhang, Bihan Zhang, Shanshan Lu, Qiaofeng Yao, De‐en Jiang, Jianping Xie, Wenping Hu. Efficient Electrocatalytic Semi‐Hydrogenation of Alkynes by Interfacial Engineering of Atomically Precise Silver Nanoclusters. Angewandte Chemie International Edition 2025, https://doi.org/10.1002/anie.202500389
    59. Xu Liu, Jin Tang, Fangming Zhao, Meng Zhou, Siyang Ye, Daocheng Hong, Yuxi Tian, Yue Zhao, Shuangshuang Huang, Fan Tian, Tongxin Song, Xiao Cai, Yiqi Tian, Wei Zhang, Qi Li, Yan Zhu. Atomically Engineered Trimetallic Nanoclusters Toward Enhanced Photoluminescence and Photoinitiation Activity. Advanced Materials 2025, 37 (12) https://doi.org/10.1002/adma.202417984
    60. Soumyadip Roy, Vikas Tiwari, Tarak Karmakar, Indranath Chakraborty. Ligand‐Mediated Highly Ordered Aggregation of 5‐Mercapto‐2‐Nitrobenzoic Acid Protected Atomically Precise Silver Nanocluster. Small 2025, 21 (10) https://doi.org/10.1002/smll.202412468
    61. Subarna Maity, Sarita Kolay, Sikta Chakraborty, Aarti Devi, Rashi, Amitava Patra. A comprehensive review of atomically precise metal nanoclusters with emergent photophysical properties towards diverse applications. Chemical Society Reviews 2025, 54 (4) , 1785-1844. https://doi.org/10.1039/D4CS00962B
    62. Zhijuan Liu, Xiao-Meng Yang, Yanyong Wang, Shuangyin Wang. Atomically precise coinage metal nanoclusters with defects in catalysis. Nano Research 2025, 18 (2) , 94907141. https://doi.org/10.26599/NR.2025.94907141
    63. Paulami Bose, Pillalamarri Srikrishnarka, Matias Paatelainen, Nonappa, Amoghavarsha Ramachandra Kini, Anirban Som, Thalappil Pradeep. Nanocluster reaction-driven in situ transformation of colloidal nanoparticles to mesostructures. Nanoscale 2025, 17 (2) , 803-812. https://doi.org/10.1039/D4NR02820A
    64. Xianhu Liu, Yanping Chang, Wanqing Yao, Long Li, Hongwei Guo. Kinetically Controlled Direct Synthesis of Ag Nanoclusters as Precursor of Luminescent AgAu Alloy Nanoclusters for Aluminum Ions Detection. Nanomaterials 2024, 14 (24) , 1987. https://doi.org/10.3390/nano14241987
    65. Li Tang, Bin Wang, Qikai Han, Shuxin Wang. Dynamic Metal Exchange in Nanoclusters: Isotope Labeling Sheds Light on Cellular‐like Fusion Processes. European Journal of Inorganic Chemistry 2024, 27 (31) https://doi.org/10.1002/ejic.202400235
    66. Hengzhi Liu, Baoyu Huang, Youyuan Shao, Yong Pei. Hetero and Homo Metal Exchange of Au 25 (SR) 18 − and Ag 25 (SR) 18 − Clusters with Metal–Thiolate Complexes: Ab Initio Molecular Dynamics Simulation Studies. Small 2024, 20 (46) https://doi.org/10.1002/smll.202403520
    67. Yuxia Li, Jingxuan Ren, Zeting Meng, Baozhu Zhang. A Fluorescence Enhancement Sensor Based on Silver Nanoclusters Protected by Rich-G-DNA for ATP Detection. Molecules 2024, 29 (18) , 4490. https://doi.org/10.3390/molecules29184490
    68. Tong Wang, Hong-Sheng Tan, Ai-Jun Wang, Shan-Shan Li, Jiu-Ju Feng. Fluorescent metal nanoclusters: From luminescence mechanism to applications in enzyme activity assays. Biosensors and Bioelectronics 2024, 257 , 116323. https://doi.org/10.1016/j.bios.2024.116323
    69. Lizhong He, Tingting Dong. Multiple synthesis routes for atomically precise noble metal nanoclusters. CrystEngComm 2024, 26 (30) , 3998-4016. https://doi.org/10.1039/D4CE00488D
    70. Takumi Imagawa, Shun Ito, Frank Hennrich, Marco Neumaier, Patrick Weis, Kiichirou Koyasu, Manfred M. Kappes, Tatsuya Tsukuda. Revisiting the structure of [PdAu9(PPh3)8(CN)]2+ produced by atmospheric pressure plasma irradiation of [PdAu8(PPh3)8]2+ in methanol. The Journal of Chemical Physics 2024, 161 (2) https://doi.org/10.1063/5.0219959
    71. Guang Xian Pei, Lili Zhang, Xiaoyan Sun. Recent advances of bimetallic nanoclusters with atomic precision for catalytic applications. Coordination Chemistry Reviews 2024, 506 , 215692. https://doi.org/10.1016/j.ccr.2024.215692
