ACS Publications. Most Trusted. Most Cited. Most Read
Bifunctional Iminophosphorane Catalyzed Enantioselective Sulfa-Michael Addition to Unactivated α-Substituted Acrylate Esters
My Activity

Figure 1Loading Img
  • Open Access
Communication

Bifunctional Iminophosphorane Catalyzed Enantioselective Sulfa-Michael Addition to Unactivated α-Substituted Acrylate Esters
Click to copy article linkArticle link copied!

View Author Information
The Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
Open PDFSupporting Information (1)

Journal of the American Chemical Society

Cite this: J. Am. Chem. Soc. 2015, 137, 51, 15992–15995
Click to copy citationCitation copied!
https://doi.org/10.1021/jacs.5b10226
Published December 17, 2015

Copyright © 2015 American Chemical Society. This publication is licensed under CC-BY.

Abstract

Click to copy section linkSection link copied!

The highly enantioselective sulfa-Michael addition of alkyl thiols to unactivated α-substituted acrylate esters catalyzed by a bifunctional iminophosphorane organocatalyst under mild conditions is described. The strong Brønsted basicity of the iminophosphorane moiety of the catalyst provides the necessary activation of the alkyl thiol pro-nucleophile, while the two tert-leucine residues flanking a central thiourea hydrogen-bond donor facilitate high enantiofacial selectivity in the protonation of the transient enolate intermediate. The reaction is broad in scope with respect to the alkyl thiol, the ester moiety, and the α-substituent of the α,β-unsaturated ester, affords sulfa-Michael adducts in excellent yields (up to >99%) and enantioselectivities (up to 96% ee), and is amenable to decagram scale-up using catalyst loadings as low as 0.05 mol %.

Copyright © 2015 American Chemical Society

The Michael addition of a carbon-centered (C–H) or heteroatom-centered (X–H) acid to a conjugated electron-deficient alkene is a fundamental reaction in organic chemistry that allows the direct and efficient construction of C–C or C–X bonds with perfect atom economy. (1) In this union, the creation of stereogenic centers, either directly at the β-carbon or indirectly through protonation at the α-carbon, is common and controlling the enantioselectivity with both metal-rich and metal-free catalysts has been the subject of intense research activity over the decades. (2) Recently, much activity has focused on organocatalytic methods, (3) and enantioselective additions of a wide range of pro-nucleophiles under iminium, enamine, or tertiary amine Brønsted base/H-bond donor catalysis to various conjugated electron deficient acceptors including enals, enones, nitroolefins, and other reactive Michael acceptors have been successfully achieved. (3g, 3h)

To date, however, one class of Michael acceptor, α,β-unsaturated esters substituted with alkyl or aryl groups at either the α- or β-position, has remained a persistent challenge in enantioselective organocatalysis due to their low inherent electrophilicity (4) and low propensity for catalyst activation. Both subclasses are problematic in their own way, and each one requires a solution. In this paper, we chose to tackle α-substituted acrylate esters. (5) Our primary aim was to realize reactivity and enantiocontrol with substrates possessing simple alkyl groups at the α-position. To the best of our knowledge, organocatalytic enantioselective Michael additions to methacrylate esters has been limited to NHC catalysis of aldehydes in the Stetter reaction, and examples under Brønsted base catalysis have yet to be reported. (6)

An effective approach to overcoming low inherent reagent electrophilicity in Brønsted base catalyzed addition reactions of pronucleophiles is to raise the Brønsted basicity of the catalyst. (7) Under a fast acid/base proton transfer regime, augmented Brønsted basicity in the catalyst increases the concentration of the nucleophilic conjugate base and, as a consequence, the rate of the bimolecular addition step. To this end, we recently developed a new family of modular bifunctional iminophosphorane (BIMP) superbase organocatalysts for the first general enantioselective organocatalytic nitro-Mannich reaction to unactivated ketimines; (8) a reaction where an organosuperbase was essential for reactivity. (9) In the same vein, we postulated that the poor reactivity of unactivated methacrylate esters toward nucleophilic addition may be overcome using our BIMP organosuperbase family (Scheme 1). We chose the SMA addition of alkyl thiols as this is an important reaction for the asymmetric construction of chiral sulfides, (10, 11) and no catalytic enantioselective version to unactivated α-substituted acrylate esters under metal-free catalysis has previously been reported. (6b) Related literature examples have employed activated derivatives including imides (11f, 11o) and oxazolidinones (10h, 11m, 11q, 11r) as the Michael acceptor or possess activating α-substituents. (11b, 11d, 11g, 11q) Additionally the use of simple aliphatic thiols (11h, 11k, 11n, 11o, 11q, 11u) (pKa(DMSO) = 17) (12) in organocatalytic asymmetric sulfa-Michael additions is much more challenging than the use of more acidic thiol pro-nucleophiles such as aryl thiols or thiocarboxylic acids. (11) Our hope was that the strong Brønsted basicity of the BIMP would surmount the low inherent electrophilicity of the Michael acceptor by increasing the concentration of the thiol conjugate base. Following C–S bond formation, selective enantiofacial protonation of the transient enolate intermediate would deliver the enantioenriched Michael adduct and release the catalyst back into the cycle (Scheme 1).

Scheme 1

Scheme 1. Proposed BIMP Catalyzed Enantioselective Sulfa-Michael Addition to Methyl Methacrylate

1-Propanethiol was chosen to test reactivity in a model reaction using the inexpensive feedstock chemical methyl methacrylate (2a) as the Michael acceptor. A promising reactivity profile was initially established using 10 mol % of our previously reported first generation tert-leucine derived BIMP catalyst 1a derived from triphenylphosphine (Figure 1 and Table 1, entry 1). (13) After just 3 h at rt, 49% yield of product 4a was afforded with an encouraging ee of 66%. However, switching to the analogous but more basic catalyst 1b derived from tris(p-methoxyphenyl)phosphine gave rise to a significant boost in reactivity, and good levels of enantiocontrol were also witnessed; adduct 4a was afforded in quantitative yield and with 72% ee (Table 1, entry 2). Poor reactivity was observed with less basic BIMP catalyst 1c (Table 1, entry 3), and a drop in enantioselectivity was witnessed using tributylphosphine derived BIMP 1d (Table 1, entry 4).

Figure 1

Figure 1. Bifunctional iminophosphorane (BIMP) organocatalysts screened for performance in the sulfa-Michael addition reaction. PMP = p-methoxyphenyl.

Table 1. Catalyst Screen in the Sulfa-Michael Addition of 1-Propanethiol to Methyl Methacrylatea
entrycatalystyieldb (%)eec (%)
11a4966
21b>9972
31c968
41d9135
51e>9957
6d1f5737
71g404
81h919
91i406
101j9776
111k9129
121l>9984
131m>9987
14e1m8689
15f1m9794
a

Reactions were carried out with 0.20 mmol of 3a and 1.0 mmol of 2a.

b

Isolated yield.

c

Enantiomeric excess (ee) determined by HPLC analysis on a chiral stationary phase.

d

Catalyst 1f used at 5 mol %.

e

Reaction performed in 0.5 M Et2O.

f

Reaction conducted in 4.0 mL of Et2O at rt using 5 mol % 1m and quenched after 24 h.

Simple modification of the thiourea hydrogen-bond donor group of the first generation BIMP organocatalysts led to no improvement in the level of enantiocontrol (Table 1, entries 5–7, and Supporting Information), and accordingly alternative second generation BIMP organocatalyst designs were considered. Drawing inspiration from the cyclohexanediamine-derived H-bond donor organocatalysts pioneered by Jacobsen (14) and Takemoto (15) and their co-workers, we synthesized the corresponding BIMPs 1h and 1i and assessed them in the model reaction (Table 1, entries 8 and 9). Although catalytically active, both afforded 4a with low levels of enantiocontrol, and we postulated that the trans-1,2-diaminocyclohexane motif was having a detrimental effect on the enantioselectivity. This was confirmed when hybrid catalyst 1j, arising from a fusion of the amide/thiourea unit of 1h with the tert-leucine residue of our original BIMP catalysts 1a–g, was synthesized; we were delighted to observe enhanced enantioselectivity (76% ee, entry 10), while maintaining the excellent reactivity.

Further elaboration of this second generation BIMP catalyst design revealed that both stereocenters were contributing to enantiocontrol in the formation of 4a. When the diastereomeric catalyst 1k was tried, the enantioselectivity was reduced to 29% ee (Table 1, entry 11), while maintaining the same absolute configuration, indicating that the stereogenic center of the amide/thiourea unit was less influential on enantiofacial control than the stereogenic center proximal to the iminophosphorane. Fine-tuning of the amide moiety of the catalyst (16) revealed 1m, which afforded 4a in 87% ee (Table 1, entry 13). A reoptimization of the reaction conditions to 0.05 M in diethyl ether resulted in a marked improvement in the enantioselectivity to 94% ee while maintaining near quantitative yields (Table 1, entries 14 and 15 and Supporting Information).

With optimized reaction conditions established, we investigated the scope of the transformation (Table 2). An initial screen using 1-propanethiol showed good performance across a range of small, medium, and large ester types (89–96% ee, entries 1–6), although the more sterically bulky esters (e.g., R1 = t-Bu, entry 6) substantially retarded the reaction rate. Subsequent scope with respect to the thiol was investigated using methyl methacrylate and minimal variation to the high enantioselectivity was observed irrespective of alkyl chain length, branching in the α- or β-positions, or cyclic substituents (Table 2, entries 7–12). (17)

Table 2. Scope with Respect to the Ester Group and Thiol Pro-nucleophilesa
entryR1R2productyieldb (%)eec (%)
1Me (2a)n-Pr (3a)4a9794
2dPh (2b)n-Pr (3a)4b>9995
3Et (2c)n-Pr (3a)4c8792
4dBn (2d)n-Pr (3a)4d7889
5i-Pr (2e)n-Pr (3a)4e7193
6et-Bu (2f)n-Pr (3a)4f3696
7Me (2a)n-Pent (3b)4g>9993
8Me (2a)i-Pent (3c)4h8692
9Me (2a)i-Pr (3d)4i>9992
10Me (2a)c-Hex (3e)4j8190
11Me (2a)Bn (3f)4k8590
12Me (2a)PMB (3g)4l8989
a

Reactions were carried out with 0.20 mmol of thiol (3) and 1.0 mmol of methacrylate ester (2).

b

Isolated yield.

c

Determined by HPLC or GC analysis on a chiral stationary phase.

d

Reaction performed with 0.40 mmol of 2.

e

Reaction quenched after 48 h.

Next, variation of the α-substituent of α-substituted α,β-unsaturated methyl or phenyl esters (2g–r) was studied using 1-propanethiol as the S-centered nucleophile (Table 3). Using methyl ester Michael acceptors, the reaction performed well with substituted α-methyl substituents possessing electron withdrawing groups such as vinyl, ester, or phenyl moieties or with an α-phenyl substituent (83–93% ee, Table 3, entries 1–4). With alkyl substituted methyl substituents or branched substituents at the α-position, it was advantageous to use the slightly more active phenyl ester to compensate for the reduction in reaction rate while maintaining high levels of enantiocontrol (85–92% ee, Table 3, entries 6–9). Pleasingly, in addition to the phenyl substituted substrate 2j, the reaction was also applicable to electron rich and deficient aryl substituents (84–94% ee, entries 10–12).

