Metal–Metal Bonding in Uranium–Group 10 ComplexesClick to copy article linkArticle link copied!
Abstract
Heterobimetallic complexes containing short uranium–group 10 metal bonds have been prepared from monometallic IUIV(OArP-κ2O,P)3 (2) {[ArPO]− = 2-tert-butyl-4-methyl-6-(diphenylphosphino)phenolate}. The U–M bond in IUIV(μ-OArP-1κ1O,2κ1P)3M0, M = Ni (3–Ni), Pd (3–Pd), and Pt (3–Pt), has been investigated by experimental and DFT computational methods. Comparisons of 3–Ni with two further U–Ni complexes XUIV(μ-OArP-1κ1O,2κ1P)3Ni0, X = Me3SiO (4) and F (5), was also possible via iodide substitution. All complexes were characterized by variable-temperature NMR spectroscopy, electrochemistry, and single crystal X-ray diffraction. The U–M bonds are significantly shorter than any other crystallographically characterized d–f-block bimetallic, even though the ligand flexes to allow a variable U–M separation. Excellent agreement is found between the experimental and computed structures for 3–Ni and 3–Pd. Natural population analysis and natural localized molecular orbital (NLMO) compositions indicate that U employs both 5f and 6d orbitals in covalent bonding to a significant extent. Quantum theory of atoms-in-molecules analysis reveals U–M bond critical point properties typical of metallic bonding and a larger delocalization index (bond order) for the less polar U–Ni bond than U–Pd. Electrochemical studies agree with the computational analyses and the X-ray structural data for the U–X adducts 3–Ni, 4, and 5. The data show a trend in uranium–metal bond strength that decreases from 3–Ni down to 3–Pt and suggest that exchanging the iodide for a fluoride strengthens the metal–metal bond. Despite short U–TM (transition metal) distances, four other computational approaches also suggest low U–TM bond orders, reflecting highly transition metal localized valence NLMOs. These are more so for 3–Pd than 3–Ni, consistent with slightly larger U–TM bond orders in the latter. Computational studies of the model systems (PH3)3MU(OH)3I (M = Ni, Pd) reveal longer and weaker unsupported U–TM bonds vs 3.
Introduction
Synthesis
Preparation of the Ligand and Monometallic Compounds
Scheme 1
Figure 1
Figure 1. Molecular structure of 2. Solvent molecules and hydrogen atoms are omitted, and peripheral carbon atoms are depicted as a wireframe, for clarity. Thermal ellipsoids are drawn at 50% probability. Selected distances (Å) and angles (deg): U–I, 3.0414(6); U–O, 2.150(3)–2.162(3); U–P, 3.041(1)–3.056(1); O–U–P, 62.93(8)–63.14(8); O–U–I, 79.98(2)–82.43(2), 119.43(8)–124.53(8).
Preparation of the Bimetallic Compounds
Scheme 2
Figure 2
Figure 2. Thermal ellipsoid plot for 3–Ni, 3–Pd, and 3–Pt. Solvent molecules and hydrogen atoms are omitted, and selected carbon atoms are depicted as a wireframe, for clarity. Thermal ellipsoids are drawn at 50% probability, and only one independent molecule out of nine in the asymmetric unit is shown. Selected bond distances (Å) and angles (deg) are shown in Table 1.
3–Ni | 3–Pd | 3–Pt | |||
---|---|---|---|---|---|
expl | calcd | expl | calcd | expl | |
U–M (Å) | 2.527(2)–2.540(2) | 2.534 | 2.686(2)–2.694(1) | 2.701 | 2.706(1)–2.709(1) |
U–I (Å) | 3.007(1)–3.012(1) | 3.008 | 2.994(1)–3.007(1) | 3.014 | 3.007(1)–3.014(1) |
U–O (Å) | 2.134(8)–2.16(1), | 2.166 (av) | 2.12(1)–2.14(1) | 2.162 (av) | 2.125(5)–2.15(1) |
M–P (Å) | 2.222(5)–2.239(4) | 2.264 (av) | 2.361(3)–2.368(3) | 2.396 (av) | 2.320(4)–2.330(3) |
I–U–M (deg) | 178.94(5)–179.58(6) | 178.0 | 178.90(5)–179.34(4) | 178.3 | 178.80(3)–179.13(3) |
U–M–P (deg) | 91.7(1)–94.3(1) | 90.36(9)–92.68(8) | 91.11(7)–93.57(7) | ||
O–U–M–P (deg) | 26.4(3)–31.8(3) | 25.3(2)–30.2(2) | 24.6(2)–29.3(2) |
Torsion angles are given for oxygen and phosphorus atoms bound to the same bridging ligand.
Figure 3
Figure 3. Stacked variable-temperature 1H NMR spectra of 3–Ni in toluene-d8 from 3.2 to 6.6 ppm over a temperature range of 300–370 K. Asterisks indicate resonances of phenyl hydrogen atoms observable at 300 and 370 K.
Figure 4
Figure 4. Simplified Newman projection illustrating the helicity of the bimetallic complexes.
Computational Investigation of 3–Ni and 3–Pd
spin density | partial charge | atomic populations | |
---|---|---|---|
U | 2.146 | 1.079 | 5f3.126d1.507s0.217p0.01 |
U | 2.137 | 1.198 | 5f3.086d1.467s0.197p0.01 |
Ni | –0.075 | 0.091 | 3d9.394s0.48 |
Pd | –0.032 | 0.050 | 4d9.445s0.47 |
I | –0.038 | –0.277 | 5s1.885p5.395d0.01 |
I | –0.040 | –0.298 | 5s1.895p5.405d0.01 |
P (av) | 0.000 | 0.881 | |
P (av) | –0.003 | 0.872 | |
O (av) | –0.018 | –0.700 | |
O (av) | –0.018 | –0.708 |
NLMO | composition | character |
---|---|---|
110 | 99.18 U (99.56 f) | U f |
99.30 U (99.57 f) | ||
111 | 94.81 U (2.05 s, 97.24 f); all others <0.78 | U f |
97.24 U (1.49 s, 97.74 f) | ||
113 | 92.23 I (99.96 p); 6.62 U (59.44 d, 40.29 f) | I pπ |
92.47 I (99.95 p); 6.30 U (59.33 d, 40.48 f) | ||
114 | 91.80 I (99.95 p); 8.02 U (54.62 d, 45.20 f) | I pπ |
90.32 I (99.70 p); 9.05 U (50.96 d, 48.62 f) | ||
115 | 95.97 Ni (99.98 d); all others <0.95 | Ni/Pd dδ |
96.17 Pd (99.99 d); all others <0.78 | ||
116 | 95.97 Ni (99.98 d); all others <0.95 | Ni/Pd dδ |
96.17 Pd (99.99 d); all others <0.78 | ||
117 | 92.29 Ni (99.99 d); 5.34 U (40.82 d, 58.49 f) | Ni/Pd dπ |
93.55 Pd (99.94 d); 3.61 U (1.56 s, 46.24 d, 52.06 f) | ||
118 | 90.60 Ni (99.99 d); 7.13 U (31.02 d, 68.82 f) | Ni/Pd dπ |
92.57 Pd (99.96 d); 4.73 U (40.52 d, 59.16 f) | ||
128 | 78.17 I (24.36 s, 75.39 p); 20.91 U (18.95 s, 54.48 d, 26.18 f) | I pσ |
79.60 I (24.65 s, 75.09 p); 19.66 U (16.36 s, 56.56 d, 26.61 f) | ||
129 | 88.75 Ni (1.21 s, 98.61 d); 10.40 U (3.55 s, 24.54 d, 70.91 f) | Ni/Pd dσ |
91.86 Pd (1.41 s, 98.47 d); 6.81 U (5.13 s, 29.41 d, 64.29 f) |
Figure 5
Figure 5. Selected valence NLMOs of 3–Ni. Isosurface value = 0.04. Atom colors: iodine = purple, uranium = lighter blue, oxygen = red, nickel = darker blue, phosphorus = yellow, and carbon = gray. Hydrogen atoms are omitted for clarity.
3–Ni | 3–Pd | 3–Ni(m) | 3–Pd(m) | |
---|---|---|---|---|
ρ | 0.068 | 0.065 | 0.043 | 0.041 |
∇2ρ | 0.144 | 0.128 | 0.064 | 0.078 |
H | –0.019 | –0.018 | –0.010 | –0.008 |
ε | 0.024 | 0.028 | 0.019 | 0.012 |
δ(U,TM) | 0.955 | 0.777 | 0.633 | 0.514 |
Wiberg bond order | 0.720 | 0.625 | 0.457 | 0.403 |
atom–atom net linear NLMO/NPA bond order | 0.813 | 0.685 | 0.446 | 0.363 |
Mayer bond order | 0.831 | 0.598 | 0.716 | 0.489 |
Gopinathan–Jug bond order | 0.911 | 0.640 | 0.595 | 0.411 |
ρ, H, and ∇2ρ are in atomic units.
Derivatization of the Bimetallic Compounds
Scheme 3
Figure 6
Figure 6. Thermal ellipsoid plots for 4 and 5. Solvent molecules and hydrogen atoms are omitted, and selected carbon atoms are depicted as a wireframe, for clarity. Thermal ellipsoids drawn at 50% probability. Selected bond distances (Å) and angles (deg) for 4: U1–Ni1, 2.556(1); U1–O1, 2.210(6); U1–O2, 2.188(6); U1–O3, 2.160(6); U1–O4, 2.093(6); Ni1–P1, 2.208(2); Ni1–P2, 2.213(3); Ni1–P3, 2.221(2); O4–U1–Ni1, 178.6(2); U1–Ni1–P1, 87.85(7); U1–Ni1–P2, 97.84(7); U1–Ni1–P3, 94.95(7); O1–U1–Ni1–P1, 37.4(2); O2–U1–Ni1–P2, 18.4(2); O3–U1–Ni1–P3, 28.1(2). For 5: U1–Ni1, 2.520(1); U1–F1, 2.091(5); U1–O1, 2.159(8); U1–O2, 2.174(6); U1–O3, 2.199(5); Ni1–P1, 2.225(3); Ni1–P2, 2.215(3); Ni1–P3, 2.212(2); F1–U1–Ni1, 178.8(2); U1–Ni1–P1, 96.16(7); U1–Ni1–P2, 91.56(7); U1–Ni1–P3, 91.82(7); O1–U1–Ni1–P1, 22.2(2); O2–U1–Ni1–P2, 30.1(2); O3–U1–Ni1–P3, 29.1(2).
Figure 7
Figure 7. Thermal ellipsoid plot for 3–Ni (left) and 4 (right) viewed along the U–Ni bond axes. Solvent molecules and hydrogen atoms are omitted and selected carbon atoms are depicted as a wireframe for clarity. Thermal ellipsoids are drawn at 50% probability.
Electrochemistry
Figure 8
Figure 8. Cyclic voltammograms for 3–Pt, 3–Pd, 3–Ni, 4, and 5. All measured in THF using 0.1 M [nBu4N][BPh4] as the supporting electrolyte, at a scan rate of 100 mV s–1. The currents are normalized against the peak height of reduction process I for 3–Pt.
Conclusions
Experimental Section
General Details
KOC6H2-6-But-4-Me-2-PPh2 (KL, 1)
IU(μ-OC6H2-6-But-4-Me-2-PPh2-κ2O,P)3 (IUL3, 2)
IUIVL3Ni0 (3–Ni)
IUIVL3Pd0 (3–Pd)
IUIVL3Pt0 (3–Pt)
Me3SiOUIVL3Ni0 (4)
FUIVL3Ni0 (5)
Computational Details
Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b10698. Crystallographic files were deposited at the Cambridge Crystallographic Data Centre (CCDC): 1430506 (2), 1430507 (3–Ni), 1430511 (3–Pd), 1430512 (3–Pt), 1430513 (4), 1438934 (5), and 1430514 (6). Open data files are available at DOI: 10.7488/ds/1351.
Crystallographic data, additional variable-temperature NMR spectra, additional synthetic data, including other reactivity studies, and solid-state structure details of all complexes (PDF).
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
Acknowledgment
We thank EaStCHEM, the University of Edinburgh and the Engineering and Physical Sciences Research Council EPSRC (grants EP/H004823/1 and EP/M010554/1). J.A.H. thanks the Austrian Science Fund (FWF) for funding via Erwin Schrödinger Fellowship project J-3467. N.K. thanks University College London for computing resources via the Research Computing “Legion” cluster Legion@UCL and associated services and The University of Manchester for access to its Computational Shared Facility, and he is also grateful for computational resources from the EPSRC’s National Service for Computational Chemistry Software, http://www.nsccs.ac.uk. P.L.A. also thanks the Technische Universität München—Institute for Advanced Study, funded by the German Excellence Initiative.
References
This article references 100 other publications.
- 1Cooper, B. G.; Napoline, J. W.; Thomas, C. M. Catal. Rev.: Sci. Eng. 2012, 54, 1– 40 DOI: 10.1080/01614940.2012.619931Google ScholarThere is no corresponding record for this reference.
- 2Liddle, S. T.; Mills, D. P. Dalton Trans. 2009, 5592– 5605 DOI: 10.1039/b904318gGoogle ScholarThere is no corresponding record for this reference.
- 3Patel, D.; Liddle, S. T. Rev. Inorg. Chem. 2012, 32, 1– 22 DOI: 10.1515/revic.2012.0001Google Scholar3https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2cXmtFSlsLw%253D&md5=e75f02e1af9d9e3a72dae25b36e9e245f-Element-metal bond chemistryPatel, Dipti; Liddle, Stephen T.Reviews in Inorganic Chemistry (2012), 32 (1), 1-22CODEN: RICHD7; ISSN:0193-4929. (Walter de Gruyter GmbH)A review. This review outlines the development of compds. that possess polarized covalent f-element-metal bonds. We focus on complexes that have been structurally authenticated by single crystal X-ray diffraction, and we highlight novel aspects of their syntheses, properties and reactivities.
- 4Oelkers, B.; Butovskii, M. V.; Kempe, R. Chem. - Eur. J. 2012, 18, 13566– 13579 DOI: 10.1002/chem.201200783Google Scholar4https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC38XhsVaqsbjN&md5=6c19699a59ad2232f50edc8c2fae01d9f-Element-Metal Bonding and the Use of the Bond Polarity To Build Molecular IntermetalloidsOelkers, Benjamin; Butovskii, Mikhail V.; Kempe, RhettChemistry - A European Journal (2012), 18 (43), 13566-13579CODEN: CEUJED; ISSN:0947-6539. (Wiley-VCH Verlag GmbH & Co. KGaA)A review. Metal-metal bonding in heterobimetallic complexes is of fundamental interest due to its implications to both bonding theory and new reactivities. In this Concept, structurally authenticated mol. compds. with direct bonds between rare-earth metals or actinoids and transition or main group metals are summarized. Special attention is given to the use of bond polarity as a tool for designing mol. intermetalloids incorporating rare-earth atoms and transition metals.
- 5Sternal, R. S.; Marks, T. J. Organometallics 1987, 6, 2621– 2623 DOI: 10.1021/om00155a036Google ScholarThere is no corresponding record for this reference.
- 6Bucaille, A.; Le Borgne, T.; Ephritikhine, M.; Daran, J.-C. Organometallics 2000, 19, 4912– 4914 DOI: 10.1021/om000483fGoogle ScholarThere is no corresponding record for this reference.
- 7Monreal, M. J.; Khan, S. I.; Kiplinger, J. L.; Diaconescu, P. L. Chem. Commun. 2011, 47, 9119 DOI: 10.1039/c1cc12367jGoogle ScholarThere is no corresponding record for this reference.