    72. Yuxia Li, Min Li, Liuzhi Hu, Baozhu Zhang. Fluorescence Sensors for the Detection of L-Histidine Based on Silver Nanoclusters Modulated by Copper Ions. Molecules 2024, 29 (10) , 2167. https://doi.org/10.3390/molecules29102167
    73. Kefan Jiang, Along Ma, Yuansheng Li, Jiawei Wang, Zhengmao Yin, Shuxin Wang. Understanding the decomposition process of the Pt1Ag24(SPhCl2)18 nanocluster at the atomic level. RSC Advances 2024, 14 (15) , 10574-10579. https://doi.org/10.1039/D4RA01274G
    74. Seungwoo Yoo, Suhwan Yoo, Guocheng Deng, Fang Sun, Kangjae Lee, Hyunsung Jang, Chan Woo Lee, Xiaolin Liu, Junghwan Jang, Qing Tang, Yun Jeong Hwang, Taeghwan Hyeon, Megalamane Siddaramappa Bootharaju. Nanocluster Surface Microenvironment Modulates Electrocatalytic CO 2 Reduction. Advanced Materials 2024, 36 (13) https://doi.org/10.1002/adma.202313032
    75. Yuxia Li, Zeting Meng, Yating Liu, Baozhu Zhang. Turn-on fluorescent nanoprobe for ATP detection based on DNA-templated silver nanoclusters. RSC Advances 2024, 14 (8) , 5594-5599. https://doi.org/10.1039/D3RA07077H
    76. Paulami Bose, Krishnadas Kumaranchira Ramankutty, Papri Chakraborty, Esma Khatun, Thalappil Pradeep. A concise guide to chemical reactions of atomically precise noble metal nanoclusters. Nanoscale 2024, 16 (4) , 1446-1470. https://doi.org/10.1039/D3NR05128E
    77. Qing You, Xue‐Lian Jiang, Wentao Fan, Yun‐Shu Cui, Yan Zhao, Shengli Zhuang, Wanmiao Gu, Lingwen Liao, Cong‐Qiao Xu, Jun Li, Zhikun Wu. Pd 8 Nanocluster with Nonmetal‐to‐Metal‐ Ring Coordination and Promising Photothermal Conversion Efficiency. Angewandte Chemie 2024, 136 (3) https://doi.org/10.1002/ange.202313491
    78. Qing You, Xue‐Lian Jiang, Wentao Fan, Yun‐Shu Cui, Yan Zhao, Shengli Zhuang, Wanmiao Gu, Lingwen Liao, Cong‐Qiao Xu, Jun Li, Zhikun Wu. Pd 8 Nanocluster with Nonmetal‐to‐Metal‐ Ring Coordination and Promising Photothermal Conversion Efficiency. Angewandte Chemie International Edition 2024, 63 (3) https://doi.org/10.1002/anie.202313491
    79. Xuejuan Zou, Xi Kang, Manzhou Zhu. Recent developments in the investigation of driving forces for transforming coinage metal nanoclusters. Chemical Society Reviews 2023, 52 (17) , 5892-5967. https://doi.org/10.1039/D2CS00876A
    80. Manju P. Maman, Eyyakkandy Nida Nahan, Greeshma Suresh, Arunendu Das, Akhil S. Nair, Biswarup Pathak, Sukhendu Mandal. Control over product formation and thermodynamic stability of thiolate-protected gold nanoclusters through tuning of surface protecting ligands. Nanoscale 2023, 15 (31) , 13102-13109. https://doi.org/10.1039/D3NR02617E
    81. María Francisca Matus, Hannu Häkkinen. Understanding ligand-protected noble metal nanoclusters at work. Nature Reviews Materials 2023, 8 (6) , 372-389. https://doi.org/10.1038/s41578-023-00537-1
    82. Jayoti Roy, Biswajit Mondal, Gaurav Vishwakarma, Nonappa, Nishanthi Vasanthi Sridharan, Pattabiraman Krishnamurthi, Thalappil Pradeep. Dissociative reactions of [Au 25 (SR) 18 ] − at copper oxide nanoparticles and formation of aggregated nanostructures. Nanoscale 2023, 15 (18) , 8225-8234. https://doi.org/10.1039/D3NR00897E
    83. Thanaree Phongamwong, Noelia Barrabés, Waleeporn Donphai, Thongthai Witoon, Günther Rupprechter, Metta Chareonpanich. Chlorophyll-modified Au25(SR)18-functionalized TiO2 for photocatalytic degradation of rhodamine B. Applied Catalysis B: Environmental 2023, 325 , 122336. https://doi.org/10.1016/j.apcatb.2022.122336
    84. Qiaofeng Yao, Yitao Cao, Tiankai Chen, Jianping Xie. Total Synthesis of Thiolate‐Protected Noble Metal Nanoclusters. 2023, 57-85. https://doi.org/10.1002/9781119788676.ch2
    85. Jiafeng Zou, Wenwen Fei, Yao Qiao, Ying Yang, Zongbing He, Lei Feng, Man-Bo Li, Zhikun Wu. Combined synthesis of interconvertible Au11Cd and Au26Cd5 for photocatalytic oxidations involving singlet oxygen. Chinese Chemical Letters 2023, 34 (4) , 107660. https://doi.org/10.1016/j.cclet.2022.07.003