Table 3. Scope with Respect to the α-Substituent on the Michael Acceptora
entryR1R3productyieldb (%)eec (%)
1Meallyl (2g)4m9493
2MeCH2CO2Me (2h)4n8590
3dMeBn (2i)4oe9986
4MePh (2j)4p8483
5dMeEt (2k)4q4792
6PhEt (2l)4r8592
7Phi-Pr (2m)4s9888
8Phc-Hex (2n)4t9385
9Phc-Pent (2o)4u9690
10fMe4-OMe(C6H4) (2p)4v9486
11Me2-OMe(C6H4) (2q)4w8994
12Me2-NO2(C6H4) (2r)4x9884
a

Reactions were carried out with 0.20 mmol of 3a and 0.40 mmol of 2.

b

Isolated yield.

c

Determined by HPLC analysis on a chiral stationary phase.

d

Reaction quenched after 48 h.

e

Absolute configuration of 4o determined by chemical correlation (see Supporting Information).

f

Compound 2p (0.20 mmol) was used.

Although our methodological study was routinely carried out at 5 mol % catalyst loading, all indications suggested that our optimal BIMP catalyst 1m was highly active in the SMA and that the loadings could be significantly reduced. (18) Indeed, in the reaction of 2b with 3a, after re-optimization of the reaction parameters, we were delighted to find the catalyst loading of 1m could be readily reduced down to 0.05 mol % while performing the reaction on a 100 mmol scale (Scheme 2). Near full conversion was achieved after 24 h using only ∼40 mg of in situ generated 1m whereupon the reaction was quenched, a crude ee of 90% was measured, and the product was purified by distillation to afford 4b in 84.5% isolated yield with no loss in ee. To demonstrate the synthetic utility of the β-mercapto ester products 4 resulting from the reaction, 4b was subsequently oxidized to the sulfone 5a, hydrolyzed to the acid 5b, reduced to the alcohol 5c, and converted quantitatively to amides 5d and 5e by direct aminolysis with benzylamine and allylamine, respectively.

Scheme 2

Scheme 2. Decagram Scale Sulfa-Michael Addition and Subsequent Derivatizationa

Scheme aReagents and conditions: (a) catalyst 1m (0.05 mol %), MTBE, 55 °C, 24 h; (b) H2O2/TFA, rt, 4 h, >99% yield, 89% ee; (c) LiOH, THF/H2O, rt, 2 h, 82% yield, 86% ee; (d) DIBAL-H, THF, −78 °C, 1 h, 64% yield, 90% ee; (e) benzylamine (3 equiv), neat, 0 °C, 12 h, 99% yield, 89% ee; (f) allylamine (3 equiv), neat, 0 °C, 2 h, 99% yield, 91% ee.

In summary, the first highly enantioselective organocatalytic SMA of alkyl thiol pro-nucleophiles to unactivated α-substituted acrylate esters has been developed. Good levels of reactivity, and excellent enantioselectivities were achieved across a diverse range of alkyl thiols and unactivated α-substituted acrylate esters using a new second generation bifunctional iminophosphorane (BIMP) superbase organocatalyst. The ability of BIMP organocatalysts to enable unactivated α-substituted acrylate esters to undergo asymmetric conjugate additions is, we believe, a significant advancement in the field, and further work to uncover the breadth of their use is ongoing in our laboratories and will be disclosed in due course.

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b10226.

  • Experimental details and characterization data (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
    • Darren J. Dixon - The Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K. Email: [email protected]
  • Authors
    • Alistair J. M. Farley - The Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
    • Christopher Sandford - The Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
  • Author Contributions

    A.J.M.F. and C.S. contributed equally.

  • Notes
    The authors declare no competing financial interest.

Acknowledgment

Click to copy section linkSection link copied!

This work was supported by the EPSRC (Studentship and Doctoral Training Grant [EP/M50659X/1] to A.J.M.F.), AstraZeneca (Studentship to A.J.M.F.), and the SCI (Postgraduate Scholarship to A.J.M.F.).

References

Click to copy section linkSection link copied!

This article references 18 other publications.

  1. 1
    Trost, B. M.; Fleming, I. Comprehensive Organic Synthesis; Pergamon Press: Oxford, U.K., 1991.
  2. 2
    Tomioka, K.; Nagaoka, Y. Comprehensive Asymmetric Catalysis; Jacobsen, E. N.; Pfatlz, A.; Yamamoto, H., Eds.; Springer: New York, 1999; Vol. 3.
  3. 3

    For reviews on organocatalysis, see:

    (a) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138 DOI: 10.1002/anie.200400650
    (b) Berkessel, A.; Gröger, H. Asymmetric Organocatalysis; Wiley VCH: Weinheim, Germany, 2005.
    (c) List, B.; Yang, J. W. Science 2006, 313, 1584 DOI: 10.1126/science.1131945
    (d) Dondoni, A.; Massi, A. Angew. Chem., Int. Ed. 2008, 47, 4638 DOI: 10.1002/anie.200704684
    (e) Bertelsen, S.; Jørgensen, K. A. Chem. Soc. Rev. 2009, 38, 2178 DOI: 10.1039/b903816g
    (f) Palomo, C.; Oiarbide, M.; López, R. Chem. Soc. Rev. 2009, 38, 632 DOI: 10.1039/B708453F

    For reviews on Brønsted base H-bond donor bifunctional organocatalysts, see:

    (g) Takemoto, Y. Org. Biomol. Chem. 2005, 3, 4299 DOI: 10.1039/b511216h
    (h) Connon, S. J. Chem. Commun. 2008, 2499 DOI: 10.1039/b719249e
    (i) Marcelli, T.; Hiemstra, H. Synthesis 2010, 2010, 1229 DOI: 10.1055/s-0029-1218699

    For reviews on organocatalytic conjugate addition reactions, see:

    (j) Vicario, J. L.; Badía, D.; Carrillo, L.; Reyes, E. Organocatalytic Enantioselective Conjugate Addition Reactions; Royal Society of Chemistry: Cambridge, 2010.
    (k) Tsogoeva, S. B. Eur. J. Org. Chem. 2007, 2007, 1701 DOI: 10.1002/ejoc.200600653
  4. 4
    (a) Matsunaga, S.; Kinoshita, T.; Okada, S.; Harada, S.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 7559 DOI: 10.1021/ja0485917
    (b) López, F.; Harutyunyan, S. R.; Meetsma, A.; Minnaard, A. J.; Feringa, B. L. Angew. Chem., Int. Ed. 2005, 44, 2752 DOI: 10.1002/anie.200500317
    (c) Pubill-Ulldemolins, C.; Bonet, A.; Bo, C.; Gulyás, H.; Fernández, E. Chem. - Eur. J. 2012, 18, 1121 DOI: 10.1002/chem.201102209
  5. 5

    For reviews on enantioselective protonation, see:

    (a) Fehr, C. Angew. Chem., Int. Ed. Engl. 1996, 35, 2566 DOI: 10.1002/anie.199625661
    (b) Eames, J.; Weerasooriya, N. Tetrahedron: Asymmetry 2001, 12, 1 DOI: 10.1016/S0957-4166(00)00496-1
    (c) Duhamel, L.; Duhamel, P.; Plaquevent, J.-C. Tetrahedron: Asymmetry 2004, 15, 3653 DOI: 10.1016/j.tetasy.2004.09.035
    (d) Mohr, J. T.; Hong, A. Y.; Stoltz, B. M. Nat. Chem. 2009, 1, 359 DOI: 10.1038/nchem.297
    (e) Leow, D.; Shen, J.; Su, Y.; Peh, G. Mini-Rev. Org. Chem. 2014, 11, 410 DOI: 10.2174/1570193X1104140926165654
  6. 6

    For metal catalyzed enantioselective conjugate additions to methyl methacrylate, see:

    (a) Belokon’, Y. N.; Kochetkov, K. A.; Churkina, T. y. D.; Ikonnikov, N. S.; Orlova, S. A.; Smirnov, V. V.; Chesnokov, A. A. Mendeleev Commun. 1997, 7, 137 DOI: 10.1070/MC1997v007n04ABEH000790
    (b) Emori, E.; Arai, T.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1998, 120, 4043 DOI: 10.1021/ja980397v
    (c) Saito, S.; Tsubogo, T.; Kobayashi, S. J. Am. Chem. Soc. 2007, 129, 5364 DOI: 10.1021/ja0709730
    (d) Tsubogo, T.; Saito, S.; Seki, K.; Yamashita, Y.; Kobayashi, S. J. Am. Chem. Soc. 2008, 130, 13321 DOI: 10.1021/ja8032058
    (e) Wang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2011, 133, 19080 DOI: 10.1021/ja2092689
    (f) Maleev, V. I.; North, M.; Larionov, V. A.; Fedyanin, I. V.; Savel’yeva, T. F.; Moscalenko, M. A.; Smolyakov, A. F.; Belokon, Y. N. Adv. Synth. Catal. 2014, 356, 1803 DOI: 10.1002/adsc.201400091
    (g) Filloux, C. M.; Rovis, T. J. Am. Chem. Soc. 2015, 137, 508 DOI: 10.1021/ja511445x

    For organocatalyzed additions, see:

    (h) Wurz, N. E.; Daniliuc, C. G.; Glorius, F. Chem. - Eur. J. 2012, 18, 16297 DOI: 10.1002/chem.201202432
  7. 7
    (a) Ishikawa, T. Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organocatalysts; Wiley: New York, 2009.

    For a review on chiral organosuperbases, see:

    (b) Ishikawa, T.; Kumamoto, T. Synthesis 2006, 2006, 737 DOI: 10.1055/s-2006-926325
    (c) Leow, D.; Tan, C.-H. Chem. - Asian J. 2009, 4, 488 DOI: 10.1002/asia.200800361
    (d) Leow, D.; Tan, C.-H. Synlett 2010, 2010, 1589 DOI: 10.1055/s-0029-1219937
    (e) Ishikawa, T. Chem. Pharm. Bull. 2010, 58, 1555 DOI: 10.1248/cpb.58.1555
    (f) Fu, X.; Tan, C.-H. Chem. Commun. 2011, 47, 8210 DOI: 10.1039/c0cc03691a
    (g) Selig, P. Synthesis 2013, 45, 703 DOI: 10.1055/s-0032-1318154
    (h) Krawczyk, H.; Dzięgielewski, M.; Deredas, D.; Albrecht, A.; Albrecht, Ł. Chem. - Eur. J. 2015, 21, 10268 DOI: 10.1002/chem.201500481

    For selected examples, see:

    (i) Corey, E. J.; Grogan, M. J. Org. Lett. 1999, 1, 157 DOI: 10.1021/ol990623l
    (j) Ishikawa, T.; Araki, Y.; Kumamoto, T.; Seki, H.; Fukuda, K.; Isobe, T. Chem. Commun. 2001, 245 DOI: 10.1039/b009193f
    (k) Nugent, B. M.; Yoder, R. A.; Johnston, J. N. J. Am. Chem. Soc. 2004, 126, 3418 DOI: 10.1021/ja031906i
    (l) Terada, M.; Ube, H.; Yaguchi, Y. J. Am. Chem. Soc. 2006, 128, 1454 DOI: 10.1021/ja057848d
    (m) Uraguchi, D.; Sakaki, S.; Ooi, T. J. Am. Chem. Soc. 2007, 129, 12392 DOI: 10.1021/ja075152+
    (n) Davis, T. A.; Wilt, J. C.; Johnston, J. N. J. Am. Chem. Soc. 2010, 132, 2880 DOI: 10.1021/ja908814h
    (o) Sohtome, Y.; Shin, B.; Horitsugi, N.; Takagi, R.; Noguchi, K.; Nagasawa, K. Angew. Chem., Int. Ed. 2010, 49, 7299 DOI: 10.1002/anie.201003172
    (p) Davis, T. A.; Johnston, J. N. Chem. Sci. 2011, 2, 1076 DOI: 10.1039/c1sc00061f
    (q) Uraguchi, D.; Yoshioka, K.; Ueki, Y.; Ooi, T. J. Am. Chem. Soc. 2012, 134, 19370 DOI: 10.1021/ja310209g
    (r) Corbett, M. T.; Uraguchi, D.; Ooi, T.; Johnson, J. S. Angew. Chem., Int. Ed. 2012, 51, 4685 DOI: 10.1002/anie.201200559
    (s) Bandar, J. S.; Lambert, T. H. J. Am. Chem. Soc. 2012, 134, 5552 DOI: 10.1021/ja3015764
    (t) Misaki, T.; Jin, N.; Kawano, K.; Sugimura, T. Chem. Lett. 2012, 41, 1675 DOI: 10.1246/cl.2012.1675
    (u) Shubina, T. E.; Freund, M.; Schenker, S.; Clark, T.; Tsogoeva, S. B. Beilstein J. Org. Chem. 2012, 8, 1485 DOI: 10.3762/bjoc.8.168
    (v) Takeda, T.; Terada, M. J. Am. Chem. Soc. 2013, 135, 15306 DOI: 10.1021/ja408296h
    (w) Bandar, J. S.; Lambert, T. H. J. Am. Chem. Soc. 2013, 135, 11799 DOI: 10.1021/ja407277a
    (x) Goldys, A. M.; Núñez, M. G.; Dixon, D. J. Org. Lett. 2014, 16, 6294 DOI: 10.1021/ol5029942
    (y) Bandar, J. S.; Barthelme, A.; Mazori, A. Y.; Lambert, T. H. Chem. Sci. 2015, 6, 1537 DOI: 10.1039/C4SC02402H
    (z) Uraguchi, D.; Yamada, K.; Ooi, T. Angew. Chem., Int. Ed. 2015, 54, 9954 DOI: 10.1002/anie.201503928
    (aa) Işik, M.; Unver, M. Y.; Tanyeli, C. J. Org. Chem. 2015, 80, 828 DOI: 10.1021/jo5022597
    (ab) Gao, X.; Han, J.; Wang, L. Org. Lett. 2015, 17, 4596 DOI: 10.1021/acs.orglett.5b02323
  8. 8
    Núñez, M. G.; Farley, A. J. M.; Dixon, D. J. J. Am. Chem. Soc. 2013, 135, 16348 DOI: 10.1021/ja409121s
  9. 9
    Pahadi, N. K.; Ube, H.; Terada, M. Tetrahedron Lett. 2007, 48, 8700 DOI: 10.1016/j.tetlet.2007.10.016
  10. 10

    For a review on asymmetric sulfa-Michael additions, see:

    (a) Enders, D.; Lüttgen, K.; Narine, A. A. Synthesis 2007, 2007, 959 DOI: 10.1055/s-2007-965968

    For selected examples using metals, see:

    (b) Nishimura, K.; Ono, M.; Nagaoka, Y.; Tomioka, K. J. Am. Chem. Soc. 1997, 119, 12974 DOI: 10.1021/ja9729950
    (c) Kanemasa, S.; Oderaotoshi, Y.; Wada, E. J. Am. Chem. Soc. 1999, 121, 8675 DOI: 10.1021/ja991064g
    (d) Nishimura, K.; Ono, M.; Nagaoka, Y.; Tomioka, K. Angew. Chem., Int. Ed. 2001, 40, 440 DOI: 10.1002/1521-3773(20010119)40:2<440::AID-ANIE440>3.0.CO;2-A
    (e) Hui, Y.; Jiang, J.; Wang, W.; Chen, W.; Cai, Y.; Lin, L.; Liu, X.; Feng, X. Angew. Chem., Int. Ed. 2010, 49, 4290 DOI: 10.1002/anie.201000105
    (f) Bonollo, S.; Lanari, D.; Pizzo, F.; Vaccaro, L. Org. Lett. 2011, 13, 2150 DOI: 10.1021/ol200379r
    (g) Kitanosono, T.; Sakai, M.; Ueno, M.; Kobayashi, S. Org. Biomol. Chem. 2012, 10, 7134 DOI: 10.1039/c2ob26264a
    (h) Ogawa, T.; Kumagai, N.; Shibasaki, M. Angew. Chem., Int. Ed. 2012, 51, 8551 DOI: 10.1002/anie.201204365

    See also ref 6b.

  11. 11

    For a review on organocatalytic asymmetric SMA reactions, see:

    (a) Chauhan, P.; Mahajan, S.; Enders, D. Chem. Rev. 2014, 114, 8807 DOI: 10.1021/cr500235v

    For selected examples, see:

    (b) Pracejus, H.; Wilcke, F. W.; Hanemann, K. J. Prakt. Chem. 1977, 319, 219 DOI: 10.1002/prac.19773190208
    (c) Hiemstra, H.; Wynberg, H. J. Am. Chem. Soc. 1981, 103, 417 DOI: 10.1021/ja00392a029
    (d) Kumar, A.; Salunkhe, R. V.; Rane, R. A.; Dike, S. Y. J. Chem. Soc., Chem. Commun. 1991, 485 DOI: 10.1039/c39910000485
    (e) McDaid, P.; Chen, Y.; Deng, L. Angew. Chem., Int. Ed. 2002, 41, 338 DOI: 10.1002/1521-3773(20020118)41:2<338::AID-ANIE338>3.0.CO;2-M
    (f) Li, B.-J.; Jiang, L.; Liu, M.; Chen, Y.-C.; Ding, L.-S.; Wu, Y. Synlett 2005, 603 DOI: 10.1055/s-2005-863710
    (g) Leow, D.; Shishi, L.; Chittimalla, S. K.; Fu, X.; Tan, C.-H. Angew. Chem., Int. Ed. 2008, 47, 5641 DOI: 10.1002/anie.200801378
    (h) Liu, Y.; Sun, B.; Wang, B.; Wakem, M.; Deng, L. J. Am. Chem. Soc. 2009, 131, 418 DOI: 10.1021/ja8085092
    (i) Kimmel, K. L.; Robak, M. T.; Ellman, J. A. J. Am. Chem. Soc. 2009, 131, 8754 DOI: 10.1021/ja903351a
    (j) Rana, N. K.; Selvakumar, S.; Singh, V. K. J. Org. Chem. 2010, 75, 2089 DOI: 10.1021/jo902634a
    (k) Dai, L.; Wang, S.-X.; Chen, F.-E. Adv. Synth. Catal. 2010, 352, 2137 DOI: 10.1002/adsc.201000334
    (l) Dai, L.; Yang, H.; Chen, F. Eur. J. Org. Chem. 2011, 2011, 5071 DOI: 10.1002/ejoc.201100403
    (m) Rana, N. K.; Singh, V. K. Org. Lett. 2011, 13, 6520 DOI: 10.1021/ol202808n
    (n) Palacio, C.; Connon, S. J. Chem. Commun. 2012, 48, 2849 DOI: 10.1039/c2cc17965b
    (o) Dai, L.; Yang, H.; Niu, J.; Chen, F. Synlett 2012, 2012, 314 DOI: 10.1055/s-0031-1290113
    (p) Uraguchi, D.; Kinoshita, N.; Nakashima, D.; Ooi, T. Chem. Sci. 2012, 3, 3161 DOI: 10.1039/c2sc20698f
    (q) Breman, A. C.; Smits, J. M. M.; de Gelder, R.; van Maarseveen, J. H.; Ingemann, S.; Hiemstra, H. Synlett 2012, 23, 2195 DOI: 10.1055/s-0032-1317081
    (r) Unhale, R. A.; Rana, N. K.; Singh, V. K. Tetrahedron Lett. 2013, 54, 1911 DOI: 10.1016/j.tetlet.2013.01.004
    (s) Phelan, J. P.; Patel, E. J.; Ellman, J. A. Angew. Chem., Int. Ed. 2014, 53, 11329 DOI: 10.1002/anie.201406971
    (t) Wang, R.; Liu, J.; Xu, J. Adv. Synth. Catal. 2015, 357, 159 DOI: 10.1002/adsc.201400664
    (u) Fu, N. K.; Zhang, L.; Luo, S. Z.; Cheng, J. P. Org. Lett. 2014, 16, 4626 DOI: 10.1021/ol5022178
  12. 12
    Bordwell, F. G.; Hughes, D. L. J. Org. Chem. 1982, 47, 3224 DOI: 10.1021/jo00138a005
  13. 13

    The conversion to 4a was <5% after 14 days using a cinchonine derived bifunctional thiourea catalyst [890044-38-9].

  14. 14
    (a) Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 4901 DOI: 10.1021/ja980139y
    (b) Lalonde, M. P.; Chen, Y.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 6366 DOI: 10.1002/anie.200602221

    For an example of a tertiary amine Brønsted base bifunctional organocatalyst incorporating the amide-thiourea moiety, see:

    (c) Berkessel, A.; Mukherjee, S.; Cleemann, F.; Müller, T. N.; Lex, J. Chem. Commun. 2005, 1898 DOI: 10.1039/b418666d
  15. 15
    Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672 DOI: 10.1021/ja036972z
  16. 16

    For selected examples demonstrating the variation to and optimization of the amide group, see:

    (a) Vachal, P.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 10012 DOI: 10.1021/ja027246j
    (b) Berkessel, A.; Mukherjee, S.; Müller, T. N.; Cleemann, F.; Roland, K.; Brandenburg, M.; Neudörfl, J.-M.; Lex, J. Org. Biomol. Chem. 2006, 4, 4319 DOI: 10.1039/b607574f
    (c) Reisman, S. E.; Doyle, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 7198 DOI: 10.1021/ja801514m
    (d) Zuend, S. J.; Jacobsen, E. N. J. Am. Chem. Soc. 2009, 131, 15358 DOI: 10.1021/ja9058958
  17. 17

    The reaction with PhSH proceeded in 90% yield and 27% ee.

  18. 18

    Highly active organocatalysts that allow very low catalyst loadings (<0.5 mol%) are still relatively rare. For a review, see:

    Giacalone, F.; Gruttadauria, M.; Agrigento, P.; Noto, R. Chem. Soc. Rev. 2012, 41, 2406 DOI: 10.1039/C1CS15206H

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 112 publications.