- 8Gardner, B. M.; Patel, D.; Cornish, A. D.; McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T. Chem. - Eur. J. 2011, 17, 11266– 11273 DOI: 10.1002/chem.201101394Google Scholar8https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3MXhtVymsr7M&md5=22b3715cc364c30a5820b362beb60c18The Nature of Unsupported Uranium-Ruthenium Bonds: A Combined Experimental and Theoretical StudyGardner, Benedict M.; Patel, Dipti; Cornish, Andrew D.; McMaster, Jonathan; Lewis, William; Blake, Alexander J.; Liddle, Stephen T.Chemistry - A European Journal (2011), 17 (40), 11266-11273, S11266/1-S11266/52CODEN: CEUJED; ISSN:0947-6539. (Wiley-VCH Verlag GmbH & Co. KGaA)Four new uranium-ruthenium complexes, [(TrenTMS)URu(η5-C5H5)(CO)2] (9), [(TrenDMSB)URu(η5-C5H5)(CO)2] (10), [(TsTolyl)(THF)URu(η5-C5H5)(CO)2] (11), and [(TsXylyl)(THF)URu(η5-C5H5)(CO)2] (12) [TrenTMS = N(CH2CH2NSiMe3)3; TrenDMSB = N(CH2CH2NSiMe2tBu)3; TsTolyl = HC(SiMe2NC6H4-4-Me)3; TsXylyl = HC(SiMe2NC6H3-3,5-Me2)3], were prepd. by a salt-elimination strategy. Structural, spectroscopic, and computational analyses of 9-12 shows: (i) the formation of unsupported uranium-ruthenium bonds with no isocarbonyl linkages in the solid state; (ii) ruthenium-carbonyl back bonding in the [Ru(η5-C5H5)(CO)2]- ions that is tempered by polarization of charge within the ruthenium fragments towards uranium; (iii) closed-shell uranium-ruthenium interactions that can be classified as predominantly ionic with little covalent character. Comparison of the calcd. U-Ru bond interaction energies (BIEs) of 9-12 with the BIE of [(η5-C5H5)3URu(η5-C5H5)(CO)2], for which an exptl. detd. U-Ru bond disruption enthalpy (BDE) has been reported, suggests BDEs of approx. 150 kJ mol-1 for 9-12.
- 9Patel, D.; Moro, F.; McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T. Angew. Chem., Int. Ed. 2011, 50, 10388– 10392 DOI: 10.1002/anie.201104110Google ScholarThere is no corresponding record for this reference.
- 10Napoline, J. W.; Kraft, S. J.; Matson, E. M.; Fanwick, P. E.; Bart, S. C.; Thomas, C. M. Inorg. Chem. 2013, 52, 12170– 12177 DOI: 10.1021/ic402343qGoogle ScholarThere is no corresponding record for this reference.
- 11Ward, A. L.; Lukens, W. W.; Lu, C. C.; Arnold, J. J. Am. Chem. Soc. 2014, 136, 3647– 3654 DOI: 10.1021/ja413192mGoogle ScholarThere is no corresponding record for this reference.
- 12Gardner, B. M.; McMaster, J.; Lewis, W.; Liddle, S. T. Chem. Commun. 2009, 2851– 2853 DOI: 10.1039/b906554gGoogle ScholarThere is no corresponding record for this reference.
- 13Gardner, B. M.; McMaster, J.; Moro, F.; Lewis, W.; Blake, A. J.; Liddle, S. T. Chem. - Eur. J. 2011, 17, 6909– 6912 DOI: 10.1002/chem.201100682Google Scholar13https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3MXntVGkurk%253D&md5=c981d4be1c3eecde02aae505ab19f634An Unsupported Uranium-Rhenium Complex Prepared by Alkane EliminationGardner, Benedict M.; McMaster, Jonathan; Moro, Fabrizio; Lewis, William; Blake, Alexander J.; Liddle, Stephen T.Chemistry - A European Journal (2011), 17 (25), 6909-6912, S6909/1-S6909/5CODEN: CEUJED; ISSN:0947-6539. (Wiley-VCH Verlag GmbH & Co. KGaA)It is demonstrated for the first time that alkane elimination represents an effective method to access uranium-metal complexes. The DFT anal. reveals o and T combinations in the U-Re bond. However, the dominance of rhenium contributions to HOMO-3 and HOMO-4 suggests that the uranium contribution is small and the 3T component is weak. AIM anal. suggests a closed-shell interaction and a U-Re interaction that is predominantly ionic. Thus, reaction of [U{N(CH2CH2NSiMe2tBu)2(CH2CH2NSiMetBuCH2)}] with rhenocene hydride in PhMe gave {(TrenDMSB)URe(η5-C5H5)2} (TrenDMSB = N(CH2CH2NSiMe2tBuCH2)3) gave 46% yield.
- 14Patel, D.; King, D. M.; Gardner, B. M.; McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T. Chem. Commun. 2011, 47, 295– 297 DOI: 10.1039/C0CC01387KGoogle ScholarThere is no corresponding record for this reference.
- 15Fortier, S.; Walensky, J. R.; Wu, G.; Hayton, T. W. J. Am. Chem. Soc. 2011, 133, 11732– 11743 DOI: 10.1021/ja204151vGoogle ScholarThere is no corresponding record for this reference.
- 16Arnold, P. L.; McMaster, J.; Liddle, S. T. Chem. Commun. 2009, 818– 820 DOI: 10.1039/B819072KGoogle ScholarThere is no corresponding record for this reference.
- 17Roussel, P.; Scott, P. J. Am. Chem. Soc. 1998, 120, 1070– 1071 DOI: 10.1021/ja972933+Google ScholarThere is no corresponding record for this reference.
- 18Ritchey, J. M.; Zozulin, A. J.; Wrobleski, D. A.; Ryan, R. R.; Wasserman, H. J.; Moody, D. C.; Paine, R. T. J. Am. Chem. Soc. 1985, 107, 501– 503 DOI: 10.1021/ja00288a039Google ScholarThere is no corresponding record for this reference.
- 19Hay, P. J.; Ryan, R. R.; Salazar, K. V.; Wrobleski, D. A.; Sattelberger, A. P. J. Am. Chem. Soc. 1986, 108, 313– 315 DOI: 10.1021/ja00262a031Google ScholarThere is no corresponding record for this reference.
- 20Nakajima, Y.; Hou, Z. Organometallics 2009, 28, 6861– 6870 DOI: 10.1021/om900702yGoogle ScholarThere is no corresponding record for this reference.
- 21Völcker, F.; Mück, F. M.; Vogiatzis, K. D.; Fink, K.; Roesky, P. W. Chem. Commun. 2015, 51, 11761– 11764 DOI: 10.1039/C5CC03944DGoogle ScholarThere is no corresponding record for this reference.
- 22Van der Sluys, W. G.; Burns, C. J.; Huffman, J. C.; Sattelberger, A. P. J. Am. Chem. Soc. 1988, 110, 5924– 5925 DOI: 10.1021/ja00225a067Google ScholarThere is no corresponding record for this reference.
- 23Van der Sluys, W. G.; Sattelberger, A. P. Inorg. Chem. 1989, 28 (12) 2496– 2498 DOI: 10.1021/ic00311a053Google ScholarThere is no corresponding record for this reference.
- 24Avens, L. R.; Barnhart, D. M.; Burns, C. J.; McKee, S. D.; Smith, W. H. Inorg. Chem. 1994, 33, 4245– 4254 DOI: 10.1021/ic00097a010Google ScholarThere is no corresponding record for this reference.
- 25McKee, S. D.; Burns, C. J.; Avens, L. R. Inorg. Chem. 1998, 37, 4040– 4045 DOI: 10.1021/ic9803309Google ScholarThere is no corresponding record for this reference.
- 26Mansell, S. M.; Kaltsoyannis, N.; Arnold, P. L. J. Am. Chem. Soc. 2011, 133, 9036– 9051 DOI: 10.1021/ja2019492Google ScholarThere is no corresponding record for this reference.
- 27Arnold, P. L.; Mansell, S. M.; Maron, L.; McKay, D. Nat. Chem. 2012, 4, 668– 674 DOI: 10.1038/nchem.1392Google Scholar27https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC38XhtVehtr%252FN&md5=d8e8ebaa426599aad1c67fc930ea7a8aSpontaneous reduction and C-H borylation of arenes mediated by uranium(III) disproportionationArnold, Polly L.; Mansell, Stephen M.; Maron, Laurent; McKay, DavidNature Chemistry (2012), 4 (8), 668-674CODEN: NCAHBB; ISSN:1755-4330. (Nature Publishing Group)Transition-metal-arene complexes such as bis(benzene)chromium, Cr(η6-C6H6)2, are historically important to d-orbital bonding theory and have modern importance in org. synthesis, catalysis and org. spintronics. In studies of f-block chem., however, arenes are invariably used as solvents rather than ligands. Here, simple U complexes, UX3 (X = aryloxide, amide), spontaneously disproportionate, transferring an electron and X-ligand, allowing the resulting UX2 to bind and reduce arenes, forming inverse sandwich mols. [X2U(μ-η6:η6-arene)UX2] and a UX4 byproduct. Calcns. and kinetic studies suggest a cooperative small-mol. activation' mechanism involving spontaneous arene redn. as an X-ligand is transferred. These mild reaction conditions allow functionalized arenes such as arylsilanes to be incorporated. The bulky UX3 are also inert to reagents such as boranes that would react with the traditional harsh reaction conditions, allowing the development of a new in situ arene C-H bond functionalization methodol. converting C-H to C-B bonds.
- 28O’Grady, E.; Kaltsoyannis, N. Dalton Trans. 2002, 1233– 1239 DOI: 10.1039/b109696fGoogle ScholarThere is no corresponding record for this reference.
- 29Kosog, B.; La Pierre, H. S.; Heinemann, F. W.; Liddle, S. T.; Meyer, K. J. Am. Chem. Soc. 2012, 134, 5284– 5289 DOI: 10.1021/ja211618vGoogle Scholar29https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC38XivVOhsb0%253D&md5=69f5fe19e0468302e2e5d677abb8e695Synthesis of Uranium(VI) Terminal Oxo Complexes: Molecular Geometry Driven by the Inverse Trans-InfluenceKosog, Boris; La Pierre, Henry S.; Heinemann, Frank W.; Liddle, Stephen T.; Meyer, KarstenJournal of the American Chemical Society (2012), 134 (11), 5284-5289CODEN: JACSAT; ISSN:0002-7863. (American Chemical Society)Oxidn. of the authors' previously reported U(V) oxo complexes, supported by the chelating (RArO)3tacn3- ligand system (R = tert-Bu (t-Bu), 1-t-Bu; R = 1-adamantyl (Ad), 1-Ad), yields terminal U(VI) oxo complexes [((RArO)3tacn)U(VI)(O)]SbF6 (R = t-Bu, 2-t-Bu; R = Ad, 2-Ad). These complexes differ in their mol. geometry in that 2-t-Bu possesses pseudo-Cs symmetry in soln. and solid state as the terminal oxo ligand lies in the equatorial plane (as defined by the three aryloxide arms of the ligand) to accommodate the thermodn. preference of high-valent U oxo complexes to have a σ- and π-donating ligand trans to the oxo (vis-a-vis the ubiquity of the linear UO22+ moiety). The distortion of the ligand, which stands in contrast to all other complexes of U supported by the (RArO)3tacn3- ligand, including 2-Ad, is most clearly seen in the structures of 2-t-Bu, [((t-BuArO)3tacn)U(VI)(O)eq]SbF6, and 3-t-Bu, [((t-BuArO)3tacn)U(VI)(O)eq(OC(O)CF3)ax]. The solid-state structure of 3-t-Bu reveals that the trans U-OArO bond length is shortened by 0.1 Å in comparison to the cis U-OArO bonds and the trans U-O-Cipso angle is linearized (157.67° vs. 147.85° and 130.03°). Remarkably, the minor modification of the ligand to have Ad groups at the ortho positions of the aryloxide arms is sufficient to stabilize a C3v-sym. terminal U(VI) oxo complex (2-Ad) without a ligand trans to the oxo. These exptl. results were reproduced in DFT calcns. and allow the qual. bracketing of the relative thermodn. stabilization afforded by the inverse trans-influence (ITI) as ∼6 kcal mol-1.
- 30Lewis, A. J.; Mullane, K. C.; Nakamaru-Ogiso, E.; Carroll, P. J.; Schelter, E. J. Inorg. Chem. 2014, 53, 6944– 6953 DOI: 10.1021/ic500833sGoogle ScholarThere is no corresponding record for this reference.
- 31La Pierre, H. S.; Rosenzweig, M.; Kosog, B.; Hauser, C.; Heinemann, F. W.; Liddle, S. T.; Meyer, K. Chem. Commun. 2015, 51, 16671– 16674 DOI: 10.1039/C5CC07211EGoogle Scholar31https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2MXhsFKhsbnL&md5=f6e204165b626d9065f17c6f68d0ae2dCharge control of the inverse trans-influenceLa Pierre, Henry S.; Rosenzweig, Michael; Kosog, Boris; Hauser, Christina; Heinemann, Frank W.; Liddle, Stephen T.; Meyer, KarstenChemical Communications (Cambridge, United Kingdom) (2015), 51 (93), 16671-16674CODEN: CHCOFS; ISSN:1359-7345. (Royal Society of Chemistry)The synthesis and characterization of uranium(VI) mono(imido) complexes, by the oxidn. of corresponding uranium(V) species, are presented. These exptl. results, paired with DFT analyses, allow for the comparison of the electronic structure of uranium(VI) mono(oxo) and mono(imido) ligands within a conserved ligand framework and demonstrate that the magnitude of the ground state stabilization derived from the inverse trans-influence (ITI) is governed by the relative charge localization on the multiply bonded atom or group.
- 32Klein, H.-F.; Brand, A.; Cordier, G. Z. Naturforsch., B: J. Chem. Sci. 1998, 53, 307– 314 DOI: 10.1515/znb-1998-0309Google ScholarThere is no corresponding record for this reference.
- 33Edwards, P. G.; Andersen, R. A.; Zalkin, A. J. Am. Chem. Soc. 1981, 103, 7792– 7794 DOI: 10.1021/ja00416a019Google ScholarThere is no corresponding record for this reference.
- 34Newell, B. S.; Schwaab, T. C.; Shores, M. P. Inorg. Chem. 2011, 50, 12108– 12115 DOI: 10.1021/ic201670zGoogle ScholarThere is no corresponding record for this reference.
- 35Shannon, R. D. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1976, 32, 751– 767 DOI: 10.1107/S0567739476001551Google ScholarThere is no corresponding record for this reference.
- 36Tolman, C. A.; Seidel, W. C.; Gerlach, D. H. J. Am. Chem. Soc. 1972, 94, 2669– 2676 DOI: 10.1021/ja00763a019Google ScholarThere is no corresponding record for this reference.
- 37Sen, A.; Halpern, J. Inorg. Chem. 1980, 19, 1073– 1075 DOI: 10.1021/ic50206a061Google ScholarThere is no corresponding record for this reference.
- 38Garrou, P. E. Chem. Rev. 1981, 81, 229– 266 DOI: 10.1021/cr00043a002Google ScholarThere is no corresponding record for this reference.
- 39
It proved impossible to converge both the electronic and geometric structures of 3–Pt; hence, data are available only for the 3d and 4d systems.
There is no corresponding record for this reference. - 40Gaunt, A. J.; Reilly, S. D.; Enriquez, A. E.; Scott, B. L.; Ibers, J. A.; Sekar, P.; Ingram, K. I. M.; Kaltsoyannis, N.; Neu, M. P. Inorg. Chem. 2008, 47, 29– 41 DOI: 10.1021/ic701618aGoogle ScholarThere is no corresponding record for this reference.
- 41Tassell, M. J.; Kaltsoyannis, N. Dalton Trans. 2010, 39, 6719 DOI: 10.1039/c000704hGoogle ScholarThere is no corresponding record for this reference.
- 42Kirker, I.; Kaltsoyannis, N. Dalton Trans. 2011, 40, 124– 131 DOI: 10.1039/C0DT01018AGoogle ScholarThere is no corresponding record for this reference.
- 43Arnold, P. L.; Prescimone, A.; Farnaby, J. H.; Mansell, S. M.; Parsons, S.; Kaltsoyannis, N. Angew. Chem., Int. Ed. 2015, 54, 6735– 6739 DOI: 10.1002/anie.201411250Google ScholarThere is no corresponding record for this reference.
- 44Bianchi, R.; Gervasio, G.; Marabello, D. Chem. Commun. 1998, 1535– 1536 DOI: 10.1039/a802386gGoogle ScholarThere is no corresponding record for this reference.