    86. Manzhou Zhu, Sha Yang. Controllable preparation of metal nanoclusters. 2023, 11-43. https://doi.org/10.1016/B978-0-323-90474-2.00009-5
    87. Kumaranchira Ramankutty Krishnadas, Thalappil Pradeep. Structure and chemical properties of clusters. 2023, 5-49. https://doi.org/10.1016/B978-0-323-90879-5.00002-0
    88. Esma Khatun, Thalappil Pradeep. Alloy nanoclusters. 2023, 393-426. https://doi.org/10.1016/B978-0-323-90879-5.00012-3
    89. Amrita Chakraborty, Thalappil Pradeep. Nanocluster–nanoparticle coassemblies. 2023, 111-128. https://doi.org/10.1016/B978-0-323-90879-5.00019-6
    90. Papri Chakraborty, Thalappil Pradeep. Mass spectrometry of atomically precise clusters. 2023, 203-227. https://doi.org/10.1016/B978-0-323-90879-5.00022-6
    91. Shengli Zhuang, Dong Chen, Qing You, Wentao Fan, Jun Yang, Zhikun Wu. Thiolated, Reduced Palladium Nanoclusters with Resolved Structures for the Electrocatalytic Reduction of Oxygen. Angewandte Chemie 2022, 134 (46) https://doi.org/10.1002/ange.202208751
    92. Shengli Zhuang, Dong Chen, Qing You, Wentao Fan, Jun Yang, Zhikun Wu. Thiolated, Reduced Palladium Nanoclusters with Resolved Structures for the Electrocatalytic Reduction of Oxygen. Angewandte Chemie International Edition 2022, 61 (46) https://doi.org/10.1002/anie.202208751
    93. Baozhu Zhang, Ziyao Yang, Yuxia Li, Ling Ma, Fenfang Li, Xiuqing Lv, Guangming Wen. A label-free aptasensor for the detection of ATP based on turn-on fluorescence DNA-templated silver nanoclusters. RSC Advances 2022, 12 (46) , 30024-30029. https://doi.org/10.1039/D2RA04636A
    94. Li Li, Yanjie Zhu, Baoliang Han, Qiongyi Wang, Luming Zheng, Lei Feng, Di Sun, Zhi Wang. A classical [V 10 O 28 ] 6− anion templated high-nuclearity silver thiolate cluster. Chemical Communications 2022, 58 (66) , 9234-9237. https://doi.org/10.1039/D2CC03003A
    95. Xu Liu, Endong Wang, Meng Zhou, Yan Wan, Yuankun Zhang, Haoqi Liu, Yue Zhao, Jin Li, Yi Gao, Yan Zhu. Asymmetrically Doping a Platinum Atom into a Au 38 Nanocluster for Changing the Electron Configuration and Reactivity in Electrocatalysis. Angewandte Chemie 2022, 134 (31) https://doi.org/10.1002/ange.202207685
    96. Xu Liu, Endong Wang, Meng Zhou, Yan Wan, Yuankun Zhang, Haoqi Liu, Yue Zhao, Jin Li, Yi Gao, Yan Zhu. Asymmetrically Doping a Platinum Atom into a Au 38 Nanocluster for Changing the Electron Configuration and Reactivity in Electrocatalysis. Angewandte Chemie International Edition 2022, 61 (31) https://doi.org/10.1002/anie.202207685
    97. Baoyu Huang, Xiaomei Zhao, Yong Pei. Three-stage alloying of [Ag44(p-MBA)30]4− cluster with [Au2(p-NTP)2Cl]−. Nano Research 2022, 15 (8) , 7742-7751. https://doi.org/10.1007/s12274-022-4364-9
    98. Xiao-Hong Ma, Jing-Tao Jia, Peng Luo, Zhao-Yang Wang, Shuang-Quan Zang, Thomas C. W. Mak. Layer-by-layer alloying of NIR-II emissive M50 (Au/Ag/Cu) superatomic nanocluster. Nano Research 2022, 15 (6) , 5569-5574. https://doi.org/10.1007/s12274-022-4162-4
    99. Wan-Qi Shi, Zong-Jie Guan, Jiao-Jiao Li, Xu-Shuang Han, Quan-Ming Wang. Site-specific doping of silver atoms into a Au 25 nanocluster as directed by ligand binding preferences. Chemical Science 2022, 13 (18) , 5148-5154. https://doi.org/10.1039/D2SC00012A
    100. Yingzheng Lin, Yitao Cao, Qiaofeng Yao, Jianping Xie. Revealing the composition-dependent structural evolution fundamentals of bimetallic nanoparticles through an inter-particle alloying reaction. Chemical Science 2022, 13 (16) , 4598-4607. https://doi.org/10.1039/D1SC06296D
    Load all citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2016, 138, 1, 140–148
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.5b09401
    Published December 17, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    6050

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.