  1. Sezen Alsancak-Koca, Yeşim Çamlısoy, İrem Bakırcı, Murat Işık, Nihan Çelebi-Ölçüm, Cihangir Tanyeli. Computational Identification of Potential Organocatalysts (CIPOC) Reveals a 2-aminoDMAP/Urea Catalyst Superior to Its Thiourea Analogue. Journal of the American Chemical Society 2025, 147 (12) , 10078-10087. https://doi.org/10.1021/jacs.4c10634
  2. Wan-Fu Zhang, Chong-Dao Lu. Stereoselective Enesulfinamide–Sulfinylimine Tautomerization of β,β-Disubstituted Enesulfinamides. Organic Letters 2024, 26 (50) , 10999-11004. https://doi.org/10.1021/acs.orglett.4c04159
  3. Peng-Fei Lian, Zi-Hao Li, Xin-Yue Qiu, Tong-Mei Ding, Shu-Yu Zhang. Organocatalytic Asymmetric Synthesis of Sulfonyl-Substituted Furans via a Cascade 1,6-Addition/Cyclization/Enantioselective Protonation Pathway. ACS Catalysis 2024, 14 (17) , 12717-12724. https://doi.org/10.1021/acscatal.4c03027
  4. Yuhong Gao, Yiqun Zeng, Tianran Deng, Yu Deng, Cheng Cheng, Jisheng Luo, Li Deng. Catalytic Asymmetric Synthesis of Chiral α,α-Dialkyl Aminonitriles via Reaction of Cyanoketimines. Journal of the American Chemical Society 2024, 146 (18) , 12329-12337. https://doi.org/10.1021/jacs.4c03333
  5. Kai-Yue Wang, Zhuo-Qun Li, Ming-Nuo Xu, Bo Li. Thiourea-Based Bifunctional Catalysts for Epoxide-Involved Ring-Opening Polymerization of α-Amino Acid N-Carboxyanhydrides. Macromolecules 2023, 56 (14) , 5599-5609. https://doi.org/10.1021/acs.macromol.3c00830
  6. Guanglong Su, Michele Formica, Ken Yamazaki, Trevor A. Hamlin, Darren J. Dixon. Catalytic Enantioselective Intramolecular Oxa-Michael Reaction to α,β-Unsaturated Esters and Amides. Journal of the American Chemical Society 2023, 145 (23) , 12771-12782. https://doi.org/10.1021/jacs.3c03182
  7. Prasenjit Gayen, Prasanta Ghorai. Enantioselective Synthesis of 1,3-Benzothiazine Derivatives: An Organocatalytic Chemoselective Approach. Organic Letters 2023, 25 (21) , 3835-3840. https://doi.org/10.1021/acs.orglett.3c01120
  8. Hengyuan Li, Chuanle Zhu. Defluorinative Esterification and 1,3-Dietherification of (Trifluoromethyl)alkenes with Alcohols: Controlled Synthesis of α-Arylacrylates and 1,3-Diethers. The Journal of Organic Chemistry 2023, 88 (7) , 4134-4144. https://doi.org/10.1021/acs.joc.2c02568
  9. Xingjian Yu, Ming Ruan, Yongheng Wang, Audrey Nguyen, Wenwu Xiao, Yousif Ajena, Lucas N. Solano, Ruiwu Liu, Kit S Lam. Site-Specific Albumin-Selective Ligation to Human Serum Albumin under Physiological Conditions. Bioconjugate Chemistry 2022, 33 (12) , 2332-2340. https://doi.org/10.1021/acs.bioconjchem.2c00361
  10. Zhuo-Qun Li, Yao-Yao Zhang, Yu-Jia Zheng, Bo Li, Guang-Peng Wu. Insights into Thiourea-Based Bifunctional Catalysts for Efficient Conversion of CO2 to Cyclic Carbonates. The Journal of Organic Chemistry 2022, 87 (5) , 3145-3155. https://doi.org/10.1021/acs.joc.1c02888
  11. Xianwen Long, Min Zhang, Xiaodong Yang, Jun Deng. Total Synthesis of (±)-Spiroaxillarone A via a Reversible Sulfa-Michael Addition. Organic Letters 2022, 24 (6) , 1303-1307. https://doi.org/10.1021/acs.orglett.1c04282
  12. Daniel Rozsar, Michele Formica, Ken Yamazaki, Trevor A. Hamlin, Darren J. Dixon. Bifunctional Iminophosphorane-Catalyzed Enantioselective Sulfa-Michael Addition to Unactivated α,β-Unsaturated Amides. Journal of the American Chemical Society 2022, 144 (2) , 1006-1015. https://doi.org/10.1021/jacs.1c11898
  13. Xin Huang, Emilie David, Philippe Jubault, Tatiana Besset, Samuel Couve-Bonnaire. Organocatalyzed Sulfa-Michael Addition of Thiophenols on Trisubstituted α-Fluoroacrylates, a Straightforward Access to Chiral Fluorinated Compounds. The Journal of Organic Chemistry 2020, 85 (21) , 14055-14067. https://doi.org/10.1021/acs.joc.0c02081
  14. Michele Formica, Daniel Rozsar, Guanglong Su, Alistair J. M. Farley, Darren J. Dixon. Bifunctional Iminophosphorane Superbase Catalysis: Applications in Organic Synthesis. Accounts of Chemical Research 2020, 53 (10) , 2235-2247. https://doi.org/10.1021/acs.accounts.0c00369
  15. Mookda Pattarawarapan, Dolnapa Yamano, Nittaya Wiriya, Saranphong Yimklan, Wong Phakhodee. Simultaneous Formation and Functionalization of Aryliminophosphoranes Using 1,3-Dihydro-1H-benzimidazol-2-ones as Precursors. The Journal of Organic Chemistry 2020, 85 (20) , 13330-13338. https://doi.org/10.1021/acs.joc.0c01979
  16. Yi-Pan Li, Shou-Fei Zhu, Qi-Lin Zhou. Chiral Spiro Phosphoramide-Catalyzed Sulfa-Michael Addition/Enantioselective Protonation of Exocyclic Enones. Organic Letters 2019, 21 (23) , 9391-9395. https://doi.org/10.1021/acs.orglett.9b03615
  17. Konstantin L. Ivanov, Mikhail Ya. Melnikov, Ekaterina M. Budynina. Phosphazenomalonates as Catalysts and Reactants in (4+3) Annulation to Acrolein. Organic Letters 2019, 21 (12) , 4464-4468. https://doi.org/10.1021/acs.orglett.9b01292
  18. Branislav Ferko, Marián Zeman, Michele Formica, Sebastián Veselý, Jana Doháňošová, Ján Moncol, Petra Olejníková, Dušan Berkeš, Pavol Jakubec, Darren J. Dixon, Ol’ga Caletková. Total Synthesis of Berkeleylactone A. The Journal of Organic Chemistry 2019, 84 (11) , 7159-7165. https://doi.org/10.1021/acs.joc.9b00850
  19. Pengfei Zhou, Xiaohua Liu, Wangbin Wu, Chaoran Xu, Xiaoming Feng. Catalytic Asymmetric Construction of β-Azido Amides and Esters via Haloazidation. Organic Letters 2019, 21 (4) , 1170-1175. https://doi.org/10.1021/acs.orglett.9b00110
  20. Hongchao Guo, Yi Chiao Fan, Zhanhu Sun, Yang Wu, Ohyun Kwon. Phosphine Organocatalysis. Chemical Reviews 2018, 118 (20) , 10049-10293. https://doi.org/10.1021/acs.chemrev.8b00081
  21. Noboru Hayama, Ryuta Kuramoto, Tamás Földes, Kazuya Nishibayashi, Yusuke Kobayashi, Imre Pápai, Yoshiji Takemoto. Mechanistic Insight into Asymmetric Hetero-Michael Addition of α,β-Unsaturated Carboxylic Acids Catalyzed by Multifunctional Thioureas. Journal of the American Chemical Society 2018, 140 (38) , 12216-12225. https://doi.org/10.1021/jacs.8b07511
  22. Josephine Eshon, Floriana Foarta, Clark R. Landis, Jennifer M. Schomaker. α-Tetrasubstituted Aldehydes through Electronic and Strain-Controlled Branch-Selective Stereoselective Hydroformylation. The Journal of Organic Chemistry 2018, 83 (17) , 10207-10220. https://doi.org/10.1021/acs.joc.8b01431
  23. Sherif J. Kaldas, Tatiana Rogova, Valentine G. Nenajdenko, Andrei K. Yudin. Modular Synthesis of β-Amino Boronate Peptidomimetics. The Journal of Organic Chemistry 2018, 83 (13) , 7296-7302. https://doi.org/10.1021/acs.joc.8b00325
  24. Daisuke Uraguchi, Kohei Yamada, Makoto Sato, Takashi Ooi. Catalyst-Directed Guidance of Sulfur-Substituted Enediolates to Stereoselective Carbon–Carbon Bond Formation with Aldehydes. Journal of the American Chemical Society 2018, 140 (15) , 5110-5117. https://doi.org/10.1021/jacs.7b12949
  25. Jennifer L. Fulton, Matthew A. Horwitz, Ericka L. Bruske, Jeffrey S. Johnson. Asymmetric Organocatalytic Sulfa-Michael Addition to Enone Diesters. The Journal of Organic Chemistry 2018, 83 (6) , 3385-3391. https://doi.org/10.1021/acs.joc.8b00007
  26. Lin Qiu, Kai Tian, Zhongqing Wen, Youchao Deng, Dingding Kang, Haoyu Liang, Xiangcheng Zhu, Ben Shen, Yanwen Duan, and Yong Huang . Biomimetic Stereoselective Sulfa-Michael Addition Leads to Platensimycin and Platencin Sulfur Analogues against Methicillin-Resistant Staphylococcus aureus. Journal of Natural Products 2018, 81 (2) , 316-322. https://doi.org/10.1021/acs.jnatprod.7b00745
  27. Heyao Shi, Iacovos N. Michaelides, Benjamin Darses, Pavol Jakubec, Quynh Nhu N. Nguyen, Robert S. Paton, and Darren J. Dixon . Total Synthesis of (−)-Himalensine A. Journal of the American Chemical Society 2017, 139 (49) , 17755-17758. https://doi.org/10.1021/jacs.7b10956
  28. Matthew A. Horwitz, Jennifer L. Fulton, and Jeffrey S. Johnson . Enantio- and Diastereoselective Organocatalytic Conjugate Additions of Nitroalkanes to Enone Diesters. Organic Letters 2017, 19 (21) , 5783-5785. https://doi.org/10.1021/acs.orglett.7b02735
  29. Hong Lu, Jia-Lu Zhang, Jin-Yu Liu, Hong-Yu Li, and Peng-Fei Xu . N-Heterocyclic Carbene-Catalyzed Atom-Economical and Enantioselective Construction of the C–S Bond: Asymmetric Synthesis of Functionalized Thiochromans. ACS Catalysis 2017, 7 (11) , 7797-7802. https://doi.org/10.1021/acscatal.7b02651
  30. Xuguang Yin, Caiyou Chen, Xiong Li, Xiu-Qin Dong, and Xumu Zhang . Rh/SPO-WudaPhos-Catalyzed Asymmetric Hydrogenation of α-Substituted Ethenylphosphonic Acids via Noncovalent Ion-Pair Interaction. Organic Letters 2017, 19 (16) , 4375-4378. https://doi.org/10.1021/acs.orglett.7b02098
  31. Luis Simón and Robert S. Paton . Phosphazene Catalyzed Addition to Electron-Deficient Alkynes: The Importance of Nonlinear Allenyl Intermediates upon Stereoselectivity. The Journal of Organic Chemistry 2017, 82 (7) , 3855-3863. https://doi.org/10.1021/acs.joc.7b00540
  32. Jin-Yu Liu, Jing Zhao, Jia-Lu Zhang, and Peng-Fei Xu . Quaternary Carbon Center Forming Formal [3 + 3] Cycloaddition Reaction via Bifunctional Catalysis: Asymmetric Synthesis of Spirocyclohexene Pyrazolones. Organic Letters 2017, 19 (7) , 1846-1849. https://doi.org/10.1021/acs.orglett.7b00610
  33. Xin Huang, Miao Liu, Kenny Pham, Xiaofeng Zhang, Wen-Bin Yi, Jerry P. Jasinski, and Wei Zhang . Organocatalytic One-Pot Asymmetric Synthesis of Thiolated Spiro-γ-lactam Oxindoles Bearing Three Stereocenters. The Journal of Organic Chemistry 2016, 81 (13) , 5362-5369. https://doi.org/10.1021/acs.joc.6b00653