- 45Bianchi, R.; Gervasio, G.; Marabello, D. Inorg. Chem. 2000, 39, 2360– 2366 DOI: 10.1021/ic991316eGoogle ScholarThere is no corresponding record for this reference.
- 46Bianchi, R.; Gervasio, G.; Marabello, D. C. R. Chim. 2005, 8, 1392– 1399 DOI: 10.1016/j.crci.2004.12.015Google Scholar46https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD2MXhtVGjsrbF&md5=6d0091f69f6f48310509cbfefddd9ae7The experimental charge density in transition metal compoundsBianchi, Riccardo; Gervasio, Giuliana; Marabello, DomenicaComptes Rendus Chimie (2005), 8 (9-10), 1392-1399CODEN: CRCOCR; ISSN:1631-0748. (Editions Scientifiques et Medicales Elsevier)A review. The exptl. charge d. of transition metal compds. can be detd. with a good degree of reliability and analyzed with the quantum theory of atoms in mols. in order to better characterize the at. interaction. Here, we present a short summary of the main topol. results obtained with this technique on Mn2(CO)10, Co2(CO)6(μ-CO)(μ-C4O2H2), KMnO4 and KClO4 compds.
- 47Farrugia, L. J.; Mallinson, P. R.; Stewart, B. Acta Crystallogr., Sect. B: Struct. Sci. 2003, 59, 234– 247 DOI: 10.1107/S0108768103000892Google Scholar47https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD3sXitlaiu7s%253D&md5=2f3f6a1081d5915035bd6f9931cab704Experimental charge density in the transition metal complex Mn2(CO)10: a comparative studyFarrugia, Louis J.; Mallinson, Paul R.; Stewart, BrianActa Crystallographica, Section B: Structural Science (2003), B59 (2), 234-247CODEN: ASBSDK; ISSN:0108-7681. (Blackwell Munksgaard)An accurate exptl. charge d. and crystal structure (monoclinic space group I2/a) study at 100 K of Mn2(CO)10 [bis(pentacarbonylmanganese)(Mn-Mn)] was undertaken. A comparison with previously reported structural detns. reveals no evidence for significant Mn-Mn bond lengthening between 100 and 296 K. The nature of the metal-metal and metal-ligand atom interactions was studied by topol. anal. using the atoms in mols. (AIM) approach of Bader (1990). An anal. of the d. ρ(r), the Laplacian of the d. .del.2ρ(rb) and the total energy densities H(rb) at the bond crit. points was used to classify all the chem. bonds as covalent in nature. The results are compared qual. and quant. with previous charge d. studies on this mol. and DFT calcns. at the 6-311+G* B3LYP level. The topol. properties of the theor. and exptl. densities are in close agreement.
- 48Gervasio, G.; Bianchi, R.; Marabello, D. Chem. Phys. Lett. 2004, 387, 481– 484 DOI: 10.1016/j.cplett.2004.02.043Google ScholarThere is no corresponding record for this reference.
- 49Gervasio, G.; Bianchi, R.; Marabello, D. Chem. Phys. Lett. 2005, 407, 18– 22 DOI: 10.1016/j.cplett.2005.03.047Google ScholarThere is no corresponding record for this reference.
- 50Macchi, P.; Garlaschelli, L.; Martinengo, S.; Sironi, A. J. Am. Chem. Soc. 1999, 121, 10428– 10429 DOI: 10.1021/ja9918977Google ScholarThere is no corresponding record for this reference.
- 51Macchi, P.; Proserpio, D. M.; Sironi, A. J. Am. Chem. Soc. 1998, 120, 13429– 13435 DOI: 10.1021/ja982903mGoogle ScholarThere is no corresponding record for this reference.
- 52Niskanen, M.; Hirva, P.; Haukka, M. J. Chem. Theory Comput. 2009, 5, 1084– 1090 DOI: 10.1021/ct800407hGoogle Scholar52https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD1MXisFansb4%253D&md5=95f5f581be07905f2eaa46fdc3905200Computational DFT Study of Ruthenium Tetracarbonyl PolymerNiskanen, Mika; Hirva, Pipsa; Haukka, MattiJournal of Chemical Theory and Computation (2009), 5 (4), 1084-1090CODEN: JCTCCE; ISSN:1549-9618. (American Chemical Society)Ruthenium tetracarbonyl polymer, [Ru(CO)4]n, a chainlike compd. formed by metal-metal interactions, was studied computationally. We first performed tests with selected pure and hybrid GGA d. functionals and ab initio methods at HF and MP2 levels of theory to find the most suitable method. Calcd. geometries and MOs were compared to see effectiveness and possible differences of the methods. Hybrid functionals, esp. PBE1PBE and MPW1K, were found to produce accurate geometrical parameters compared to the exptl. structure, with reasonable computational cost. Bonding in [Ru(CO)4]n chains was studied by calcn. of Mayer bond order and theor. structure factors followed by multipole refinement to get bond crit. points according to the quantum theory of atoms in mols. Ruthenium-ruthenium bonding comparable to that in a Ru3(CO)12 cluster was found with both methods.
- 53Niskanen, M.; Hirva, P.; Haukka, M. J. Mol. Model. 2012, 18, 1961– 1968 DOI: 10.1007/s00894-011-1225-yGoogle Scholar53https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC38XmsVaisLc%253D&md5=9d6f0fce1840d923c553df558d4a7bfcMetal-metal interactions in linear tri-, penta-, hepta-, and nona-nuclear ruthenium string complexesNiskanen, Mika; Hirva, Pipsa; Haukka, MattiJournal of Molecular Modeling (2012), 18 (5), 1961-1968CODEN: JMMOFK; ISSN:0948-5023. (Springer)D. functional theory (DFT) methodol. was used to examine the structural properties of linear metal string complexes: [Ru3(dpa)4X2] (X = Cl-, CN-, NCS-, dpa = dipyridylamine-), [Ru5(tpda)4Cl2], and hypothetical, not yet synthesized complexes [Ru7(tpta)4Cl2] and [Ru9(ppta)4Cl2] (tpda = tri-α-pyridyldiamine2-, tpta = tetra-α-pyridyltriamine3-, ppta = penta-α-pyridyltetraamine4-). Our specific focus was on the two longest structures and on comparison of the string complexes and unsupported ruthenium backboned chain complexes, which have weaker ruthenium-ruthenium interactions. The electronic structures were studied with the aid of visualized frontier MOs, and Bader's quantum theory of atoms in mols. (QTAIM) was used to study the interactions between ruthenium atoms. The electron d. was found to be highest and distributed most evenly between the ruthenium atoms in the hypothetical [Ru7(tpta)4Cl2] and [Ru9(ppta)4Cl2] string complexes.
- 54Ponec, R.; Yuzhakov, G.; Sundberg, M. R. J. Comput. Chem. 2005, 26, 447– 454 DOI: 10.1002/jcc.20182Google ScholarThere is no corresponding record for this reference.
- 55Sadjadi, S.; Matta, C. F.; Lemke, K. H.; Hamilton, I. P. J. Phys. Chem. A 2011, 115, 13024– 13035 DOI: 10.1021/jp204993rGoogle ScholarThere is no corresponding record for this reference.
- 56Blake, M. P.; Kaltsoyannis, N.; Mountford, P. J. Am. Chem. Soc. 2011, 133, 15358– 15361 DOI: 10.1021/ja207487jGoogle ScholarThere is no corresponding record for this reference.
- 57Mountain, A. R. E.; Kaltsoyannis, N. Dalton Trans. 2013, 42, 13477 DOI: 10.1039/c3dt51337hGoogle ScholarThere is no corresponding record for this reference.
- 58Matta, C. F.; Boyd, R. J. In The Quantum Theory of Atoms in Molecules; Matta, C. F.; Boyd, R. J., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007; pp 1– 34.Google ScholarThere is no corresponding record for this reference.
- 59Cavigliasso, G.; Kaltsoyannis, N. Inorg. Chem. 2006, 45, 6828– 6839 DOI: 10.1021/ic060777eGoogle ScholarThere is no corresponding record for this reference.
- 60Emsley, J. The Elements, 2nd ed.; Clarendon Press, Oxford University Press: Oxford, 1991.Google ScholarThere is no corresponding record for this reference.
- 61Denninger, U.; Schneider, J. J.; Wilke, G.; Goddard, R.; Krüger, C. Inorg. Chim. Acta 1993, 213, 129– 140 DOI: 10.1016/S0020-1693(00)83823-2Google Scholar61https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaK2cXitFyju74%253D&md5=5fe10f33a8603b3025fef694722346c7Transition metal complexes. VII. [(η5-Cp)Ni(PEt3)]2, a dinuclear organometallic complex with an unbridged Ni-Ni bond; structure and heteronuclear complexes thereofDenninger, Uwe; Schneider, Joerg J.; Wilke, Guenther; Goddard, Richard; Krueger, CarlInorganica Chimica Acta (1993), 213 (1-2), 129-40CODEN: ICHAA3; ISSN:0020-1693.[(η5-Cp)Ni(PEt3)]2 (1) was synthesized by reacting (η5-Cp)Ni(PEt3)Cl with activated magnesium. 1 Contains an unbridged nickel-nickel bond. Reaction of 1 with elemental sulfur yields the clusters I and II. The homologous selenium compd. III was obtained by the reaction of 1 with elemental selenium. 1 Reacts with tellurium by insertion to yield IV (M = Te). Tin(II) chloride can also be inserted into the nickel-nickel bond of 1 to give IV (M = SnCl2). Both chlorine atoms in IV (M = SnCl2) react with alkyllithium to give compds. of the type {[(η5-Cp)Ni(PEt3)]2SnR2} (7) (a: R = Me, b: R = Bu). The reaction of 6 with activated magnesium yields {[(η5-Cp)Ni(PEt3)]3SnCl} (8). Crystal structures of 1, I, II, IV (M = Te, SnCl2) and 8 were detd.
- 62Heinicke, J.; Dal, A.; Klein, H.-F.; Hetche, O.; Flörke, U.; Haupt, H.-J. Z. Naturforsch., B: J. Chem. Sci. 1999, 54, 1235– 1243 DOI: 10.1515/znb-1999-1004Google Scholar62https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaK1MXntFaktLg%253D&md5=5ac32cf772b80daf644d43e7723d6860Formation of η1-P-(2-phosphinophenol)Ni(0)(PMe3)3 and oxidation to cis/trans-bis(2-phosphinophenolato)nickel(II) complexesHeinicke, Joachim; Dal, Attila; Klein, Hans-Friedrich; Hetche, Olaf; Florke, Ulrich; Haupt, Hans-JurgenZeitschrift fuer Naturforschung, B: Chemical Sciences (1999), 54 (10), 1235-1243CODEN: ZNBSEN; ISSN:0932-0776. (Verlag der Zeitschrift fuer Naturforschung)O-Phosphinophenols (P∼OH) react with equimolar amts. of Ni(PMe3)4 at low temps. to give yellow Ni(0) complexes such as [(HO∼P)Ni(PMe3)3] (2a) with only P coordination of the P∼OH ligand. Oxidn. of solns. of 1 and Ni(PMe3)4 by dioxygen leads to brown bis(HO∼P)nickel chelate complexes 3a-d. Structure elucidation by NMR is consistent with a cis-square planar geometry for 3a-c and a trans-square planar soln. structure of the tert-butylphenylphosphino deriv. 3d. The geometric isomers were distinguished by different ranges of P coordination shifts and 31P-13C-2 and 31P-13C-1 coupling consts. In the solid state, 3d adopts also a cis-square planar geometry. The steric stress of the substituents causes anti-orientation of the tert-Bu groups at P (R,R and S,S diastereoisomers) and a significant distorsion (22°) of the planes of the two five-membered rings. With less bulky substituents the R,S and S,R diastereoisomers are preferred as in the cis-square planar complex 3c with syn-orientation of the two iso-Pr and Ph groups, resp.
- 63Zi, G.; Jia, L.; Werkema, E. L.; Walter, M. D.; Gottfriedsen, J. P.; Andersen, R. A. Organometallics 2005, 24, 4251– 4264 DOI: 10.1021/om050406qGoogle ScholarThere is no corresponding record for this reference.
- 64Fortier, S.; Kaltsoyannis, N.; Wu, G.; Hayton, T. W. J. Am. Chem. Soc. 2011, 133, 14224– 14227 DOI: 10.1021/ja206083pGoogle ScholarThere is no corresponding record for this reference.
- 65Brown, J. L.; Mokhtarzadeh, C. C.; Lever, J. M.; Wu, G.; Hayton, T. W. Inorg. Chem. 2011, 50, 5105– 5112 DOI: 10.1021/ic200387nGoogle ScholarThere is no corresponding record for this reference.
- 66Arnold, P. L.; Jones, G. M.; Odoh, S. O.; Schreckenbach, G.; Magnani, N.; Love, J. B. Nat. Chem. 2012, 4, 221– 227 DOI: 10.1038/nchem.1270Google Scholar66https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC38Xis1eqsbg%253D&md5=7097dd42dfa9215058320c9fd5eb71c4Strongly coupled binuclear uranium-oxo complexes from uranyl oxo rearrangement and reductive silylationArnold, Polly L.; Jones, Guy M.; Odoh, Samuel O.; Schreckenbach, Georg; Magnani, Nicola; Love, Jason B.Nature Chemistry (2012), 4 (3), 221-227CODEN: NCAHBB; ISSN:1755-4330. (Nature Publishing Group)The most common motif in uranium chem. is the d0f0 uranyl ion [UO2]2+ in which the oxo groups are rigorously linear and inert. Alternative geometries, such as the cis-uranyl, were identified theor. and implicated in oxo-atom transfer reactions that are relevant to environmental speciation and nuclear waste remediation. Single electron redn. is now known to impart greater oxo-group reactivity, but with retention of the linear OUO motif, and reactions of the oxo groups to form new covalent bonds remain rare. Here, the authors describe the synthesis, structure, reactivity and magnetic properties of a binuclear uranium-oxo complex [U2(μ-O)2(L)(OSiR3)2] (SiR3 = SiMe3, SiMe2Ph and H4L = nitrogen macrocyclic ligand (I)). Formed through a combination of redn. and oxo-silylation and migration from a trans to a cis position, the new butterfly-shaped Si-OUO2UO-Si mol. shows remarkably strong UV-UV coupling and chem. inertness, suggesting that this rearranged uranium oxo motif might exist for other actinide species in the environment, and have relevance to the aggregation of actinide oxide clusters.
- 67Siffredi, G.; Berthet, J. C.; Thuery, P. Private communication to the Cambridge Structural Database, deposition number CCDC 958346, 2013.Google ScholarThere is no corresponding record for this reference.
- 68Jones, G. M.; Arnold, P. L.; Love, J. B. Chem. - Eur. J. 2013, 19, 10287– 10294 DOI: 10.1002/chem.201301067Google Scholar68https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3sXpvVegtLk%253D&md5=705be1c8ceaed55fcf228f9ba21ed4ccOxo-Group 14 Element-Bond Formation in Binuclear Uranium(V) Pacman ComplexesJones, Guy M.; Arnold, Polly L.; Love, Jason B.Chemistry - A European Journal (2013), 19 (31), 10287-10294CODEN: CEUJED; ISSN:0947-6539. (Wiley-VCH Verlag GmbH & Co. KGaA)Simple and versatile routes to the functionalization of uranyl-derived UV-oxo groups are presented. The oxo-lithiated, binuclear uranium(V)-oxo complexes [{(py)3LiOUO}2(L)] and [{(py)3LiOUO}(OUOSiMe3)(L)] were prepd. by the direct combination of the uranyl(VI) silylamide "ate" complex [Li(py)2][(OUO)(N")3] (N" = N(SiMe3)2) with the polypyrrolic macrocycle H4L or the mononuclear uranyl(VI) Pacman complex [UO2(py)(H2L)], resp. These oxo-metalated complexes display distinct U-O single and multiple bonding patterns and an axial/equatorial arrangement of oxo ligands. Their ready availability allows the direct functionalization of the uranyl oxo group leading to the binuclear uranium(V) oxo-stannylated complexes [{(R3Sn)OUO}2(L)] (R = nBu, Ph), which represent rare examples of mixed uranium/tin complexes. Also, uranium-oxo-group exchange occurred in reactions with [TiCl(OiPr)3] to form U-O-C bonds [{(py)3LiOUO}(OUOiPr)(L)] and [(iPrOUO)2(L)]. Overall, these represent the first family of uranium(V) complexes that are oxo-functionalized by Group 14 elements.