  34. Virginia C. Rufino, Josefredo R. Pliego. Bifunctional iminophosphorane organocatalyst with additional hydrogen bonding: Calculations predict enhanced catalytic performance in a michael addition reaction. Journal of Molecular Graphics and Modelling 2024, 129 , 108760. https://doi.org/10.1016/j.jmgm.2024.108760
  35. Sebastian Reimann, Shinya Adachi, Hariharaputhiran Subramanian, Mukund P. Sibi. Enantioselective enolate protonations: Evaluation of achiral templates with fluxional brønsted basic substituents in conjugate addition of malononitriles. Tetrahedron 2024, 152 , 133833. https://doi.org/10.1016/j.tet.2024.133833
  36. Charmaine Y. X. Poh, Daniel Rozsar, Jinchao Yang, Kirsten E. Christensen, Darren J. Dixon. Bifunctional Iminophosphorane Catalyzed Amide Enolization for Enantioselective Cyclohexadienone Desymmetrization. Angewandte Chemie 2024, 136 (5) https://doi.org/10.1002/ange.202315401
  37. Charmaine Y. X. Poh, Daniel Rozsar, Jinchao Yang, Kirsten E. Christensen, Darren J. Dixon. Bifunctional Iminophosphorane Catalyzed Amide Enolization for Enantioselective Cyclohexadienone Desymmetrization. Angewandte Chemie International Edition 2024, 63 (5) https://doi.org/10.1002/anie.202315401
  38. Daniel Rozsar, Alistair J. M. Farley, Iain McLauchlan, Benjamin D. A. Shennan, Ken Yamazaki, Darren J. Dixon. Bifunctional Iminophosphorane‐Catalyzed Enantioselective Nitroalkane Addition to Unactivated α,β‐Unsaturated Esters**. Angewandte Chemie 2023, 135 (21) https://doi.org/10.1002/ange.202303391
  39. Daniel Rozsar, Alistair J. M. Farley, Iain McLauchlan, Benjamin D. A. Shennan, Ken Yamazaki, Darren J. Dixon. Bifunctional Iminophosphorane‐Catalyzed Enantioselective Nitroalkane Addition to Unactivated α,β‐Unsaturated Esters**. Angewandte Chemie International Edition 2023, 62 (21) https://doi.org/10.1002/anie.202303391
  40. Michele Formica, Tatiana Rogova, Heyao Shi, Naoto Sahara, Branislav Ferko, Alistair J. M. Farley, Kirsten E. Christensen, Fernanda Duarte, Ken Yamazaki, Darren J. Dixon. Catalytic enantioselective nucleophilic desymmetrization of phosphonate esters. Nature Chemistry 2023, 15 (5) , 714-721. https://doi.org/10.1038/s41557-023-01165-6
  41. Milena Krstić, Maurizio Benaglia, Margherita Gazzotti, Eleonora Colombo, Miguel Sanz. Enantioselective Organocatalytic Addition of Nitromethane to Trifluoromethyl Aryl Ketimines Promoted by Electron‐Rich Bifunctional Iminophosphoranes. Advanced Synthesis & Catalysis 2023, 365 (7) , 1093-1098. https://doi.org/10.1002/adsc.202201297
  42. Steeva Sunny, Mohit Maingle, Kapileswar Seth. Advances in Bifunctional Squaramide-Catalyzed Asymmetric Sulfa-Michael Addition: A Decade Update. Synlett 2023, 34 (06) , 572-600. https://doi.org/10.1055/a-1921-0748
  43. Azusa Kondoh, Masahiro Terada. Organosuperbases – Moving Beyond Classical Brønsted Base Catalysis. 2023, 43-70. https://doi.org/10.1002/9783527832217.ch2
  44. Jianqun Wang, Yinuo Zhu, Maosheng Li, Yanchao Wang, Xianhong Wang, Youhua Tao. Tug‐of‐War between Two Distinct Catalytic Sites Enables Fast and Selective Ring‐Opening Copolymerizations. Angewandte Chemie 2022, 134 (36) https://doi.org/10.1002/ange.202208525
  45. Jianqun Wang, Yinuo Zhu, Maosheng Li, Yanchao Wang, Xianhong Wang, Youhua Tao. Tug‐of‐War between Two Distinct Catalytic Sites Enables Fast and Selective Ring‐Opening Copolymerizations. Angewandte Chemie International Edition 2022, 61 (36) https://doi.org/10.1002/anie.202208525
  46. Xianzhe Yu, Binjie Zhang, Cailing Fan, Qianqian Yan, Shenglin Wang, Hui Hu, Qinxi Dong, Gengyu Du, Yanan Gao, Chaoyuan Zeng. Rapid, enantioselective and colorimetric detection of D-arginine. iScience 2022, 25 (9) , 104964. https://doi.org/10.1016/j.isci.2022.104964
  47. Azusa Kondoh, Takayuki Hirozane, Masahiro Terada. Formal Umpolung Addition of Phosphites to 2‐Azaaryl Ketones under Chiral Brønsted Base Catalysis: Enantioselective Protonation Utilizing [1,2]‐Phospha‐Brook Rearrangement. Chemistry – A European Journal 2022, 28 (42) https://doi.org/10.1002/chem.202201240
  48. Azusa Kondoh, Masahiro Terada. ASYMMETRIC BASE ORGANOCATALYSIS. 2022, 81-115. https://doi.org/10.1002/9781119736424.ch3
  49. Pedro de Jesús Cruz, William R. Cassels, Chun-Hsing Chen, Jeffrey S. Johnson. Doubly stereoconvergent crystallization enabled by asymmetric catalysis. Science 2022, 376 (6598) , 1224-1230. https://doi.org/10.1126/science.abo5048
  50. Yu‐Jun Bai, Mei‐Ling Cheng, Xiao‐Hui Zheng, Sheng‐Yong Zhang, Ping‐An Wang. Chiral Cyclopropenimine‐catalyzed Asymmetric Michael Addition of Bulky Glycine Imine to α,β‐Unsaturated Isoxazoles. Chemistry – An Asian Journal 2022, 17 (11) https://doi.org/10.1002/asia.202200131
  51. Pramod Swami, Maruti Mali, Baswaraj Dhulshette, Subhash Ghosh. Total Synthesis of Thiocladospolide A and Its C2-Epimer. Synthesis 2022, 54 (03) , 683-688. https://doi.org/10.1055/a-1652-3714
  52. Costanza Leonardi, Arianna Brandolese, Lorenzo Preti, Olga Bortolini, Eleonora Polo, Paolo Dambruoso, Daniele Ragno, Graziano Di Carmine, Alessandro Massi. Expanding the Toolbox of Heterogeneous Asymmetric Organocatalysts: Bifunctional Cyclopropenimine Superbases for Enantioselective Catalysis in Batch and Continuous Flow. Advanced Synthesis & Catalysis 2021, 363 (24) , 5473-5485. https://doi.org/10.1002/adsc.202100757
  53. Hamidulla B. Tukhtaev, Stanislav I. Bezzubov, Elena A. Tarasenko, Mikhail Ya. Melnikov, Konstantin L. Ivanov, Ekaterina M. Budynina. Time‐Dependent Diastereodivergent Michael Addition Enabled by Phosphazenes Acting as Catalysts and Reactants. Advanced Synthesis & Catalysis 2021, 363 (22) , 5106-5115. https://doi.org/10.1002/adsc.202100570
  54. Aolin Cheng, Liangliang Zhang, Qinghai Zhou, Tao Liu, Jing Cao, Guoqing Zhao, Kun Zhang, Guanshui Song, Baoguo Zhao. Efficient Asymmetric Biomimetic Aldol Reaction of Glycinates and Trifluoromethyl Ketones by Carbonyl Catalysis. Angewandte Chemie 2021, 133 (37) , 20328-20334. https://doi.org/10.1002/ange.202104031
  55. Aolin Cheng, Liangliang Zhang, Qinghai Zhou, Tao Liu, Jing Cao, Guoqing Zhao, Kun Zhang, Guanshui Song, Baoguo Zhao. Efficient Asymmetric Biomimetic Aldol Reaction of Glycinates and Trifluoromethyl Ketones by Carbonyl Catalysis. Angewandte Chemie International Edition 2021, 60 (37) , 20166-20172. https://doi.org/10.1002/anie.202104031
  56. Xiaolong Zhang, Hongtao Kong, Xuepeng Zhang, Hengmin Jia, Xiuxia Ma, Hui Miao, Yan Mu, Guoqing Zhang. Design and production of environmentally degradable quaternary ammonium salts. Green Chemistry 2021, 23 (17) , 6548-6554. https://doi.org/10.1039/D1GC01525G
  57. Robin F. Weitkamp, Beate Neumann, Hans‐Georg Stammler, Berthold Hoge. Phosphorus‐Containing Superbases: Recent Progress in the Chemistry of Electron‐Abundant Phosphines and Phosphazenes. Chemistry – A European Journal 2021, 27 (42) , 10807-10825. https://doi.org/10.1002/chem.202101065
  58. Achille Antenucci, Stefano Dughera, Polyssena Renzi. Green Chemistry Meets Asymmetric Organocatalysis: A Critical Overview on Catalysts Synthesis. ChemSusChem 2021, 14 (14) , 2785-2853. https://doi.org/10.1002/cssc.202100573
  59. Xinyue Yang, Yanrong Ma, Huiming Di, Xiaochen Wang, Hui Jin, Do Hyun Ryu, Lixin Zhang. A Mild Method for Access to α‐Substituted Dithiomalonates through C‐Thiocarbonylation of Thioester: Synthesis of Mesoionic Insecticides. Advanced Synthesis & Catalysis 2021, 363 (13) , 3201-3206. https://doi.org/10.1002/adsc.202100369
  60. Yasushi Yoshida, Mayu Kukita, Kazuki Omori, Takashi Mino, Masami Sakamoto. Iminophosphorane-mediated regioselective umpolung alkylation reaction of α-iminoesters. Organic & Biomolecular Chemistry 2021, 19 (20) , 4551-4564. https://doi.org/10.1039/D1OB00596K
  61. Hiroki Murakami, Ayano Yamada, Kenichi Michigami, Yoshiji Takemoto. Novel Aza‐Michael Addition‐Asymmetric Protonation to α,β‐Unsaturated Carboxylic Acids with Chiral Thiourea‐Boronic Acid Hybrid Catalysts. Asian Journal of Organic Chemistry 2021, 10 (5) , 1097-1101. https://doi.org/10.1002/ajoc.202100145
  62. Saikat Das, Qiupeng Hu, Azusa Kondoh, Masahiro Terada. Enantioselective Protonation: Hydrophosphinylation of 1,1‐Vinyl Azaheterocycle N ‐Oxides Catalyzed by Chiral Bis(guanidino)iminophosphorane Organosuperbase. Angewandte Chemie 2021, 133 (3) , 1437-1442. https://doi.org/10.1002/ange.202012492
  63. Saikat Das, Qiupeng Hu, Azusa Kondoh, Masahiro Terada. Enantioselective Protonation: Hydrophosphinylation of 1,1‐Vinyl Azaheterocycle N ‐Oxides Catalyzed by Chiral Bis(guanidino)iminophosphorane Organosuperbase. Angewandte Chemie International Edition 2021, 60 (3) , 1417-1422. https://doi.org/10.1002/anie.202012492
  64. Milene Macedo Hornink, Alice Uva Lopes, Leandro Helgueira Andrade. Biobased Spiroimides from Itaconic Acid and Formamides: Molecular Targets for a Novel Synthetic Application of Renewable Chemicals. Synthesis 2021, 53 (02) , 296-308. https://doi.org/10.1055/s-0040-1707318
  65. Ierasia Triandafillidi, Errika Voutyritsa, Christoforos G. Kokotos. Recent advances in reactions promoted by amino acids and oligopeptides. Physical Sciences Reviews 2020, 5 (11) https://doi.org/10.1515/psr-2018-0086
  66. Hongyi Chen, Wenlong Jiang, Qingle Zeng. Recent Advances in Synthesis of Chiral Thioethers. The Chemical Record 2020, 20 (11) , 1269-1296. https://doi.org/10.1002/tcr.202000084