- 69Crabtree, R. H. The Organometallic Chemistry of the Transition Metals, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2005.Google ScholarThere is no corresponding record for this reference.
- 70Hildenbrand, D. L.; Lau, K. H. Pure Appl. Chem. 1992, 64, 87– 92 DOI: 10.1351/pac199264010087Google ScholarThere is no corresponding record for this reference.
- 71Kindra, D. R.; Evans, W. J. Chem. Rev. 2014, 114, 8865– 8882 DOI: 10.1021/cr500242wGoogle ScholarThere is no corresponding record for this reference.
- 72Kosog, B.; La Pierre, H. S.; Denecke, M. A.; Heinemann, F. W.; Meyer, K. Inorg. Chem. 2012, 51, 7940– 7944 DOI: 10.1021/ic3011234Google ScholarThere is no corresponding record for this reference.
- 73King, D. M.; Tuna, F.; McInnes, E. J. L.; McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T. Nat. Chem. 2013, 5, 482– 488 DOI: 10.1038/nchem.1642Google Scholar73https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3sXntVaksrk%253D&md5=cece9f15ad65d5cddc32029f1ef76459Isolation and characterization of a uranium(VI)-nitride triple bondKing, David M.; Tuna, Floriana; McInnes, Eric J. L.; McMaster, Jonathan; Lewis, William; Blake, Alexander J.; Liddle, Stephen T.Nature Chemistry (2013), 5 (6), 482-488CODEN: NCAHBB; ISSN:1755-4330. (Nature Publishing Group)The nature and extent of covalency in U bonding is still unclear compared with that of transition metals, and there is great interest in studying U-ligand multiple bonds. Although U=O and U=NR double bonds (R is an alkyl group) are known analogs to transition-metal oxo and imido complexes, the U(VI)-nitride triple bond has long remained a synthetic target in actinide chem. Here, the authors report the prepn. of a U(VI)-nitride triple bond. The authors highlight the importance of (1) ancillary ligand design, (2) employing mild redox reactions instead of harsh photochem. methods that decomp. transiently formed U(VI) nitrides, (3) an electrostatically stabilizing Na ion during nitride installation, (4) selecting the right Na sequestering reagent, (5) inner vs. outer sphere oxidn. and (6) stability with respect to the U oxidn. state. Computational analyses suggest covalent contributions to U≡N triple bonds that are surprisingly comparable to those of their Group 6 transition-metal nitride counterparts.
- 74Edelstein, N. M.; Lander, G. H. In The Chemistry of Actinides and Transactinide Elements; Morss, L. R.; Edelstein, N. M.; Fuger, J., Eds.; Springer: The Netherlands, 2010; Vols. 1–6, p 2225.Google ScholarThere is no corresponding record for this reference.
- 75Natrajan, L. S. Coord. Chem. Rev. 2012, 256, 1583– 1603 DOI: 10.1016/j.ccr.2012.03.029Google ScholarThere is no corresponding record for this reference.
- 76Schmidt, A.-C.; Heinemann, F. W.; Lukens, W. W.; Meyer, K. J. Am. Chem. Soc. 2014, 136, 11980– 11993 DOI: 10.1021/ja504528nGoogle ScholarThere is no corresponding record for this reference.
- 77Franke, S. M.; Rosenzweig, M. W.; Heinemann, F. W.; Meyer, K. Chem. Sci. 2015, 6, 275– 282 DOI: 10.1039/C4SC02602KGoogle Scholar77https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2cXhs1emtL%252FM&md5=55cc608465d63cf7dc0eec11bda27adaReactivity of uranium(III) with H2E (E = S, Se, Te): synthesis of a series of mononuclear and dinuclear uranium(IV) hydrochalcogenido complexesFranke, Sebastian M.; Rosenzweig, Michael W.; Heinemann, Frank W.; Meyer, KarstenChemical Science (2015), 6 (1), 275-282CODEN: CSHCCN; ISSN:2041-6520. (Royal Society of Chemistry)The authors report the syntheses, electronic properties, and mol. structures of a series of mono- and dinuclear uranium(IV) hydrochalcogenido complexes supported by the sterically demanding but very flexible, single N-anchored tris(aryloxide) ligand [(AdArO)3N]3-. The mononuclear complexes [((AdArO)3N)U(DME)(EH)] (E = S, Se, Te) can be obtained from the reaction of the uranium(III) starting material [((AdArO)3N)UIII(DME)] in DME via redn. of H2E and the elimination of 0.5 equiv of H2. The dinuclear complexes [{((AdArO)3N)U}2(μ-EH)2] can be obtained by dissolving their mononuclear counterparts in non-coordinating solvents such as benzene. In order to facilitate the work with the highly toxic gases, the authors created concd. THF solns. that can be handled using simple glovebox techniques and can be stored at -35° for several weeks.
- 78Arnold, P. L. Chem. Commun. 2011, 47, 9005 DOI: 10.1039/c1cc10834dGoogle ScholarThere is no corresponding record for this reference.
- 79Vallat, A.; Laviron, E.; Dormond, A. J. Chem. Soc., Dalton Trans. 1990, 921– 924 DOI: 10.1039/dt9900000921Google ScholarThere is no corresponding record for this reference.
- 80Morris, D. E.; Da Re, R. E.; Jantunen, K. C.; Castro-Rodriguez, I.; Kiplinger, J. L. Organometallics 2004, 23, 5142– 5153 DOI: 10.1021/om049634vGoogle ScholarThere is no corresponding record for this reference.
- 81Dessy, R. E.; Weissman, P. M.; Pohl, R. L. J. Am. Chem. Soc. 1966, 88, 5117– 5121 DOI: 10.1021/ja00974a014Google ScholarThere is no corresponding record for this reference.
- 82Evans, D. F. J. Chem. Soc. 1959, 2003– 2005 DOI: 10.1039/jr9590002003Google ScholarThere is no corresponding record for this reference.
- 83Sur, S. K. J. Magn. Reson. 1989, 82, 169– 173Google ScholarThere is no corresponding record for this reference.
- 84Schubert, E. M. J. Chem. Educ. 1992, 69, 62 DOI: 10.1021/ed069p62.1Google ScholarThere is no corresponding record for this reference.
- 85Piguet, C. J. Chem. Educ. 1997, 74, 815– 816 DOI: 10.1021/ed074p815Google ScholarThere is no corresponding record for this reference.
- 86Ruiz, J.; Astruc, D. C. R. Acad. Sci., Ser. IIc: Chim. 1998, 1, 21– 27 DOI: 10.1016/S1251-8069(97)86255-0Google Scholar86https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaK1cXhsFWrt7c%253D&md5=d499ec76012ef312382ee0cdf6e96916Permethylated electron-reservoir sandwich complexes as references for the determination of redox potentials. Suggestion of a new redox scaleRuiz, Jaime; Astruc, DidierComptes Rendus de l'Academie des Sciences, Serie IIc: Chimie (1998), 1 (1), 21-27CODEN: CASCFN; ISSN:1387-1609. (Editions Scientifiques et Medicales Elsevier)The difference between the redox potentials of decamethylferrocene (FeCp2*), decamethylcobalticinium (CoCp2*)+ and (pentamethylcyclopentadienyl)(hexamethylbenzene)iron(1+) cation (FeCp*C6Me6)+ is shown not to depend on the solvent and anion of the supporting electrolyte whereas ferrocene, whose redox potential is solvent dependent, does not fit in this series. Suggestions are made concerning the possible use of the three permethylated complexes as reliable refs. for the detn. of redox potentials, and a redox scale vs. decamethylferrocene is proposed.
- 87Monreal, M. J.; Thomson, R. K.; Cantat, T.; Travia, N. E.; Scott, B. L.; Kiplinger, J. L. Organometallics 2011, 30, 2031– 2038 DOI: 10.1021/om200093qGoogle ScholarThere is no corresponding record for this reference.
- 88Bochmann, M.; Jaggar, A. J.; Wilson, L. M.; Hursthouse, M. B.; Motevalli, M. Polyhedron 1989, 8, 1838– 1843 DOI: 10.1016/S0277-5387(00)80665-8Google ScholarThere is no corresponding record for this reference.
- 89Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Olgairo, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.Google ScholarThere is no corresponding record for this reference.
- 90ADF2014; SCM: Amsterdam, The Netherlands; http://www.scm.com.Google ScholarThere is no corresponding record for this reference.
- 91te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. J. Comput. Chem. 2001, 22, 931– 967 DOI: 10.1002/jcc.1056Google Scholar91https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD3MXjtlGntrw%253D&md5=314e7e942de9b28e664afc5adb2f574fChemistry with ADFTe Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; Van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T.Journal of Computational Chemistry (2001), 22 (9), 931-967CODEN: JCCHDD; ISSN:0192-8651. (John Wiley & Sons, Inc.)A review with 241 refs. We present the theor. and tech. foundations of the Amsterdam D. Functional (ADF) program with a survey of the characteristics of the code (numerical integration, d. fitting for the Coulomb potential, and STO basis functions). Recent developments enhance the efficiency of ADF (e.g., parallelization, near order-N scaling, QM/MM) and its functionality (e.g., NMR chem. shifts, COSMO solvent effects, ZORA relativistic method, excitation energies, frequency-dependent (hyper)polarizabilities, at. VDD charges). In the Applications section we discuss the phys. model of the electronic structure and the chem. bond, i.e., the Kohn-Sham MO (MO) theory, and illustrate the power of the Kohn-Sham MO model in conjunction with the ADF-typical fragment approach to quant. understand and predict chem. phenomena. We review the "Activation-strain TS interaction" (ATS) model of chem. reactivity as a conceptual framework for understanding how activation barriers of various types of (competing) reaction mechanisms arise and how they may be controlled, for example, in org. chem. or homogeneous catalysis. Finally, we include a brief discussion of exemplary applications in the field of biochem. (structure and bonding of DNA) and of time-dependent d. functional theory (TDDFT) to indicate how this development further reinforces the ADF tools for the anal. of chem. phenomena.
- 92Fonseca Guerra, C.; Snijders, J. G.; te Velde, G.; Baerends, E. J. Theor. Chem. Acc. 1998, 99, 391– 403 DOI: 10.1007/s002140050353Google ScholarThere is no corresponding record for this reference.
- 93Cao, X.; Dolg, M. J. Mol. Struct.: THEOCHEM 2004, 673, 203– 209 DOI: 10.1016/j.theochem.2003.12.015Google Scholar93https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD2cXhslWjtbs%253D&md5=5983981657b44a155e9fd49e3a0ee81fSegmented contraction scheme for small-core actinide pseudopotential basis setsCao, Xiaoyan; Dolg, MichaelJournal of Molecular Structure: THEOCHEM (2004), 673 (1-3), 203-209CODEN: THEODJ; ISSN:0166-1280. (Elsevier Science B.V.)Gaussian (14s13p10d8f6g)/[10s9p5d4f3g] valence basis sets using a segmented contraction scheme have been derived for relativistic energy-consistent small-core actinide pseudopotentials of the Stuttgart-Koln variety. The present basis sets are only slightly larger than previously published (14s13p10d8f6g)/[6s6p5d4f3g] at. natural orbital basis sets, which use a generalized contraction scheme, and achieve a similar accuracy in at. and mol. calcns. For calibration purposes multi-configuration SCF and subsequent multi-ref. averaged coupled-pair functional calcns. are presented for the first to fourth ionization potentials of all actinide elements. Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr. In addn., results of mol. calibration studies using the coupled-cluster singles, doubles and perturbative triples approach as well as gradient-cor. d. functional theory are reported for the monohydrides, monoxides and monofluorides of actinium and lawrencium.
- 94Bergner, A.; Dolg, M.; Küchle, W.; Stoll, H.; Preuß, H. Mol. Phys. 1993, 80, 1431– 1441 DOI: 10.1080/00268979300103121Google Scholar94https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaK2cXhsVCmsLo%253D&md5=119c69262dd9ce622673821c0dfb68a0Ab initio energy-adjusted pseudopotentials for elements of groups 13-17Bergner, Andreas; Dolg, Michael; Kuechle, Wolfgang; Stoll, Hermann; Preuss, HeinzwernerMolecular Physics (1993), 80 (6), 1431-41CODEN: MOPHAM; ISSN:0026-8976.Quasi-relativistic energy-adjusted ab initio pseudopotentials for the elements of groups 13-17 up to at. no. 53 (iodine) are presented together with corresponding energy-optimized valence basis sets. Test calcns. for at. excitation and ionization energies show the reliability of the derived pseudopotentials and basis sets.
- 95Martin, J. M. L.; Sundermann, A. J. Chem. Phys. 2001, 114, 3408 DOI: 10.1063/1.1337864Google ScholarThere is no corresponding record for this reference.
- 96Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Theor. Chim. Acta 1990, 77, 123– 141 DOI: 10.1007/BF01114537Google Scholar96https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaK3cXkt12ntLo%253D&md5=8203c6bc6149924cbd4b23b3063715e1Energy-adjusted ab initio pseudopotentials for the second and third row transition elementsAndrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H.Theoretica Chimica Acta (1990), 77 (2), 123-41CODEN: TCHAAM; ISSN:0040-5744.Nonrelativistic and quasirelativistic ab initio pseudopotentials substituting the M(z-28)+-core orbitals of the second row transition elements and M(z-60)+-core orbitals of the third row transition elements, resp., and optimized (8s7p6d)/[6s5p3d]-GTO valence basis sets for use in mol. calcns. have been generated. Addnl., corresponding spin-orbit operators have also been derived. At. excitation and ionization energies from numerical HF as well as from SCF pseudopotential calcns. using the derived basis sets differ in most cases by less than 0.1 eV from corresponding numerical all-electron results. Spin-orbit splittings for low-lying states are in reasonable agreement with corresponding all-electron Dirac-Fock (DF) results.
- 97Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Landis, C. R.; Weinhold, F.NBO 6.0; Theoretical Chemistry Institute, University of Wisconsin: Madison,WI, 2013.Google ScholarThere is no corresponding record for this reference.
- 98Keith, T. A.AIMAll, version 14.11.23; http://aim.tkgristmill.com.Google ScholarThere is no corresponding record for this reference.
- 99Mayer, I. Chem. Phys. Lett. 1983, 97, 270– 274 DOI: 10.1016/0009-2614(83)80005-0Google Scholar99https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaL3sXksVeltL0%253D&md5=e46fb0f0565a0025015ea070b5f89e25Charge, bond order and valence in the ab initio SCF theoryMayer, I.Chemical Physics Letters (1983), 97 (3), 270-4CODEN: CHPLBC; ISSN:0009-2614.An operator of at. charge is introduced, the expectation values of which are the Mulliken gross at. populations on the individual atoms. Suitable definitions of the bond-order (multiplicity) index and of the valence no. of an atom in a mol. are also proposed for the SCF-LCAO-MO method. (The results apply also in the EHMO theory.).
- 100Gopinathan, M. S.; Jug, K. Theor. Chim. Acta 1983, 63, 497– 509 DOI: 10.1007/BF02394809Google Scholar100https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaL3sXls1Cgsro%253D&md5=8694cb2d59b4c000464665b7c70ac691Valency. I. A quantum chemical definition and propertiesGopinathan, M. S.; Jug, KarlTheoretica Chimica Acta (1983), 63 (6), 497-509CODEN: TCHAAM; ISSN:0040-5744.A quantum chem. definition of the valency of an atom in a mol. is proposed. It is defined as the sum of the squares of the appropriate off-diagonal elements of the first-order d. matrix of the system in an orthogonal basis. It is a measure of the degree of electron sharing of the given atom with the other atoms. Its properties such as invariance to rotation of the coordinate system, its limiting values as well as its relation to natural hybrids and bond orbitals are discussed.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 91 publications.