  67. Hai Zhu, Chenlu Zhang, Ning Ma, Minli Tao, Wenqin Zhang. Surface wettability modification of amine-functionalized polyacrylonitrile fiber to enhance heterogeneous catalytic performance for aldol reaction in water. Applied Catalysis A: General 2020, 608 , 117842. https://doi.org/10.1016/j.apcata.2020.117842
  68. Jonathan C. Golec, Eve M. Carter, John W. Ward, William G. Whittingham, Luis Simón, Robert S. Paton, Darren J. Dixon. BIMP‐Catalyzed 1,3‐Prototropic Shift for the Highly Enantioselective Synthesis of Conjugated Cyclohexenones. Angewandte Chemie 2020, 132 (40) , 17570-17575. https://doi.org/10.1002/ange.202006202
  69. Jonathan C. Golec, Eve M. Carter, John W. Ward, William G. Whittingham, Luis Simón, Robert S. Paton, Darren J. Dixon. BIMP‐Catalyzed 1,3‐Prototropic Shift for the Highly Enantioselective Synthesis of Conjugated Cyclohexenones. Angewandte Chemie International Edition 2020, 59 (40) , 17417-17422. https://doi.org/10.1002/anie.202006202
  70. Anton Axelsson, Emmelie Hammarvid, Martin Rahm, Henrik Sundén. DBU‐Catalyzed Ring‐Opening and Retro‐Claisen Fragmentation of Dihydropyranones. European Journal of Organic Chemistry 2020, 2020 (33) , 5436-5444. https://doi.org/10.1002/ejoc.202000858
  71. Yu‐Hui Wang, Zhong‐Yan Cao, Qing‐Hua Li, Guo‐Qiang Lin, Jian Zhou, Ping Tian. Activating Pronucleophiles with High p K a Values: Chiral Organo‐Superbases. Angewandte Chemie 2020, 132 (21) , 8080-8090. https://doi.org/10.1002/ange.201913484
  72. Yu‐Hui Wang, Zhong‐Yan Cao, Qing‐Hua Li, Guo‐Qiang Lin, Jian Zhou, Ping Tian. Activating Pronucleophiles with High p K a Values: Chiral Organo‐Superbases. Angewandte Chemie International Edition 2020, 59 (21) , 8004-8014. https://doi.org/10.1002/anie.201913484
  73. Yusuke Sasano. Total Syntheses of Calyciphylline A-type Alkaloids with Highly Condensed Polycyclic Structures. Journal of Synthetic Organic Chemistry, Japan 2020, 78 (4) , 353-356. https://doi.org/10.5059/yukigoseikyokaishi.78.353
  74. Connor J. Thomson, David M. Barber, Darren J. Dixon. Catalytic Enantioselective Direct Aldol Addition of Aryl Ketones to α‐Fluorinated Ketones. Angewandte Chemie 2020, 132 (13) , 5397-5402. https://doi.org/10.1002/ange.201916129
  75. Connor J. Thomson, David M. Barber, Darren J. Dixon. Catalytic Enantioselective Direct Aldol Addition of Aryl Ketones to α‐Fluorinated Ketones. Angewandte Chemie International Edition 2020, 59 (13) , 5359-5364. https://doi.org/10.1002/anie.201916129
  76. Giulio Bertuzzi, Filippo Silvestrini, Pierluigi Moimare, Daniel Pecorari, Andrea Mazzanti, Luca Bernardi, Mariafrancesca Fochi. Chemodivergent Preparation of Various Heterocycles via Phase‐Transfer Catalysis: Enantioselective Synthesis of Functionalized Piperidines. Advanced Synthesis & Catalysis 2020, 362 (5) , 1167-1175. https://doi.org/10.1002/adsc.201901500
  77. Rupesh K. Jha, Subhrajit Rout, Harshit Joshi, Arko Das, Vinod K. Singh. An enantioselective sulfa-Michael addition of alkyl thiols to α,β-unsaturated 2-acyl imidazoles catalyzed by a bifunctional squaramide. Tetrahedron 2020, 76 (1) , 130800. https://doi.org/10.1016/j.tet.2019.130800
  78. Eszter Baráth, Esteban Mejía. Ein Fest der Wissenschaft inmitten der Natur: Die 54. Bürgenstock‐Konferenz. Angewandte Chemie 2019, 131 (48) , 17265-17271. https://doi.org/10.1002/ange.201906781
  79. Eszter Baráth, Esteban Mejía. A Celebration of Science amidst Nature: The 54th Bürgenstock Conference. Angewandte Chemie International Edition 2019, 58 (48) , 17107-17113. https://doi.org/10.1002/anie.201906781
  80. Julian Klepp, Harald Podversnik, Johannes Puschnig, Andrew Wallace, Ben W. Greatrex. Diastereoselective sulfa-Michael reactions controlled by a biomass-derived chiral auxiliary. Tetrahedron 2019, 75 (29) , 3894-3903. https://doi.org/10.1016/j.tet.2019.05.051
  81. A. C. Knipe. Addition Reactions: Polar Additions. 2019, 429-515. https://doi.org/10.1002/9781119125082.ch10
  82. Venkatachalam Rajeshkumar, Chinnaraj Neelamegam, Sambandam Anandan. A one-pot metal-free protocol for the synthesis of chalcogenated furans from 1,4-enediones and thiols. Organic & Biomolecular Chemistry 2019, 17 (4) , 982-991. https://doi.org/10.1039/C8OB03051K
  83. Maddalen Agirre, Ana Arrieta, Iosune Arrastia, Fernando P. Cossío. Organocatalysts Derived from Unnatural α‐Amino Acids: Scope and Applications. Chemistry – An Asian Journal 2019, 14 (1) , 44-66. https://doi.org/10.1002/asia.201801296
  84. Víctor Laina-Martín, Roberto del Río-Rodríguez, Sergio Díaz-Tendero, Jose A. Fernández-Salas, José Alemán. Asymmetric synthesis of Rauhut–Currier-type esters via Mukaiyama–Michael reaction to acylphosphonates under bifunctional catalysis. Chemical Communications 2018, 54 (99) , 13941-13944. https://doi.org/10.1039/C8CC07561A
  85. Alistair J.M. Farley, Pavol Jakubec, Anna M. Goldys, Darren J. Dixon. Bifunctional iminophosphorane superbases: Potent organocatalysts for enantio- and diastereoselective Michael addition reactions. Tetrahedron 2018, 74 (38) , 5206-5212. https://doi.org/10.1016/j.tet.2018.06.021
  86. Zheng Gu, Jiao‐Jiao Xie, Guo‐Fang Jiang, Yong‐Gui Zhou. Catalytic Asymmetric Conjugate Addition of Tritylthiol to Azadienes with a Bifunctional Organocatalyst. Asian Journal of Organic Chemistry 2018, 7 (8) , 1561-1564. https://doi.org/10.1002/ajoc.201800299
  87. Weidi Cao, Xiaohua Liu, Xiaoming Feng. Chiral organobases: Properties and applications in asymmetric catalysis. Chinese Chemical Letters 2018, 29 (8) , 1201-1208. https://doi.org/10.1016/j.cclet.2018.05.041
  88. Fabien Legros, Thomas Martzel, Jean‐François Brière, Sylvain Oudeyer, Vincent Levacher. Organocatalytic Enantioselective Decarboxylative Protonation Reaction of Meldrum's Acid Derivatives under PTC Conditions. European Journal of Organic Chemistry 2018, 2018 (17) , 1975-1983. https://doi.org/10.1002/ejoc.201800331
  89. Timothée Cadart, Vincent Levacher, Stéphane Perrio, Jean‐François Brière. Construction of Isoxazolidin‐5‐ones with a Tetrasubstituted Carbon Center: Enantioselective Conjugate Addition Mediated by Phase‐Transfer Catalysis. Advanced Synthesis & Catalysis 2018, 360 (7) , 1499-1509. https://doi.org/10.1002/adsc.201800009
  90. Tim Gatzenmeier, Philip S. J. Kaib, Julia B. Lingnau, Richard Goddard, Benjamin List. Die katalytische, asymmetrische Mukaiyama‐Michael‐Reaktion von Silylketenacetalen mit α,β‐ungesättigten Methylestern. Angewandte Chemie 2018, 130 (9) , 2489-2493. https://doi.org/10.1002/ange.201712088
  91. Tim Gatzenmeier, Philip S. J. Kaib, Julia B. Lingnau, Richard Goddard, Benjamin List. The Catalytic Asymmetric Mukaiyama–Michael Reaction of Silyl Ketene Acetals with α,β‐Unsaturated Methyl Esters. Angewandte Chemie International Edition 2018, 57 (9) , 2464-2468. https://doi.org/10.1002/anie.201712088
  92. Jian‐Ping Li, Hao‐Ran Tuo, Ming‐Sheng Xie, Bo Kang, Gui‐Rong Qu, Hai‐Ming Guo. Synthesis of Chiral Acyclic Pyrimidine Nucleosides with a Sulfur‐Containing Side Chain via Enantioselective Tandem Conjugate Addition/Protonation. Asian Journal of Organic Chemistry 2018, 7 (1) , 128-132. https://doi.org/10.1002/ajoc.201700533
  93. Kennosuke Itoh, Mukund P. Sibi. Dibenzofuran-4,6-bis(oxazoline) (DBFOX). A novel trans -chelating bis(oxazoline) ligand for asymmetric reactions. Organic & Biomolecular Chemistry 2018, 16 (31) , 5551-5565. https://doi.org/10.1039/C8OB01010B
  94. Sara Meninno, Simone Naddeo, Luca Varricchio, Amedeo Capobianco, Alessandra Lattanzi. Stereoselective organocatalytic sulfa-Michael reactions of aryl substituted α,β-unsaturated N -acyl pyrazoles. Organic Chemistry Frontiers 2018, 5 (12) , 1967-1977. https://doi.org/10.1039/C8QO00357B
  95. Michele Formica, Geoffroy Sorin, Alistair J. M. Farley, Jesús Díaz, Robert S. Paton, Darren J. Dixon. Bifunctional iminophosphorane catalysed enantioselective sulfa-Michael addition of alkyl thiols to alkenyl benzimidazoles. Chemical Science 2018, 9 (34) , 6969-6974. https://doi.org/10.1039/C8SC01804A
  96. Yifeng Wang, Mingming Chu, Cheng Zhang, Juanjuan Shao, Suosuo Qi, Biao Wang, Xiaohua Du, Danqian Xu. Asymmetric Organocatalytic Conjugate Addition of Thiocarboxylic Acids to In Situ‐Generated ortho ‐Quinomethanes in Oil‐Water Phases. Advanced Synthesis & Catalysis 2017, 359 (23) , 4170-4176. https://doi.org/10.1002/adsc.201700825
  97. Qi Wei, Wenduan Hou, Na Liao, Yungui Peng. Enantioselective Sulfa‐Michael Addition of Aromatic Thiols to β‐Substituted Nitroalkenes Promoted by a Chiral Multifunctional Catalyst. Advanced Synthesis & Catalysis 2017, 359 (14) , 2364-2368. https://doi.org/10.1002/adsc.201700109
  98. Ángel L. Fuentes de Arriba, Omayra H. Rubio, Luis Simón, Victoria Alcázar, Laura M. Monleón, Francisca Sanz, Joaquin R. Morán. Study of a new ‘chiral proton’ organocatalyst with hydrolase activity: application in azlactone racemic dynamic resolution. Tetrahedron: Asymmetry 2017, 28 (6) , 819-823. https://doi.org/10.1016/j.tetasy.2017.04.012
  99. Adriane A. Pereira, Amanda S. Pereira, Amanda C. de Mello, Arthur G. Carpanez, Bruno A. C. Horta, Giovanni W. Amarante. Methylsulfenylation of Electrophilic Carbon Atoms: Reaction Development, Scope, and Mechanism. European Journal of Organic Chemistry 2017, 2017 (12) , 1578-1582. https://doi.org/10.1002/ejoc.201601613
  100. Guoping Zhang, Chun Zhu, Dengyue Liu, Jianke Pan, Jian Zhang, Deyu Hu, Baoan Song. Solvent-free enantioselective conjugate addition and bioactivities of nitromethane to Chalcone containing pyridine. Tetrahedron 2017, 73 (2) , 129-136. https://doi.org/10.1016/j.tet.2016.11.063
Load all citations

Journal of the American Chemical Society

Cite this: J. Am. Chem. Soc. 2015, 137, 51, 15992–15995
Click to copy citationCitation copied!
https://doi.org/10.1021/jacs.5b10226
Published December 17, 2015

Copyright © 2015 American Chemical Society. This publication is licensed under CC-BY.

Article Views

12k

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Scheme 1

    Scheme 1. Proposed BIMP Catalyzed Enantioselective Sulfa-Michael Addition to Methyl Methacrylate

    Figure 1

    Figure 1. Bifunctional iminophosphorane (BIMP) organocatalysts screened for performance in the sulfa-Michael addition reaction. PMP = p-methoxyphenyl.

    Scheme 2

    Scheme 2. Decagram Scale Sulfa-Michael Addition and Subsequent Derivatizationa

    Scheme aReagents and conditions: (a) catalyst 1m (0.05 mol %), MTBE, 55 °C, 24 h; (b) H2O2/TFA, rt, 4 h, >99% yield, 89% ee; (c) LiOH, THF/H2O, rt, 2 h, 82% yield, 86% ee; (d) DIBAL-H, THF, −78 °C, 1 h, 64% yield, 90% ee; (e) benzylamine (3 equiv), neat, 0 °C, 12 h, 99% yield, 89% ee; (f) allylamine (3 equiv), neat, 0 °C, 2 h, 99% yield, 91% ee.

  • References


    This article references 18 other publications.

    1. 1
      Trost, B. M.; Fleming, I. Comprehensive Organic Synthesis; Pergamon Press: Oxford, U.K., 1991.
    2. 2
      Tomioka, K.; Nagaoka, Y. Comprehensive Asymmetric Catalysis; Jacobsen, E. N.; Pfatlz, A.; Yamamoto, H., Eds.; Springer: New York, 1999; Vol. 3.
    3. 3

      For reviews on organocatalysis, see:

      (a) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138 DOI: 10.1002/anie.200400650
      (b) Berkessel, A.; Gröger, H. Asymmetric Organocatalysis; Wiley VCH: Weinheim, Germany, 2005.
      (c) List, B.; Yang, J. W. Science 2006, 313, 1584 DOI: 10.1126/science.1131945
      (d) Dondoni, A.; Massi, A. Angew. Chem., Int. Ed. 2008, 47, 4638 DOI: 10.1002/anie.200704684
      (e) Bertelsen, S.; Jørgensen, K. A. Chem. Soc. Rev. 2009, 38, 2178 DOI: 10.1039/b903816g
      (f) Palomo, C.; Oiarbide, M.; López, R. Chem. Soc. Rev. 2009, 38, 632 DOI: 10.1039/B708453F

      For reviews on Brønsted base H-bond donor bifunctional organocatalysts, see:

      (g) Takemoto, Y. Org. Biomol. Chem. 2005, 3, 4299 DOI: 10.1039/b511216h
      (h) Connon, S. J. Chem. Commun. 2008, 2499 DOI: 10.1039/b719249e
      (i) Marcelli, T.; Hiemstra, H. Synthesis 2010, 2010, 1229 DOI: 10.1055/s-0029-1218699

      For reviews on organocatalytic conjugate addition reactions, see:

      (j) Vicario, J. L.; Badía, D.; Carrillo, L.; Reyes, E. Organocatalytic Enantioselective Conjugate Addition Reactions; Royal Society of Chemistry: Cambridge, 2010.
      (k) Tsogoeva, S. B. Eur. J. Org. Chem. 2007, 2007, 1701 DOI: 10.1002/ejoc.200600653
    4. 4
      (a) Matsunaga, S.; Kinoshita, T.; Okada, S.; Harada, S.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 7559 DOI: 10.1021/ja0485917
      (b) López, F.; Harutyunyan, S. R.; Meetsma, A.; Minnaard, A. J.; Feringa, B. L. Angew. Chem., Int. Ed. 2005, 44, 2752 DOI: 10.1002/anie.200500317
      (c) Pubill-Ulldemolins, C.; Bonet, A.; Bo, C.; Gulyás, H.; Fernández, E. Chem. - Eur. J. 2012, 18, 1121 DOI: 10.1002/chem.201102209
    5. 5

      For reviews on enantioselective protonation, see:

      (a) Fehr, C. Angew. Chem., Int. Ed. Engl. 1996, 35, 2566 DOI: 10.1002/anie.199625661
      (b) Eames, J.; Weerasooriya, N. Tetrahedron: Asymmetry 2001, 12, 1 DOI: 10.1016/S0957-4166(00)00496-1
      (c) Duhamel, L.; Duhamel, P.; Plaquevent, J.-C. Tetrahedron: Asymmetry 2004, 15, 3653 DOI: 10.1016/j.tetasy.2004.09.035
      (d) Mohr, J. T.; Hong, A. Y.; Stoltz, B. M. Nat. Chem. 2009, 1, 359 DOI: 10.1038/nchem.297
      (e) Leow, D.; Shen, J.; Su, Y.; Peh, G. Mini-Rev. Org. Chem. 2014, 11, 410 DOI: 10.2174/1570193X1104140926165654
    6. 6

      For metal catalyzed enantioselective conjugate additions to methyl methacrylate, see:

      (a) Belokon’, Y. N.; Kochetkov, K. A.; Churkina, T. y. D.; Ikonnikov, N. S.; Orlova, S. A.; Smirnov, V. V.; Chesnokov, A. A. Mendeleev Commun. 1997, 7, 137 DOI: 10.1070/MC1997v007n04ABEH000790
      (b) Emori, E.; Arai, T.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1998, 120, 4043 DOI: 10.1021/ja980397v
      (c) Saito, S.; Tsubogo, T.; Kobayashi, S. J. Am. Chem. Soc. 2007, 129, 5364 DOI: 10.1021/ja0709730
      (d) Tsubogo, T.; Saito, S.; Seki, K.; Yamashita, Y.; Kobayashi, S. J. Am. Chem. Soc. 2008, 130, 13321 DOI: 10.1021/ja8032058
      (e) Wang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2011, 133, 19080 DOI: 10.1021/ja2092689
      (f) Maleev, V. I.; North, M.; Larionov, V. A.; Fedyanin, I. V.; Savel’yeva, T. F.; Moscalenko, M. A.; Smolyakov, A. F.; Belokon, Y. N. Adv. Synth. Catal. 2014, 356, 1803 DOI: 10.1002/adsc.201400091
      (g) Filloux, C. M.; Rovis, T. J. Am. Chem. Soc. 2015, 137, 508 DOI: 10.1021/ja511445x

      For organocatalyzed additions, see:

      (h) Wurz, N. E.; Daniliuc, C. G.; Glorius, F. Chem. - Eur. J. 2012, 18, 16297 DOI: 10.1002/chem.201202432
    7. 7
      (a) Ishikawa, T. Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organocatalysts; Wiley: New York, 2009.