- Dylan M. T. Eralie, John Ducilon, Anne E. V. Gorden. Uranium Chemistry: Identifying the Next Frontiers. Inorganic Chemistry 2025, 64
(2)
, 767-784. https://doi.org/10.1021/acs.inorgchem.4c02173
- Weiming Sheng, Thayalan Rajeshkumar, Laurent Maron, Congqing Zhu. Heterometallic Clusters with Thorium–Rhodium Bonds Supported by Double-Layer Nitrogen–Phosphorus Ligands. Organometallics 2025, 44
(1)
, 354-362. https://doi.org/10.1021/acs.organomet.4c00488
- Weiming Sheng, Thayalan Rajeshkumar, Yue Zhao, Laurent Maron, Congqing Zhu. Electronic Delocalization and σ-Aromaticity in Heterometallic Cluster with Multiple Thorium–Palladium Bonds. Journal of the American Chemical Society 2024, 146
(18)
, 12790-12798. https://doi.org/10.1021/jacs.4c03058
- Cory J. Windorff, Conrad A. P. Goodwin, Joseph M. Sperling, Thomas E. Albrecht-Schönzart, Zhuanling Bai, William J. Evans, Zachary K. Huffman, Renaud Jeannin, Brian N. Long, David P. Mills, Todd N. Poe, Joseph W. Ziller. Stabilization of Pu(IV) in PuBr4(OPCy3)2 and Comparisons with Structurally Similar ThX4(OPR3)2 (R = Cy, Ph) Molecules. Inorganic Chemistry 2023, 62
(44)
, 18136-18149. https://doi.org/10.1021/acs.inorgchem.3c02575
- Alexandra Haidinger, Christina I. Dilly, Roland C. Fischer, Dennis Svatunek, Johanna M. Uher, Johann A. Hlina. To Bond or Not to Bond: Metal–Metal Interaction in Heterobimetallic Rare-Earth Metal–Silver Complexes. Inorganic Chemistry 2023, 62
(43)
, 17713-17720. https://doi.org/10.1021/acs.inorgchem.3c02377
- Xiong Sun, Jinghang Shen, Thayalan Rajeshkumar, Laurent Maron, Congqing Zhu. Heterometallic Clusters with Cerium–Transition-Metal Bonding Supported by Nitrogen–Phosphorus Ligands. Inorganic Chemistry 2023, 62
(39)
, 16077-16083. https://doi.org/10.1021/acs.inorgchem.3c02259
- Ayaki Sunaga, Chihiro Tabata, Tomoo Yamamura. Linearity and Chemical Bond of UO22+ Revisited: A Comparison Study with UN2 and UE22+ (E = S, Se, and Te) Based on Relativistic Calculations. The Journal of Physical Chemistry A 2022, 126
(46)
, 8606-8617. https://doi.org/10.1021/acs.jpca.2c05216
- Qin Zhu, Wei Fang, Laurent Maron, Congqing Zhu. Heterometallic Clusters with Uranium–Metal Bonds Supported by Double-Layer Nitrogen–Phosphorus Ligands. Accounts of Chemical Research 2022, 55
(12)
, 1718-1730. https://doi.org/10.1021/acs.accounts.2c00180
- Xiao-Wang Chi, Qun-Yan Wu, Cong-Zhi Wang, Ji-Pan Yu, Kang Liu, Ru-An Chi, Zhi-Fang Chai, Wei-Qun Shi. A Theoretical Study of Unsupported Uranium–Ruthenium Bonds Based on Tripodal Ligands. Organometallics 2022, 41
(11)
, 1304-1313. https://doi.org/10.1021/acs.organomet.2c00024
- Zi-Rong Ye, Qun-Yan Wu, Cong-Zhi Wang, Jian-Hui Lan, Zhi-Fang Chai, Hong-Qing Wang, Wei-Qun Shi. Theoretical Insights into the Selective Separation of Am(III)/Eu(III) Using Hydrophilic Triazolyl-Based Ligands. Inorganic Chemistry 2022, 61
(16)
, 6110-6119. https://doi.org/10.1021/acs.inorgchem.2c00232
- Alon Chapovetsky, Prajay Patel, Cong Liu, Alfred P. Sattelberger, David M. Kaphan, Massimiliano Delferro. Electrochemical Investigation of Low-Valent Multiply M≡M Bonded Group VI Dimers: A Standard Chemical Reduction Leads to an Unexpected Product. Organometallics 2020, 39
(24)
, 4430-4436. https://doi.org/10.1021/acs.organomet.0c00533
- Xiaoqing Xin, Iskander Douair, Yue Zhao, Shuao Wang, Laurent Maron, Congqing Zhu. Dinitrogen Cleavage by a Heterometallic Cluster Featuring Multiple Uranium–Rhodium Bonds. Journal of the American Chemical Society 2020, 142
(35)
, 15004-15011. https://doi.org/10.1021/jacs.0c05788
- Alexander J. Ayres, Ashley J. Wooles, Markus Zegke, Floriana Tuna, Stephen T. Liddle. Preparation of Heterobimetallic Ketimido-Actinide-Molybdenum Complexes. Inorganic Chemistry 2019, 58
(19)
, 13077-13089. https://doi.org/10.1021/acs.inorgchem.9b01993
- Raza ullah
shah Bacha, Yan-Ting Bi, Li-Chun Xuan, Qing-Jiang Pan. Inverse Trans Influence in Low-Valence Actinide–Group 10 Metal Complexes of Phosphinoaryl Oxides: A Theoretical Study via Tuning Metals and Donor Ligands. Inorganic Chemistry 2019, 58
(15)
, 10028-10037. https://doi.org/10.1021/acs.inorgchem.9b01193
- Prachi Sharma, Dale R. Pahls, Bianca L. Ramirez, Connie C. Lu, Laura Gagliardi. Multiple Bonds in Uranium–Transition Metal Complexes. Inorganic Chemistry 2019, 58
(15)
, 10139-10147. https://doi.org/10.1021/acs.inorgchem.9b01264
- Jun-Bo Lu, Xue-Lu Ma, Jia-Qi Wang, Ya-Fei Jiang, Yong Li, Han-Shi Hu, Hai Xiao, Jun Li. The df–d Dative Bonding in a Uranium–Cobalt Heterobimetallic Complex for Efficient Nitrogen Fixation. Inorganic Chemistry 2019, 58
(11)
, 7433-7439. https://doi.org/10.1021/acs.inorgchem.9b00598
- Xiao-Wang Chi, Qun-Yan Wu, Jian-Hui Lan, Cong-Zhi Wang, Qin Zhang, Zhi-Fang Chai, Wei-Qun Shi. A Theoretical Study on Divalent Heavier Group 14 Complexes as Promising Donor Ligands for Building Uranium–Metal Bonds. Organometallics 2019, 38
(9)
, 1963-1972. https://doi.org/10.1021/acs.organomet.9b00059
- Yan-Ting Bi, Li Li, Yuan-Ru Guo, Qing-Jiang Pan. Heterobimetallic Uranium–Nickel/Palladium/Platinum Complexes of Phosphinoaryl Oxide Ligands: A Theoretical Probe for Metal–Metal Bonding and Electronic Spectroscopy. Inorganic Chemistry 2019, 58
(2)
, 1290-1300. https://doi.org/10.1021/acs.inorgchem.8b02787
- Marissa Ringgold, David Rehe, Peter Hrobárik, Anna Y. Kornienko, Thomas J. Emge, John G. Brennan. Thorium Cubanes–Synthesis, Solid-State and Solution Structures, Thermolysis, and Chalcogen Exchange Reactions. Inorganic Chemistry 2018, 57
(12)
, 7129-7141. https://doi.org/10.1021/acs.inorgchem.8b00836
- Jun-Bo Lu, Xue-Lu Ma, Jia-Qi Wang, Jin-Cheng Liu, Hai Xiao, Jun Li. Efficient Nitrogen Fixation via a Redox-Flexible Single-Iron Site with Reverse-Dative Iron → Boron σ Bonding. The Journal of Physical Chemistry A 2018, 122
(18)
, 4530-4537. https://doi.org/10.1021/acs.jpca.8b02089
- Skye Fortier, J. Rolando Aguilar-Calderón, Bess Vlaisavljevich, Alejandro J. Metta-Magaña, Alan G. Goos, and Cristian E. Botez . An N-Tethered Uranium(III) Arene Complex and the Synthesis of an Unsupported U–Fe Bond. Organometallics 2017, 36
(23)
, 4591-4599. https://doi.org/10.1021/acs.organomet.7b00429
- Tingting Liu, Huining Chai, Liandi Wang, and Zhengkun Yu . Exceptionally Active Assembled Dinuclear Ruthenium(II)-NNN Complex Catalysts for Transfer Hydrogenation of Ketones. Organometallics 2017, 36
(15)
, 2914-2921. https://doi.org/10.1021/acs.organomet.7b00356
- John F. Berry and Connie C. Lu . Metal–Metal Bonds: From Fundamentals to Applications. Inorganic Chemistry 2017, 56
(14)
, 7577-7581. https://doi.org/10.1021/acs.inorgchem.7b01330
- Justin N. Cross, Jing Su, Enrique R. Batista, Samantha K. Cary, William J. Evans, Stosh A. Kozimor, Veronika Mocko, Brian L. Scott, Benjamin W. Stein, Cory J. Windorff, and Ping Yang . Covalency in Americium(III) Hexachloride. Journal of the American Chemical Society 2017, 139
(25)
, 8667-8677. https://doi.org/10.1021/jacs.7b03755
- Aditya L. Shinde, Priyanka Velmurugan, Akash K. Sahoo, Shanmugam Revathi, M. Meena, Preethi Raja, Moris S. Eisen, Tapas Ghatak. Chemistry of uranium and thorium complexes towards challenging transformation: A recent trends. Polyhedron 2025, 37 , 117428. https://doi.org/10.1016/j.poly.2025.117428
- Peng-Bo Jin, Qian-Cheng Luo, Gemma K. Gransbury, Richard E. P. Winpenny, David P. Mills, Yan-Zhen Zheng. Rare earth benzene tetraanion-bridged amidinate complexes. Chemical Science 2025, 16
(4)
, 1907-1924. https://doi.org/10.1039/D4SC05982D
- Lisa Vondung. Insights Into the Uranium Phosphine Bonds in [UCp
3
(PR
3
)]: A Combined Molecular Orbital, QTAIM and EDA‐NOCV Study. European Journal of Inorganic Chemistry 2024, 27
(36)
https://doi.org/10.1002/ejic.202400546
- Harsha S. Karnamkkott, Kartik Chandra Mondal. Nature of Metal–Metal Bond in Group‐V Dinuclear Metallaborane Compounds: Open‐Shell–Open‐Shell Vs Closed‐Shell–Closed‐Shell Interaction. European Journal of Inorganic Chemistry 2024, 27
(33)
https://doi.org/10.1002/ejic.202400252
- Thomas E. Shaw, Zachary R. Jones, Sara L. Adelman, Nickolas H. Anderson, Eric G. Bowes, Eric D. Bauer, David Dan, Jan Klouda, Karah E. Knope, Stosh A. Kozimor, Molly M. MacInnes, Veronika Mocko, Francisca R. Rocha, Harrison D. Root, Benjamin W. Stein, Joe D. Thompson, Jennifer N. Wacker. PuCl
3
{CoCp[OP(OEt)
2
]
3
}: transuranic elements entering the field of heterometallic molecular chemistry. Chemical Science 2024, 15
(32)
, 12754-12764. https://doi.org/10.1039/D4SC01767F
- Wei Fang, Yafei Li, Tianze Zhang, Thayalan Rajeshkumar, Iker del Rosal, Yue Zhao, Tianwei Wang, Shuao Wang, Laurent Maron, Congqing Zhu. Oxidative Addition of E−H (E=C, N) Bonds to Transient Uranium(II) Centers. Angewandte Chemie International Edition 2024, 63
(32)
https://doi.org/10.1002/anie.202407339
- Wei Fang, Yafei Li, Tianze Zhang, Thayalan Rajeshkumar, Iker del Rosal, Yue Zhao, Tianwei Wang, Shuao Wang, Laurent Maron, Congqing Zhu. Oxidative Addition of E−H (E=C, N) Bonds to Transient Uranium(II) Centers. Angewandte Chemie 2024, 136
(32)
https://doi.org/10.1002/ange.202407339
- Matthias R. Steiner, Viatcheslav V. Jouikov, Roland C. Fischer, Johanna M. Uher, Isabel‐Maria Ramirez y Medina, Johann A. Hlina. Alkyne Cyclotrimerisation, Acyclic Oligomerisation, and Transfer Hydrogenation Catalysed by a Titanium(IV) Phosphinoaryloxide Complex and its Redox Chemistry. European Journal of Inorganic Chemistry 2024, 27
(19)
https://doi.org/10.1002/ejic.202300791
- Christopher Z. Ye, Iker Del Rosal, Sheridon N. Kelly, I. Joseph Brackbill, Laurent Maron, Clément Camp, John Arnold. Photolysis-driven bond activation by thorium and uranium tetraosmate polyhydride complexes. Chemical Science 2024, 15
(25)
, 9784-9792. https://doi.org/10.1039/D4SC02380C
- Jingzhen Du, Kevin Dollberg, John A. Seed, Ashley J. Wooles, Carsten von Hänisch, Stephen T. Liddle. Thorium(iv)–antimony complexes exhibiting single, double, and triple polar covalent metal–metal bonds. Nature Chemistry 2024, 16
(5)
, 780-790. https://doi.org/10.1038/s41557-024-01448-6
- Matthias R Steiner, Max Schmallegger, Larissa Donner, Johann A Hlina, Christoph Marschner, Judith Baumgartner, Christian Slugovc. Using the phospha-Michael reaction for making phosphonium phenolate zwitterions. Beilstein Journal of Organic Chemistry 2024, 20 , 41-51. https://doi.org/10.3762/bjoc.20.6
- Kang Liu, Xiaowang Chi, Yan Guo, Kongqiu Hu, Lei Mei, Jipan Yu, Weiqun Shi. Advancing the understanding of M–O covalency in isostructural M–OSiMe
3
(M = Ce, Th, U) complexes. New Journal of Chemistry 2024, 489 https://doi.org/10.1039/D4NJ03128H
- Robert J. Ward, Pokpong Rungthanaphatsophon, Patrick Huang, Steven P. Kelley, Justin R. Walensky. Cooperative dihydrogen activation with unsupported uranium–metal bonds and characterization of a terminal U(
iv
) hydride. Chemical Science 2023, 14
(43)
, 12255-12263. https://doi.org/10.1039/D3SC04857H
- Kai Li, Genfeng Feng, Stella Christodolou, Yue Zhao, Laurent Maron, Congqing Zhu. Heterotrimetallic clusters with U-Ni-Ge and U-Ni-Sn units. Polyhedron 2023, 243 , 116548. https://doi.org/10.1016/j.poly.2023.116548
- Kai Li, Jialu He, Yue Zhao, Congqing Zhu. Synthesis and reactivity of a uranium(
iv
) complex supported by a monoanionic nitrogen–phosphorus ligand. Inorganic Chemistry Frontiers 2023, 10
(19)
, 5622-5633. https://doi.org/10.1039/D3QI01447A
- Lihao Zheng, Yannick Roselló, Yingjing Yan, Yang‐Rong Yao, Xiaolin Fan, Josep M. Poblet, Antonio Rodríguez‐Fortea, Ning Chen. ScY
@
C
3
v
(8)‐
C
82
:
Metal‐Metal
σ
2
Bond in Mixed
Rare‐Earth
Di‐metallofullerenes
†. Chinese Journal of Chemistry 2023, 41
(15)
, 1809-1814. https://doi.org/10.1002/cjoc.202300045
- Jinghang Shen, Thayalan Rajeshkumar, Genfeng Feng, Yue Zhao, Shuao Wang, Laurent Maron, Congqing Zhu. Complexes Featuring a
cis
‐[MUM] Core (M=Rh, Ir): A New Route to Uranium‐Metal Multiple Bonds. Angewandte Chemie 2023, 135
(21)
https://doi.org/10.1002/ange.202303379
- Jinghang Shen, Thayalan Rajeshkumar, Genfeng Feng, Yue Zhao, Shuao Wang, Laurent Maron, Congqing Zhu. Complexes Featuring a
cis
‐[MUM] Core (M=Rh, Ir): A New Route to Uranium‐Metal Multiple Bonds. Angewandte Chemie International Edition 2023, 62
(21)
https://doi.org/10.1002/anie.202303379
- Valeriu Cemortan, Thomas Simler, Jules Moutet, Arnaud Jaoul, Carine Clavaguéra, Grégory Nocton. Structure and bonding patterns in heterometallic organometallics with linear Ln–Pd–Ln motifs. Chemical Science 2023, 14
(10)
, 2676-2685. https://doi.org/10.1039/D2SC06933D
- Christopher Z. Ye, Iker Del Rosal, Michael A. Boreen, Erik T. Ouellette, Dominic R. Russo, Laurent Maron, John Arnold, Clément Camp. A versatile strategy for the formation of hydride-bridged actinide–iridium multimetallics. Chemical Science 2023, 14
(4)
, 861-868. https://doi.org/10.1039/D2SC04903A
- Wei Fang, Laurent Maron, Congqing Zhu. Recent advances in f-block metal-metal bonds. 2023, 1-54. https://doi.org/10.1016/bs.hpcre.2023.01.001
- Wei Su, Thayalan Rajeshkumar, Libo Xiang, Laurent Maron, Qing Ye. Facile Synthesis of Uranium Complexes with a Pendant Borane Lewis Acid and 1,2‐Insertion of CO into a U−N Bond. Angewandte Chemie 2022, 134