      For a review on chiral organosuperbases, see:

      (b) Ishikawa, T.; Kumamoto, T. Synthesis 2006, 2006, 737 DOI: 10.1055/s-2006-926325
      (c) Leow, D.; Tan, C.-H. Chem. - Asian J. 2009, 4, 488 DOI: 10.1002/asia.200800361
      (d) Leow, D.; Tan, C.-H. Synlett 2010, 2010, 1589 DOI: 10.1055/s-0029-1219937
      (e) Ishikawa, T. Chem. Pharm. Bull. 2010, 58, 1555 DOI: 10.1248/cpb.58.1555
      (f) Fu, X.; Tan, C.-H. Chem. Commun. 2011, 47, 8210 DOI: 10.1039/c0cc03691a
      (g) Selig, P. Synthesis 2013, 45, 703 DOI: 10.1055/s-0032-1318154
      (h) Krawczyk, H.; Dzięgielewski, M.; Deredas, D.; Albrecht, A.; Albrecht, Ł. Chem. - Eur. J. 2015, 21, 10268 DOI: 10.1002/chem.201500481

      For selected examples, see:

      (i) Corey, E. J.; Grogan, M. J. Org. Lett. 1999, 1, 157 DOI: 10.1021/ol990623l
      (j) Ishikawa, T.; Araki, Y.; Kumamoto, T.; Seki, H.; Fukuda, K.; Isobe, T. Chem. Commun. 2001, 245 DOI: 10.1039/b009193f
      (k) Nugent, B. M.; Yoder, R. A.; Johnston, J. N. J. Am. Chem. Soc. 2004, 126, 3418 DOI: 10.1021/ja031906i
      (l) Terada, M.; Ube, H.; Yaguchi, Y. J. Am. Chem. Soc. 2006, 128, 1454 DOI: 10.1021/ja057848d
      (m) Uraguchi, D.; Sakaki, S.; Ooi, T. J. Am. Chem. Soc. 2007, 129, 12392 DOI: 10.1021/ja075152+
      (n) Davis, T. A.; Wilt, J. C.; Johnston, J. N. J. Am. Chem. Soc. 2010, 132, 2880 DOI: 10.1021/ja908814h
      (o) Sohtome, Y.; Shin, B.; Horitsugi, N.; Takagi, R.; Noguchi, K.; Nagasawa, K. Angew. Chem., Int. Ed. 2010, 49, 7299 DOI: 10.1002/anie.201003172
      (p) Davis, T. A.; Johnston, J. N. Chem. Sci. 2011, 2, 1076 DOI: 10.1039/c1sc00061f
      (q) Uraguchi, D.; Yoshioka, K.; Ueki, Y.; Ooi, T. J. Am. Chem. Soc. 2012, 134, 19370 DOI: 10.1021/ja310209g
      (r) Corbett, M. T.; Uraguchi, D.; Ooi, T.; Johnson, J. S. Angew. Chem., Int. Ed. 2012, 51, 4685 DOI: 10.1002/anie.201200559
      (s) Bandar, J. S.; Lambert, T. H. J. Am. Chem. Soc. 2012, 134, 5552 DOI: 10.1021/ja3015764
      (t) Misaki, T.; Jin, N.; Kawano, K.; Sugimura, T. Chem. Lett. 2012, 41, 1675 DOI: 10.1246/cl.2012.1675
      (u) Shubina, T. E.; Freund, M.; Schenker, S.; Clark, T.; Tsogoeva, S. B. Beilstein J. Org. Chem. 2012, 8, 1485 DOI: 10.3762/bjoc.8.168
      (v) Takeda, T.; Terada, M. J. Am. Chem. Soc. 2013, 135, 15306 DOI: 10.1021/ja408296h
      (w) Bandar, J. S.; Lambert, T. H. J. Am. Chem. Soc. 2013, 135, 11799 DOI: 10.1021/ja407277a
      (x) Goldys, A. M.; Núñez, M. G.; Dixon, D. J. Org. Lett. 2014, 16, 6294 DOI: 10.1021/ol5029942
      (y) Bandar, J. S.; Barthelme, A.; Mazori, A. Y.; Lambert, T. H. Chem. Sci. 2015, 6, 1537 DOI: 10.1039/C4SC02402H
      (z) Uraguchi, D.; Yamada, K.; Ooi, T. Angew. Chem., Int. Ed. 2015, 54, 9954 DOI: 10.1002/anie.201503928
      (aa) Işik, M.; Unver, M. Y.; Tanyeli, C. J. Org. Chem. 2015, 80, 828 DOI: 10.1021/jo5022597
      (ab) Gao, X.; Han, J.; Wang, L. Org. Lett. 2015, 17, 4596 DOI: 10.1021/acs.orglett.5b02323
    8. 8
      Núñez, M. G.; Farley, A. J. M.; Dixon, D. J. J. Am. Chem. Soc. 2013, 135, 16348 DOI: 10.1021/ja409121s
    9. 9
      Pahadi, N. K.; Ube, H.; Terada, M. Tetrahedron Lett. 2007, 48, 8700 DOI: 10.1016/j.tetlet.2007.10.016
    10. 10

      For a review on asymmetric sulfa-Michael additions, see:

      (a) Enders, D.; Lüttgen, K.; Narine, A. A. Synthesis 2007, 2007, 959 DOI: 10.1055/s-2007-965968

      For selected examples using metals, see:

      (b) Nishimura, K.; Ono, M.; Nagaoka, Y.; Tomioka, K. J. Am. Chem. Soc. 1997, 119, 12974 DOI: 10.1021/ja9729950
      (c) Kanemasa, S.; Oderaotoshi, Y.; Wada, E. J. Am. Chem. Soc. 1999, 121, 8675 DOI: 10.1021/ja991064g
      (d) Nishimura, K.; Ono, M.; Nagaoka, Y.; Tomioka, K. Angew. Chem., Int. Ed. 2001, 40, 440 DOI: 10.1002/1521-3773(20010119)40:2<440::AID-ANIE440>3.0.CO;2-A
      (e) Hui, Y.; Jiang, J.; Wang, W.; Chen, W.; Cai, Y.; Lin, L.; Liu, X.; Feng, X. Angew. Chem., Int. Ed. 2010, 49, 4290 DOI: 10.1002/anie.201000105
      (f) Bonollo, S.; Lanari, D.; Pizzo, F.; Vaccaro, L. Org. Lett. 2011, 13, 2150 DOI: 10.1021/ol200379r
      (g) Kitanosono, T.; Sakai, M.; Ueno, M.; Kobayashi, S. Org. Biomol. Chem. 2012, 10, 7134 DOI: 10.1039/c2ob26264a
      (h) Ogawa, T.; Kumagai, N.; Shibasaki, M. Angew. Chem., Int. Ed. 2012, 51, 8551 DOI: 10.1002/anie.201204365

      See also ref 6b.

    11. 11

      For a review on organocatalytic asymmetric SMA reactions, see:

      (a) Chauhan, P.; Mahajan, S.; Enders, D. Chem. Rev. 2014, 114, 8807 DOI: 10.1021/cr500235v

      For selected examples, see:

      (b) Pracejus, H.; Wilcke, F. W.; Hanemann, K. J. Prakt. Chem. 1977, 319, 219 DOI: 10.1002/prac.19773190208
      (c) Hiemstra, H.; Wynberg, H. J. Am. Chem. Soc. 1981, 103, 417 DOI: 10.1021/ja00392a029
      (d) Kumar, A.; Salunkhe, R. V.; Rane, R. A.; Dike, S. Y. J. Chem. Soc., Chem. Commun. 1991, 485 DOI: 10.1039/c39910000485
      (e) McDaid, P.; Chen, Y.; Deng, L. Angew. Chem., Int. Ed. 2002, 41, 338 DOI: 10.1002/1521-3773(20020118)41:2<338::AID-ANIE338>3.0.CO;2-M
      (f) Li, B.-J.; Jiang, L.; Liu, M.; Chen, Y.-C.; Ding, L.-S.; Wu, Y. Synlett 2005, 603 DOI: 10.1055/s-2005-863710
      (g) Leow, D.; Shishi, L.; Chittimalla, S. K.; Fu, X.; Tan, C.-H. Angew. Chem., Int. Ed. 2008, 47, 5641 DOI: 10.1002/anie.200801378
      (h) Liu, Y.; Sun, B.; Wang, B.; Wakem, M.; Deng, L. J. Am. Chem. Soc. 2009, 131, 418 DOI: 10.1021/ja8085092
      (i) Kimmel, K. L.; Robak, M. T.; Ellman, J. A. J. Am. Chem. Soc. 2009, 131, 8754 DOI: 10.1021/ja903351a
      (j) Rana, N. K.; Selvakumar, S.; Singh, V. K. J. Org. Chem. 2010, 75, 2089 DOI: 10.1021/jo902634a
      (k) Dai, L.; Wang, S.-X.; Chen, F.-E. Adv. Synth. Catal. 2010, 352, 2137 DOI: 10.1002/adsc.201000334
      (l) Dai, L.; Yang, H.; Chen, F. Eur. J. Org. Chem. 2011, 2011, 5071 DOI: 10.1002/ejoc.201100403
      (m) Rana, N. K.; Singh, V. K. Org. Lett. 2011, 13, 6520 DOI: 10.1021/ol202808n
      (n) Palacio, C.; Connon, S. J. Chem. Commun. 2012, 48, 2849 DOI: 10.1039/c2cc17965b
      (o) Dai, L.; Yang, H.; Niu, J.; Chen, F. Synlett 2012, 2012, 314 DOI: 10.1055/s-0031-1290113
      (p) Uraguchi, D.; Kinoshita, N.; Nakashima, D.; Ooi, T. Chem. Sci. 2012, 3, 3161 DOI: 10.1039/c2sc20698f
      (q) Breman, A. C.; Smits, J. M. M.; de Gelder, R.; van Maarseveen, J. H.; Ingemann, S.; Hiemstra, H. Synlett 2012, 23, 2195 DOI: 10.1055/s-0032-1317081
      (r) Unhale, R. A.; Rana, N. K.; Singh, V. K. Tetrahedron Lett. 2013, 54, 1911 DOI: 10.1016/j.tetlet.2013.01.004
      (s) Phelan, J. P.; Patel, E. J.; Ellman, J. A. Angew. Chem., Int. Ed. 2014, 53, 11329 DOI: 10.1002/anie.201406971
      (t) Wang, R.; Liu, J.; Xu, J. Adv. Synth. Catal. 2015, 357, 159 DOI: 10.1002/adsc.201400664
      (u) Fu, N. K.; Zhang, L.; Luo, S. Z.; Cheng, J. P. Org. Lett. 2014, 16, 4626 DOI: 10.1021/ol5022178
    12. 12
      Bordwell, F. G.; Hughes, D. L. J. Org. Chem. 1982, 47, 3224 DOI: 10.1021/jo00138a005
    13. 13

      The conversion to 4a was <5% after 14 days using a cinchonine derived bifunctional thiourea catalyst [890044-38-9].

    14. 14
      (a) Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 4901 DOI: 10.1021/ja980139y
      (b) Lalonde, M. P.; Chen, Y.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 6366 DOI: 10.1002/anie.200602221

      For an example of a tertiary amine Brønsted base bifunctional organocatalyst incorporating the amide-thiourea moiety, see:

      (c) Berkessel, A.; Mukherjee, S.; Cleemann, F.; Müller, T. N.; Lex, J. Chem. Commun. 2005, 1898 DOI: 10.1039/b418666d
    15. 15
      Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672 DOI: 10.1021/ja036972z
    16. 16

      For selected examples demonstrating the variation to and optimization of the amide group, see:

      (a) Vachal, P.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 10012 DOI: 10.1021/ja027246j
      (b) Berkessel, A.; Mukherjee, S.; Müller, T. N.; Cleemann, F.; Roland, K.; Brandenburg, M.; Neudörfl, J.-M.; Lex, J. Org. Biomol. Chem. 2006, 4, 4319 DOI: 10.1039/b607574f
      (c) Reisman, S. E.; Doyle, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 7198 DOI: 10.1021/ja801514m
      (d) Zuend, S. J.; Jacobsen, E. N. J. Am. Chem. Soc. 2009, 131, 15358 DOI: 10.1021/ja9058958
    17. 17

      The reaction with PhSH proceeded in 90% yield and 27% ee.

    18. 18

      Highly active organocatalysts that allow very low catalyst loadings (<0.5 mol%) are still relatively rare. For a review, see:

      Giacalone, F.; Gruttadauria, M.; Agrigento, P.; Noto, R. Chem. Soc. Rev. 2012, 41, 2406 DOI: 10.1039/C1CS15206H
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b10226.

    • Experimental details and characterization data (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.