(51)
https://doi.org/10.1002/ange.202212823
- Wei Su, Thayalan Rajeshkumar, Libo Xiang, Laurent Maron, Qing Ye. Facile Synthesis of Uranium Complexes with a Pendant Borane Lewis Acid and 1,2‐Insertion of CO into a U−N Bond. Angewandte Chemie International Edition 2022, 61
(51)
https://doi.org/10.1002/anie.202212823
- Zhenhua Zhu, Jinkui Tang. Metal–metal bond in lanthanide single-molecule magnets. Chemical Society Reviews 2022, 51
(23)
, 9469-9481. https://doi.org/10.1039/D2CS00516F
- Wei Fang, Qin Zhu, Congqing Zhu. Recent advances in heterometallic clusters with f-block metal–metal bonds: synthesis, reactivity and applications. Chemical Society Reviews 2022, 51
(20)
, 8434-8449. https://doi.org/10.1039/D2CS00424K
- Qian-Cheng Luo, Ning Ge, Yuan-Qi Zhai, Teng-Bo Wang, Lin Sun, Qi Sun, Fanni Li, Zhongwen Ouyang, Zhen-Xing Wang, Yan-Zhen Zheng. A C,S bonded quasi-two-coordinate chromium(
ii
) complex showing field-induced slow magnetic relaxation behaviour. Dalton Transactions 2022, 51
(24)
, 9218-9222. https://doi.org/10.1039/D2DT01131J
- Raza ullah shah Bacha, Dong-Mei Su, Qing-Jiang Pan. Nitrogen reduction to ammonia triggered by heterobimetallic uranium-group 10 metal complexes of phosphinoaryl oxides: A relativistic DFT study. Molecular Catalysis 2022, 525 , 112345. https://doi.org/10.1016/j.mcat.2022.112345
- Penglong Wang, Iskander Douair, Yue Zhao, Rile Ge, Junhu Wang, Shuao Wang, Laurent Maron, Congqing Zhu. Selective hydroboration of terminal alkynes catalyzed by heterometallic clusters with uranium–metal triple bonds. Chem 2022, 8
(5)
, 1361-1375. https://doi.org/10.1016/j.chempr.2022.03.005
- Jiaxin Zhuang, Roser Morales-Martínez, Jiangwei Zhang, Yaofeng Wang, Yang-Rong Yao, Cuiying Pei, Antonio Rodríguez-Fortea, Shuao Wang, Luis Echegoyen, Coen de Graaf, Josep M. Poblet, Ning Chen. Characterization of a strong covalent Th3+–Th3+ bond inside an Ih(7)-C80 fullerene cage. Nature Communications 2021, 12
(1)
https://doi.org/10.1038/s41467-021-22659-2
- Michael T. Trinh, Justin C. Wedal, William J. Evans. Evaluating electrochemical accessibility of 4f
n
5d
1
and 4f
n
+1
Ln(
ii
) ions in (C
5
H
4
SiMe
3
)
3
Ln and (C
5
Me
4
H)
3
Ln complexes. Dalton Transactions 2021, 50
(40)
, 14384-14389. https://doi.org/10.1039/D1DT02427B
- Justin C. Wedal, Jeffrey M. Barlow, Joseph W. Ziller, Jenny Y. Yang, William J. Evans. Electrochemical studies of tris(cyclopentadienyl)thorium and uranium complexes in the +2, +3, and +4 oxidation states. Chemical Science 2021, 12
(24)
, 8501-8511. https://doi.org/10.1039/D1SC01906F
- Joseph P. A. Ostrowski, Ashley J. Wooles, Stephen T. Liddle. Synthesis and Characterisation of Molecular Polarised-Covalent Thorium-Rhenium and -Ruthenium Bonds. Inorganics 2021, 9
(5)
, 30. https://doi.org/10.3390/inorganics9050030
- Kortney Melancon, Thomas Cundari. Computational Studies of the Photophysical, Structural, and Catalytic Properties of Complex Chemical Systems. 2021https://doi.org/10.12794/metadc1808355
- R. Malcolm Charles, Timothy P. Brewster. H2 and carbon-heteroatom bond activation mediated by polarized heterobimetallic complexes. Coordination Chemistry Reviews 2021, 433 , 213765. https://doi.org/10.1016/j.ccr.2020.213765
- Qiuran Wang, Sam H. Brooks, Tianchang Liu, Neil C. Tomson. Tuning metal–metal interactions for cooperative small molecule activation. Chemical Communications 2021, 57
(23)
, 2839-2853. https://doi.org/10.1039/D0CC07721F
- Sascha T. Löffler, Karsten Meyer. Actinides. 2021, 471-521. https://doi.org/10.1016/B978-0-12-409547-2.14754-7
- Genfeng Feng, Karl N. McCabe, Shuao Wang, Laurent Maron, Congqing Zhu. Construction of heterometallic clusters with multiple uranium–metal bonds by using dianionic nitrogen–phosphorus ligands. Chemical Science 2020, 11
(29)
, 7585-7592. https://doi.org/10.1039/D0SC00389A
- Takefumi Yoshida, Habib Md. Ahsan, Hai-Tao Zhang, David Chukwuma Izuogu, Hitoshi Abe, Hiroyoshi Ohtsu, Tadashi Yamaguchi, Brian K. Breedlove, Alex J. W. Thom, Masahiro Yamashita. Ionic-caged heterometallic bismuth–platinum complex exhibiting electrocatalytic CO
2
reduction. Dalton Transactions 2020, 49
(8)
, 2652-2660. https://doi.org/10.1039/C9DT04817K
- Xiaoqing Xin, Congqing Zhu. Isolation of heterometallic cerium(
iii
) complexes with a multidentate nitrogen–phosphorus ligand. Dalton Transactions 2020, 49
(3)
, 603-607. https://doi.org/10.1039/C9DT04555D
- Peng Cui, Chunyan Xiong, Jun Du, Zeming Huang, Sijun Xie, Hua Wang, Shuangliu Zhou, Huayi Fang, Shaowu Wang. Heterobimetallic scandium–group 10 metal complexes with LM → Sc (LM = Ni, Pd, Pt) dative bonds. Dalton Transactions 2020, 49
(1)
, 124-130. https://doi.org/10.1039/C9DT04369A
- Genfeng Feng, Mingxing Zhang, Penglong Wang, Shuao Wang, Laurent Maron, Congqing Zhu. Identification of a uranium–rhodium triple bond in a heterometallic cluster. Proceedings of the National Academy of Sciences 2019, 116
(36)
, 17654-17658. https://doi.org/10.1073/pnas.1904895116
- Shu-Xian Hu, Erli Lu, Stephen T. Liddle. Prediction of high bond-order metal–metal multiple-bonds in heterobimetallic 3d–4f/5f complexes [TM–M{N(
o
-[NCH
2
P(CH
3
)
2
]C
6
H
4
)
3
}] (TM = Cr, Mn, Fe; M = U, Np, Pu, and Nd). Dalton Transactions 2019, 48
(34)
, 12867-12879. https://doi.org/10.1039/C9DT03086G
- Jun Du, Zeming Huang, Yanan Zhang, Shaowu Wang, Shuangliu Zhou, Huayi Fang, Peng Cui. A Scandium Metalloligand‐Based Heterobimetallic Pd−Sc Complex: Electronic Tuning Through a Very Short Pd→Sc Dative Bond. Chemistry – A European Journal 2019, 25
(43)
, 10149-10155. https://doi.org/10.1002/chem.201901424
- Christopher J. Inman, F. Geoffrey N. Cloke. The experimental determination of Th(
iv
)/Th(
iii
) redox potentials in organometallic thorium complexes. Dalton Transactions 2019, 48
(29)
, 10782-10784. https://doi.org/10.1039/C9DT01553A
- Bianca L. Ramirez, Prachi Sharma, Reed J. Eisenhart, Laura Gagliardi, Connie C. Lu. Bimetallic nickel-lutetium complexes: tuning the properties and catalytic hydrogenation activity of the Ni site by varying the Lu coordination environment. Chemical Science 2019, 10
(11)
, 3375-3384. https://doi.org/10.1039/C8SC04712J
- Genfeng Feng, Mingxing Zhang, Dong Shao, Xinyi Wang, Shuao Wang, Laurent Maron, Congqing Zhu. Transition-metal-bridged bimetallic clusters with multiple uranium–metal bonds. Nature Chemistry 2019, 11
(3)
, 248-253. https://doi.org/10.1038/s41557-018-0195-4
- Stefan Knecht, Hans Jørgen Aa. Jensen, Trond Saue. Relativistic quantum chemical calculations show that the uranium molecule U2 has a quadruple bond. Nature Chemistry 2019, 11
(1)
, 40-44. https://doi.org/10.1038/s41557-018-0158-9
- Alexander J. Ayres, Markus Zegke, Joseph P. A. Ostrowski, Floriana Tuna, Eric J. L. McInnes, Ashley J. Wooles, Stephen T. Liddle. Actinide-transition metal bonding in heterobimetallic uranium– and thorium–molybdenum paddlewheel complexes. Chemical Communications 2018, 54
(96)
, 13515-13518. https://doi.org/10.1039/C8CC05268A
- David C. Izuogu, Takefumi Yoshida, Haitao Zhang, Goulven Cosquer, Keiichi Katoh, Shuhei Ogata, Miki Hasegawa, Hiroyuki Nojiri, Marko Damjanović, Wolfgang Wernsdorfer, Tomoya Uruga, Toshiaki Ina, Brian K. Breedlove, Masahiro Yamashita. Slow Magnetic Relaxation in a Palladium–Gadolinium Complex Induced by Electron Density Donation from the Palladium Ion. Chemistry – A European Journal 2018, 24
(37)
, 9285-9294. https://doi.org/10.1002/chem.201800699
- Chun-Shuai Cao, Ying Shi, Hang Xu, Bin Zhao. Metal–metal bonded compounds with uncommon low oxidation state. Coordination Chemistry Reviews 2018, 365 , 122-144. https://doi.org/10.1016/j.ccr.2018.03.017
- Erli Lu, Ashley J. Wooles, Matthew Gregson, Philip J. Cobb, Stephen T. Liddle. A Very Short Uranium(IV)–Rhodium(I) Bond with Net Double‐Dative Bonding Character. Angewandte Chemie 2018, 130
(22)
, 6697-6701. https://doi.org/10.1002/ange.201803493
- Erli Lu, Ashley J. Wooles, Matthew Gregson, Philip J. Cobb, Stephen T. Liddle. A Very Short Uranium(IV)–Rhodium(I) Bond with Net Double‐Dative Bonding Character. Angewandte Chemie International Edition 2018, 57
(22)
, 6587-6591. https://doi.org/10.1002/anie.201803493
- Ravi Srivastava, Raphaël Moneuse, Julien Petit, Paul‐Alexis Pavard, Vincent Dardun, Madleen Rivat, Pauline Schiltz, Marius Solari, Erwann Jeanneau, Laurent Veyre, Chloé Thieuleux, Elsje Alessandra Quadrelli, Clément Camp. Early/Late Heterobimetallic Tantalum/Rhodium Species Assembled Through a Novel Bifunctional NHC‐OH Ligand. Chemistry – A European Journal 2018, 24
(17)
, 4361-4370. https://doi.org/10.1002/chem.201705507
- Brooke M. Otten, Kortney M. Melançon, Mohammad A. Omary. All That Glitters Is Not Gold: A Computational Study of Covalent vs Metallophilic Bonding in Bimetallic Complexes of d
10
Metal Centers—A Tribute to Al Cotton on the Tenth Anniversary of His Passing. Comments on Inorganic Chemistry 2018, 38
(1)
, 1-35. https://doi.org/10.1080/02603594.2018.1467315
- M. D. Straub, S. Hohloch, S. G. Minasian, J. Arnold. Homoleptic U(
iii
) and U(
iv
) amidate complexes. Dalton Transactions 2018, 47
(6)
, 1772-1776. https://doi.org/10.1039/C7DT04813K
- Patrick Steinhoff, Ralf Steinbock, Anna Friedrich, Benjamin G. Schieweck, Christopher Cremer, Khai-Nghi Truong, Michael E. Tauchert. Synthesis and properties of heterobimetallic rhodium complexes featuring Li
I
, Cu
I
or Zn
II
as a Lewis acidic metalloligand. Dalton Transactions 2018, 47
(31)
, 10439-10442. https://doi.org/10.1039/C8DT01267A
- Takefumi Yoshida, David Chukwuma Izougu, Daichi Iwasawa, Shuhei Ogata, Miki Hasegawa, Brian K. Breedlove, Goulven Cosquer, Wolfgang Wernsdorfer, Masahiro Yamashita. Multiple Magnetic Relaxation Pathways and Dual‐Emission Modulated by a Heterometallic Tb‐Pt Bonding Environment. Chemistry – A European Journal 2017, 23
(44)
, 10527-10531. https://doi.org/10.1002/chem.201702989
- Athanassios C. Tsipis. RETRACTED: DFT challenge of intermetallic interactions: From metallophilicity and metallaromaticity to sextuple bonding. Coordination Chemistry Reviews 2017, 345 , 229-262. https://doi.org/10.1016/j.ccr.2016.08.005
- Chaoxian Chi, Jia‐Qi Wang, Hui Qu, Wan‐Lu Li, Luyan Meng, Mingbiao Luo, Jun Li, Mingfei Zhou. Preparation and Characterization of Uranium–Iron Triple‐Bonded UFe(CO)
3
−
and OUFe(CO)
3
−
Complexes. Angewandte Chemie 2017, 129
(24)
, 7036-7040. https://doi.org/10.1002/ange.201703525
- Chaoxian Chi, Jia‐Qi Wang, Hui Qu, Wan‐Lu Li, Luyan Meng, Mingbiao Luo, Jun Li, Mingfei Zhou. Preparation and Characterization of Uranium–Iron Triple‐Bonded UFe(CO)
3
−
and OUFe(CO)
3
−
Complexes. Angewandte Chemie International Edition 2017, 56
(24)
, 6932-6936. https://doi.org/10.1002/anie.201703525
- Ning Qu, Dong-Mei Su, Qun-Yan Wu, Wei-Qun Shi, Qing-Jiang Pan. Metal-metal multiple bond in low-valent diuranium porphyrazines and its correlation with metal oxidation state: A relativistic DFT study. Computational and Theoretical Chemistry 2017, 1108 , 29-39. https://doi.org/10.1016/j.comptc.2017.03.011
- J. A. Hlina, J. A. L. Wells, J. R. Pankhurst, Jason B. Love, P. L. Arnold. Uranium rhodium bonding in heterometallic complexes. Dalton Transactions 2017, 46
(17)
, 5540-5545. https://doi.org/10.1039/C6DT04570G
- Han-Shi Hu, Nikolas Kaltsoyannis. The shortest Th–Th distance from a new type of quadruple bond. Physical Chemistry Chemical Physics 2017, 19
(7)
, 5070-5076. https://doi.org/10.1039/C7CP00113D
- Clément Camp, Davide Toniolo, Julie Andrez, Jacques Pécaut, Marinella Mazzanti. A versatile route to homo- and hetero-bimetallic 5f–5f and 3d–5f complexes supported by a redox active ligand framework. Dalton Transactions 2017, 46
(34)
, 11145-11148. https://doi.org/10.1039/C7DT01993A
- Fern Sinclair, Johann A. Hlina, Jordann A. L. Wells, Michael P. Shaver, Polly L. Arnold. Ring opening polymerisation of lactide with uranium(
iv
) and cerium(
iv
) phosphinoaryloxide complexes. Dalton Transactions 2017, 46
(33)
, 10786-10790. https://doi.org/10.1039/C7DT02167D
- Pikun Yang, Enwei Zhou, Guohua Hou, Guofu Zi, Wanjian Ding, Marc D. Walter. Experimental and Computational Studies on the Formation of Thorium–Copper Heterobimetallics. Chemistry – A European Journal 2016, 22
(39)
, 13845-13849. https://doi.org/10.1002/chem.201603519
- Zhong-Ping Cheng, Qun-Yan Wu, Yun-Hai Liu, Jian-Hui Lan, Cong-Zhi Wang, Zhi-Fang Chai, Wei-Qun Shi. The redox mechanism of Np
VI
with hydrazine: a DFT study. RSC Advances 2016, 6
(110)
, 109045-109053. https://doi.org/10.1039/C6RA13339H
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
Recommended Articles
Abstract
Scheme 1
Scheme 1. Synthesis of Uranium(IV) Tris(aryloxide) Iodide 2Figure 1
Figure 1. Molecular structure of 2. Solvent molecules and hydrogen atoms are omitted, and peripheral carbon atoms are depicted as a wireframe, for clarity. Thermal ellipsoids are drawn at 50% probability. Selected distances (Å) and angles (deg): U–I, 3.0414(6); U–O, 2.150(3)–2.162(3); U–P, 3.041(1)–3.056(1); O–U–P, 62.93(8)–63.14(8); O–U–I, 79.98(2)–82.43(2), 119.43(8)–124.53(8).
Scheme 2
Scheme 2. Preparation of the Bimetallic Uranium(IV) Complex 3–Ni, 3–Pd, and 3–PtFigure 2
Figure 2. Thermal ellipsoid plot for 3–Ni, 3–Pd, and 3–Pt. Solvent molecules and hydrogen atoms are omitted, and selected carbon atoms are depicted as a wireframe, for clarity. Thermal ellipsoids are drawn at 50% probability, and only one independent molecule out of nine in the asymmetric unit is shown. Selected bond distances (Å) and angles (deg) are shown in Table 1.
Figure 3
Figure 3. Stacked variable-temperature 1H NMR spectra of 3–Ni in toluene-d8 from 3.2 to 6.6 ppm over a temperature range of 300–370 K. Asterisks indicate resonances of phenyl hydrogen atoms observable at 300 and 370 K.
Figure 4
Figure 4. Simplified Newman projection illustrating the helicity of the bimetallic complexes.
Figure 5
Figure 5. Selected valence NLMOs of 3–Ni. Isosurface value = 0.04. Atom colors: iodine = purple, uranium = lighter blue, oxygen = red, nickel = darker blue, phosphorus = yellow, and carbon = gray. Hydrogen atoms are omitted for clarity.
Scheme 3
Scheme 3. Preparation of Bimetallic Trimethylsiloxide (4) and Fluoride Derivatives (5)Figure 6
Figure 6. Thermal ellipsoid plots for 4 and 5. Solvent molecules and hydrogen atoms are omitted, and selected carbon atoms are depicted as a wireframe, for clarity. Thermal ellipsoids drawn at 50% probability. Selected bond distances (Å) and angles (deg) for 4: U1–Ni1, 2.556(1); U1–O1, 2.210(6); U1–O2, 2.188(6); U1–O3, 2.160(6); U1–O4, 2.093(6); Ni1–P1, 2.208(2); Ni1–P2, 2.213(3); Ni1–P3, 2.221(2); O4–U1–Ni1, 178.6(2); U1–Ni1–P1, 87.85(7); U1–Ni1–P2, 97.84(7); U1–Ni1–P3, 94.95(7); O1–U1–Ni1–P1, 37.4(2); O2–U1–Ni1–P2, 18.4(2); O3–U1–Ni1–P3, 28.1(2). For 5: U1–Ni1, 2.520(1); U1–F1, 2.091(5); U1–O1, 2.159(8); U1–O2, 2.174(6); U1–O3, 2.199(5); Ni1–P1, 2.225(3); Ni1–P2, 2.215(3); Ni1–P3, 2.212(2); F1–U1–Ni1, 178.8(2); U1–Ni1–P1, 96.16(7); U1–Ni1–P2, 91.56(7); U1–Ni1–P3, 91.82(7); O1–U1–Ni1–P1, 22.2(2); O2–U1–Ni1–P2, 30.1(2); O3–U1–Ni1–P3, 29.1(2).
Figure 7
Figure 7. Thermal ellipsoid plot for 3–Ni (left) and 4 (right) viewed along the U–Ni bond axes. Solvent molecules and hydrogen atoms are omitted and selected carbon atoms are depicted as a wireframe for clarity. Thermal ellipsoids are drawn at 50% probability.
Figure 8
Figure 8. Cyclic voltammograms for 3–Pt, 3–Pd, 3–Ni, 4, and 5. All measured in THF using 0.1 M [nBu4N][BPh4] as the supporting electrolyte, at a scan rate of 100 mV s–1. The currents are normalized against the peak height of reduction process I for 3–Pt.
References
This article references 100 other publications.
- 1Cooper, B. G.; Napoline, J. W.; Thomas, C. M. Catal. Rev.: Sci. Eng. 2012, 54, 1– 40 DOI: 10.1080/01614940.2012.619931There is no corresponding record for this reference.
- 2Liddle, S. T.; Mills, D. P. Dalton Trans. 2009, 5592– 5605 DOI: 10.1039/b904318gThere is no corresponding record for this reference.
- 3Patel, D.; Liddle, S. T. Rev. Inorg. Chem. 2012, 32, 1– 22 DOI: 10.1515/revic.2012.00013https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2cXmtFSlsLw%253D&md5=e75f02e1af9d9e3a72dae25b36e9e245f-Element-metal bond chemistryPatel, Dipti; Liddle, Stephen T.Reviews in Inorganic Chemistry (2012), 32 (1), 1-22CODEN: RICHD7; ISSN:0193-4929. (Walter de Gruyter GmbH)A review. This review outlines the development of compds. that possess polarized covalent f-element-metal bonds. We focus on complexes that have been structurally authenticated by single crystal X-ray diffraction, and we highlight novel aspects of their syntheses, properties and reactivities.
- 4Oelkers, B.; Butovskii, M. V.; Kempe, R. Chem. - Eur. J. 2012, 18, 13566– 13579 DOI: 10.1002/chem.2012007834https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC38XhsVaqsbjN&md5=6c19699a59ad2232f50edc8c2fae01d9f-Element-Metal Bonding and the Use of the Bond Polarity To Build Molecular IntermetalloidsOelkers, Benjamin; Butovskii, Mikhail V.; Kempe, RhettChemistry - A European Journal (2012), 18 (43), 13566-13579CODEN: CEUJED; ISSN:0947-6539. (Wiley-VCH Verlag GmbH & Co. KGaA)A review. Metal-metal bonding in heterobimetallic complexes is of fundamental interest due to its implications to both bonding theory and new reactivities. In this Concept, structurally authenticated mol. compds. with direct bonds between rare-earth metals or actinoids and transition or main group metals are summarized. Special attention is given to the use of bond polarity as a tool for designing mol. intermetalloids incorporating rare-earth atoms and transition metals.
- 5Sternal, R. S.; Marks, T. J. Organometallics 1987, 6, 2621– 2623 DOI: 10.1021/om00155a036There is no corresponding record for this reference.
- 6Bucaille, A.; Le Borgne, T.; Ephritikhine, M.; Daran, J.-C. Organometallics 2000, 19, 4912– 4914 DOI: 10.1021/om000483fThere is no corresponding record for this reference.
- 7Monreal, M. J.; Khan, S. I.; Kiplinger, J. L.; Diaconescu, P. L. Chem. Commun. 2011, 47, 9119 DOI: 10.1039/c1cc12367jThere is no corresponding record for this reference.
- 8Gardner, B. M.; Patel, D.; Cornish, A. D.; McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T. Chem. - Eur. J. 2011, 17, 11266– 11273 DOI: 10.1002/chem.2011013948https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3MXhtVymsr7M&md5=22b3715cc364c30a5820b362beb60c18The Nature of Unsupported Uranium-Ruthenium Bonds: A Combined Experimental and Theoretical StudyGardner, Benedict M.; Patel, Dipti; Cornish, Andrew D.; McMaster, Jonathan; Lewis, William; Blake, Alexander J.; Liddle, Stephen T.Chemistry - A European Journal (2011), 17 (40), 11266-11273, S11266/1-S11266/52CODEN: CEUJED; ISSN:0947-6539. (Wiley-VCH Verlag GmbH & Co. KGaA)Four new uranium-ruthenium complexes, [(TrenTMS)URu(η5-C5H5)(CO)2] (9), [(TrenDMSB)URu(η5-C5H5)(CO)2] (10), [(TsTolyl)(THF)URu(η5-C5H5)(CO)2] (11), and [(TsXylyl)(THF)URu(η5-C5H5)(CO)2] (12) [TrenTMS = N(CH2CH2NSiMe3)3; TrenDMSB = N(CH2CH2NSiMe2tBu)3; TsTolyl = HC(SiMe2NC6H4-4-Me)3; TsXylyl = HC(SiMe2NC6H3-3,5-Me2)3], were prepd. by a salt-elimination strategy. Structural, spectroscopic, and computational analyses of 9-12 shows: (i) the formation of unsupported uranium-ruthenium bonds with no isocarbonyl linkages in the solid state; (ii) ruthenium-carbonyl back bonding in the [Ru(η5-C5H5)(CO)2]- ions that is tempered by polarization of charge within the ruthenium fragments towards uranium; (iii) closed-shell uranium-ruthenium interactions that can be classified as predominantly ionic with little covalent character. Comparison of the calcd. U-Ru bond interaction energies (BIEs) of 9-12 with the BIE of [(η5-C5H5)3URu(η5-C5H5)(CO)2], for which an exptl. detd. U-Ru bond disruption enthalpy (BDE) has been reported, suggests BDEs of approx. 150 kJ mol-1 for 9-12.
- 9Patel, D.; Moro, F.; McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T. Angew. Chem., Int. Ed. 2011, 50, 10388– 10392 DOI: 10.1002/anie.201104110There is no corresponding record for this reference.
- 10Napoline, J. W.; Kraft, S. J.; Matson, E. M.; Fanwick, P. E.; Bart, S. C.; Thomas, C. M. Inorg. Chem. 2013, 52, 12170– 12177 DOI: 10.1021/ic402343qThere is no corresponding record for this reference.
- 11Ward, A. L.; Lukens, W. W.; Lu, C. C.; Arnold, J. J. Am. Chem. Soc. 2014, 136, 3647– 3654 DOI: 10.1021/ja413192mThere is no corresponding record for this reference.
- 12Gardner, B. M.; McMaster, J.; Lewis, W.; Liddle, S. T. Chem. Commun. 2009, 2851– 2853 DOI: 10.1039/b906554gThere is no corresponding record for this reference.
- 13Gardner, B. M.; McMaster, J.; Moro, F.; Lewis, W.; Blake, A. J.; Liddle, S. T. Chem. - Eur. J. 2011, 17, 6909– 6912 DOI: 10.1002/chem.20110068213https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3MXntVGkurk%253D&md5=c981d4be1c3eecde02aae505ab19f634An Unsupported Uranium-Rhenium Complex Prepared by Alkane EliminationGardner, Benedict M.; McMaster, Jonathan; Moro, Fabrizio; Lewis, William; Blake, Alexander J.; Liddle, Stephen T.Chemistry - A European Journal (2011), 17 (25), 6909-6912, S6909/1-S6909/5CODEN: CEUJED; ISSN:0947-6539. (Wiley-VCH Verlag GmbH & Co. KGaA)It is demonstrated for the first time that alkane elimination represents an effective method to access uranium-metal complexes. The DFT anal. reveals o and T combinations in the U-Re bond. However, the dominance of rhenium contributions to HOMO-3 and HOMO-4 suggests that the uranium contribution is small and the 3T component is weak. AIM anal. suggests a closed-shell interaction and a U-Re interaction that is predominantly ionic. Thus, reaction of [U{N(CH2CH2NSiMe2tBu)2(CH2CH2NSiMetBuCH2)}] with rhenocene hydride in PhMe gave {(TrenDMSB)URe(η5-C5H5)2} (TrenDMSB = N(CH2CH2NSiMe2tBuCH2)3) gave 46% yield.
- 14Patel, D.; King, D. M.; Gardner, B. M.; McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T. Chem. Commun. 2011, 47, 295– 297 DOI: 10.1039/C0CC01387KThere is no corresponding record for this reference.
- 15Fortier, S.; Walensky, J. R.; Wu, G.; Hayton, T. W. J. Am. Chem. Soc. 2011, 133, 11732– 11743 DOI: 10.1021/ja204151vThere is no corresponding record for this reference.
- 16Arnold, P. L.; McMaster, J.; Liddle, S. T. Chem. Commun. 2009, 818– 820 DOI: 10.1039/B819072KThere is no corresponding record for this reference.
- 17Roussel, P.; Scott, P. J. Am. Chem. Soc. 1998, 120, 1070– 1071 DOI: 10.1021/ja972933+There is no corresponding record for this reference.
- 18Ritchey, J. M.; Zozulin, A. J.; Wrobleski, D. A.; Ryan, R. R.; Wasserman, H. J.; Moody, D. C.; Paine, R. T. J. Am. Chem. Soc. 1985, 107, 501– 503 DOI: 10.1021/ja00288a039There is no corresponding record for this reference.
- 19Hay, P. J.; Ryan, R. R.; Salazar, K. V.; Wrobleski, D. A.; Sattelberger, A. P. J. Am. Chem. Soc. 1986, 108, 313– 315 DOI: 10.1021/ja00262a031There is no corresponding record for this reference.
- 20Nakajima, Y.; Hou, Z. Organometallics 2009, 28, 6861– 6870 DOI: 10.1021/om900702yThere is no corresponding record for this reference.
- 21Völcker, F.; Mück, F. M.; Vogiatzis, K. D.; Fink, K.; Roesky, P. W. Chem. Commun. 2015, 51, 11761– 11764 DOI: 10.1039/C5CC03944DThere is no corresponding record for this reference.
- 22Van der Sluys, W. G.; Burns, C. J.; Huffman, J. C.; Sattelberger, A. P. J. Am. Chem. Soc. 1988, 110, 5924– 5925 DOI: 10.1021/ja00225a067There is no corresponding record for this reference.
- 23Van der Sluys, W. G.; Sattelberger, A. P. Inorg. Chem. 1989, 28 (12) 2496– 2498 DOI: 10.1021/ic00311a053There is no corresponding record for this reference.
- 24Avens, L. R.; Barnhart, D. M.; Burns, C. J.; McKee, S. D.; Smith, W. H. Inorg. Chem. 1994, 33, 4245– 4254 DOI: 10.1021/ic00097a010There is no corresponding record for this reference.
- 25McKee, S. D.; Burns, C. J.; Avens, L. R. Inorg. Chem. 1998, 37, 4040– 4045 DOI: 10.1021/ic9803309There is no corresponding record for this reference.
- 26Mansell, S. M.; Kaltsoyannis, N.; Arnold, P. L. J. Am. Chem. Soc. 2011, 133, 9036– 9051 DOI: 10.1021/ja2019492There is no corresponding record for this reference.
- 27Arnold, P. L.; Mansell, S. M.; Maron, L.; McKay, D. Nat. Chem. 2012, 4, 668– 674 DOI: 10.1038/nchem.139227https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC38XhtVehtr%252FN&md5=d8e8ebaa426599aad1c67fc930ea7a8aSpontaneous reduction and C-H borylation of arenes mediated by uranium(III) disproportionationArnold, Polly L.; Mansell, Stephen M.; Maron, Laurent; McKay, DavidNature Chemistry (2012), 4 (8), 668-674CODEN: NCAHBB; ISSN:1755-4330. (Nature Publishing Group)Transition-metal-arene complexes such as bis(benzene)chromium, Cr(η6-C6H6)2, are historically important to d-orbital bonding theory and have modern importance in org. synthesis, catalysis and org. spintronics. In studies of f-block chem., however, arenes are invariably used as solvents rather than ligands. Here, simple U complexes, UX3 (X = aryloxide, amide), spontaneously disproportionate, transferring an electron and X-ligand, allowing the resulting UX2 to bind and reduce arenes, forming inverse sandwich mols. [X2U(μ-η6:η6-arene)UX2] and a UX4 byproduct. Calcns. and kinetic studies suggest a cooperative small-mol. activation' mechanism involving spontaneous arene redn. as an X-ligand is transferred. These mild reaction conditions allow functionalized arenes such as arylsilanes to be incorporated. The bulky UX3 are also inert to reagents such as boranes that would react with the traditional harsh reaction conditions, allowing the development of a new in situ arene C-H bond functionalization methodol. converting C-H to C-B bonds.
- 28O’Grady, E.; Kaltsoyannis, N. Dalton Trans. 2002, 1233– 1239 DOI: 10.1039/b109696fThere is no corresponding record for this reference.
- 29Kosog, B.; La Pierre, H. S.; Heinemann, F. W.; Liddle, S. T.; Meyer, K. J. Am. Chem. Soc. 2012, 134, 5284– 5289 DOI: 10.1021/ja211618v29https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC38XivVOhsb0%253D&md5=69f5fe19e0468302e2e5d677abb8e695Synthesis of Uranium(VI) Terminal Oxo Complexes: Molecular Geometry Driven by the Inverse Trans-InfluenceKosog, Boris; La Pierre, Henry S.; Heinemann, Frank W.; Liddle, Stephen T.; Meyer, KarstenJournal of the American Chemical Society (2012), 134 (11), 5284-5289CODEN: JACSAT; ISSN:0002-7863. (American Chemical Society)Oxidn. of the authors' previously reported U(V) oxo complexes, supported by the chelating (RArO)3tacn3- ligand system (R = tert-Bu (t-Bu), 1-t-Bu; R = 1-adamantyl (Ad), 1-Ad), yields terminal U(VI) oxo complexes [((RArO)3tacn)U(VI)(O)]SbF6 (R = t-Bu, 2-t-Bu; R = Ad, 2-Ad). These complexes differ in their mol. geometry in that 2-t-Bu possesses pseudo-Cs symmetry in soln. and solid state as the terminal oxo ligand lies in the equatorial plane (as defined by the three aryloxide arms of the ligand) to accommodate the thermodn. preference of high-valent U oxo complexes to have a σ- and π-donating ligand trans to the oxo (vis-a-vis the ubiquity of the linear UO22+ moiety). The distortion of the ligand, which stands in contrast to all other complexes of U supported by the (RArO)3tacn3- ligand, including 2-Ad, is most clearly seen in the structures of 2-t-Bu, [((t-BuArO)3tacn)U(VI)(O)eq]SbF6, and 3-t-Bu, [((t-BuArO)3tacn)U(VI)(O)eq(OC(O)CF3)ax]. The solid-state structure of 3-t-Bu reveals that the trans U-OArO bond length is shortened by 0.1 Å in comparison to the cis U-OArO bonds and the trans U-O-Cipso angle is linearized (157.67° vs. 147.85° and 130.03°). Remarkably, the minor modification of the ligand to have Ad groups at the ortho positions of the aryloxide arms is sufficient to stabilize a C3v-sym. terminal U(VI) oxo complex (2-Ad) without a ligand trans to the oxo. These exptl. results were reproduced in DFT calcns. and allow the qual. bracketing of the relative thermodn. stabilization afforded by the inverse trans-influence (ITI) as ∼6 kcal mol-1.
- 30Lewis, A. J.; Mullane, K. C.; Nakamaru-Ogiso, E.; Carroll, P. J.; Schelter, E. J. Inorg. Chem. 2014, 53, 6944– 6953 DOI: 10.1021/ic500833sThere is no corresponding record for this reference.
- 31La Pierre, H. S.; Rosenzweig, M.; Kosog, B.; Hauser, C.; Heinemann, F. W.; Liddle, S. T.; Meyer, K. Chem. Commun. 2015, 51, 16671– 16674 DOI: 10.1039/C5CC07211E31https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2MXhsFKhsbnL&md5=f6e204165b626d9065f17c6f68d0ae2dCharge control of the inverse trans-influenceLa Pierre, Henry S.; Rosenzweig, Michael; Kosog, Boris; Hauser, Christina; Heinemann, Frank W.; Liddle, Stephen T.; Meyer, KarstenChemical Communications (Cambridge, United Kingdom) (2015), 51 (93), 16671-16674CODEN: CHCOFS; ISSN:1359-7345. (Royal Society of Chemistry)The synthesis and characterization of uranium(VI) mono(imido) complexes, by the oxidn. of corresponding uranium(V) species, are presented. These exptl. results, paired with DFT analyses, allow for the comparison of the electronic structure of uranium(VI) mono(oxo) and mono(imido) ligands within a conserved ligand framework and demonstrate that the magnitude of the ground state stabilization derived from the inverse trans-influence (ITI) is governed by the relative charge localization on the multiply bonded atom or group.
- 32Klein, H.-F.; Brand, A.; Cordier, G. Z. Naturforsch., B: J. Chem. Sci. 1998, 53, 307– 314 DOI: 10.1515/znb-1998-0309There is no corresponding record for this reference.
- 33Edwards, P. G.; Andersen, R. A.; Zalkin, A. J. Am. Chem. Soc. 1981, 103, 7792– 7794 DOI: 10.1021/ja00416a019There is no corresponding record for this reference.
- 34Newell, B. S.; Schwaab, T. C.; Shores, M. P. Inorg. Chem. 2011, 50, 12108– 12115 DOI: 10.1021/ic201670zThere is no corresponding record for this reference.
- 35Shannon, R. D. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1976, 32, 751– 767 DOI: 10.1107/S0567739476001551There is no corresponding record for this reference.
- 36Tolman, C. A.; Seidel, W. C.; Gerlach, D. H. J. Am. Chem. Soc. 1972, 94, 2669– 2676 DOI: 10.1021/ja00763a019There is no corresponding record for this reference.
- 37Sen, A.; Halpern, J. Inorg. Chem. 1980, 19, 1073– 1075 DOI: 10.1021/ic50206a061There is no corresponding record for this reference.
- 38Garrou, P. E. Chem. Rev. 1981, 81, 229– 266 DOI: 10.1021/cr00043a002There is no corresponding record for this reference.
- 39
It proved impossible to converge both the electronic and geometric structures of 3–Pt; hence, data are available only for the 3d and 4d systems.
There is no corresponding record for this reference. - 40Gaunt, A. J.; Reilly, S. D.; Enriquez, A. E.; Scott, B. L.; Ibers, J. A.; Sekar, P.; Ingram, K. I. M.; Kaltsoyannis, N.; Neu, M. P. Inorg. Chem. 2008, 47, 29– 41 DOI: 10.1021/ic701618aThere is no corresponding record for this reference.
- 41Tassell, M. J.; Kaltsoyannis, N. Dalton Trans. 2010, 39, 6719 DOI: 10.1039/c000704hThere is no corresponding record for this reference.
- 42Kirker, I.; Kaltsoyannis, N. Dalton Trans. 2011, 40, 124– 131 DOI: 10.1039/C0DT01018AThere is no corresponding record for this reference.
- 43Arnold, P. L.; Prescimone, A.; Farnaby, J. H.; Mansell, S. M.; Parsons, S.; Kaltsoyannis, N. Angew. Chem., Int. Ed. 2015, 54, 6735– 6739 DOI: 10.1002/anie.201411250There is no corresponding record for this reference.
- 44Bianchi, R.; Gervasio, G.; Marabello, D. Chem. Commun. 1998, 1535– 1536 DOI: 10.1039/a802386gThere is no corresponding record for this reference.
- 45Bianchi, R.; Gervasio, G.; Marabello, D. Inorg. Chem. 2000, 39, 2360– 2366 DOI: 10.1021/ic991316eThere is no corresponding record for this reference.
- 46Bianchi, R.; Gervasio, G.; Marabello, D. C. R. Chim. 2005, 8, 1392– 1399 DOI: 10.1016/j.crci.2004.12.01546https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD2MXhtVGjsrbF&md5=6d0091f69f6f48310509cbfefddd9ae7The experimental charge density in transition metal compoundsBianchi, Riccardo; Gervasio, Giuliana; Marabello, DomenicaComptes Rendus Chimie (2005), 8 (9-10), 1392-1399CODEN: CRCOCR; ISSN:1631-0748. (Editions Scientifiques et Medicales Elsevier)A review. The exptl. charge d. of transition metal compds. can be detd. with a good degree of reliability and analyzed with the quantum theory of atoms in mols. in order to better characterize the at. interaction. Here, we present a short summary of the main topol. results obtained with this technique on Mn2(CO)10, Co2(CO)6(μ-CO)(μ-C4O2H2), KMnO4 and KClO4 compds.
- 47Farrugia, L. J.; Mallinson, P. R.; Stewart, B. Acta Crystallogr., Sect. B: Struct. Sci. 2003, 59, 234– 247 DOI: 10.1107/S010876810300089247https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD3sXitlaiu7s%253D&md5=2f3f6a1081d5915035bd6f9931cab704Experimental charge density in the transition metal complex Mn2(CO)10: a comparative studyFarrugia, Louis J.; Mallinson, Paul R.; Stewart, BrianActa Crystallographica, Section B: Structural Science (2003), B59 (2), 234-247CODEN: ASBSDK; ISSN:0108-7681. (Blackwell Munksgaard)An accurate exptl. charge d. and crystal structure (monoclinic space group I2/a) study at 100 K of Mn2(CO)10 [bis(pentacarbonylmanganese)(Mn-Mn)] was undertaken. A comparison with previously reported structural detns. reveals no evidence for significant Mn-Mn bond lengthening between 100 and 296 K. The nature of the metal-metal and metal-ligand atom interactions was studied by topol. anal. using the atoms in mols. (AIM) approach of Bader (1990). An anal. of the d. ρ(r), the Laplacian of the d. .del.2ρ(rb) and the total energy densities H(rb) at the bond crit. points was used to classify all the chem. bonds as covalent in nature. The results are compared qual. and quant. with previous charge d. studies on this mol. and DFT calcns. at the 6-311+G* B3LYP level. The topol. properties of the theor. and exptl. densities are in close agreement.
- 48Gervasio, G.; Bianchi, R.; Marabello, D. Chem. Phys. Lett. 2004, 387, 481– 484 DOI: 10.1016/j.cplett.2004.02.043There is no corresponding record for this reference.
- 49Gervasio, G.; Bianchi, R.; Marabello, D. Chem. Phys. Lett. 2005, 407, 18– 22 DOI: 10.1016/j.cplett.2005.03.047There is no corresponding record for this reference.
- 50Macchi, P.; Garlaschelli, L.; Martinengo, S.; Sironi, A. J. Am. Chem. Soc. 1999, 121, 10428– 10429 DOI: 10.1021/ja9918977There is no corresponding record for this reference.
- 51Macchi, P.; Proserpio, D. M.; Sironi, A. J. Am. Chem. Soc. 1998, 120, 13429– 13435 DOI: 10.1021/ja982903mThere is no corresponding record for this reference.
- 52Niskanen, M.; Hirva, P.; Haukka, M. J. Chem. Theory Comput. 2009, 5, 1084– 1090 DOI: 10.1021/ct800407h52https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD1MXisFansb4%253D&md5=95f5f581be07905f2eaa46fdc3905200Computational DFT Study of Ruthenium Tetracarbonyl PolymerNiskanen, Mika; Hirva, Pipsa; Haukka, MattiJournal of Chemical Theory and Computation (2009), 5 (4), 1084-1090CODEN: JCTCCE; ISSN:1549-9618. (American Chemical Society)Ruthenium tetracarbonyl polymer, [Ru(CO)4]n, a chainlike compd. formed by metal-metal interactions, was studied computationally. We first performed tests with selected pure and hybrid GGA d. functionals and ab initio methods at HF and MP2 levels of theory to find the most suitable method. Calcd. geometries and MOs were compared to see effectiveness and possible differences of the methods. Hybrid functionals, esp. PBE1PBE and MPW1K, were found to produce accurate geometrical parameters compared to the exptl. structure, with reasonable computational cost. Bonding in [Ru(CO)4]n chains was studied by calcn. of Mayer bond order and theor. structure factors followed by multipole refinement to get bond crit. points according to the quantum theory of atoms in mols. Ruthenium-ruthenium bonding comparable to that in a Ru3(CO)12 cluster was found with both methods.
- 53Niskanen, M.; Hirva, P.; Haukka, M. J. Mol. Model. 2012, 18, 1961– 1968 DOI: 10.1007/s00894-011-1225-y53https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC38XmsVaisLc%253D&md5=9d6f0fce1840d923c553df558d4a7bfcMetal-metal interactions in linear tri-, penta-, hepta-, and nona-nuclear ruthenium string complexesNiskanen, Mika; Hirva, Pipsa; Haukka, MattiJournal of Molecular Modeling (2012), 18 (5), 1961-1968CODEN: JMMOFK; ISSN:0948-5023. (Springer)D. functional theory (DFT) methodol. was used to examine the structural properties of linear metal string complexes: [Ru3(dpa)4X2] (X = Cl-, CN-, NCS-, dpa = dipyridylamine-), [Ru5(tpda)4Cl2], and hypothetical, not yet synthesized complexes [Ru7(tpta)4Cl2] and [Ru9(ppta)4Cl2] (tpda = tri-α-pyridyldiamine2-, tpta = tetra-α-pyridyltriamine3-, ppta = penta-α-pyridyltetraamine4-). Our specific focus was on the two longest structures and on comparison of the string complexes and unsupported ruthenium backboned chain complexes, which have weaker ruthenium-ruthenium interactions. The electronic structures were studied with the aid of visualized frontier MOs, and Bader's quantum theory of atoms in mols. (QTAIM) was used to study the interactions between ruthenium atoms. The electron d. was found to be highest and distributed most evenly between the ruthenium atoms in the hypothetical [Ru7(tpta)4Cl2] and [Ru9(ppta)4Cl2] string complexes.
- 54Ponec, R.; Yuzhakov, G.; Sundberg, M. R. J. Comput. Chem. 2005, 26, 447– 454 DOI: 10.1002/jcc.20182There is no corresponding record for this reference.
- 55Sadjadi, S.; Matta, C. F.; Lemke, K. H.; Hamilton, I. P. J. Phys. Chem. A 2011, 115, 13024– 13035 DOI: 10.1021/jp204993rThere is no corresponding record for this reference.
- 56Blake, M. P.; Kaltsoyannis, N.; Mountford, P. J. Am. Chem. Soc. 2011, 133, 15358– 15361 DOI: 10.1021/ja207487jThere is no corresponding record for this reference.
- 57Mountain, A. R. E.; Kaltsoyannis, N. Dalton Trans. 2013, 42, 13477 DOI: 10.1039/c3dt51337hThere is no corresponding record for this reference.
- 58Matta, C. F.; Boyd, R. J. In The Quantum Theory of Atoms in Molecules; Matta, C. F.; Boyd, R. J., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007; pp 1– 34.There is no corresponding record for this reference.
- 59Cavigliasso, G.; Kaltsoyannis, N. Inorg. Chem. 2006, 45, 6828– 6839 DOI: 10.1021/ic060777eThere is no corresponding record for this reference.
- 60Emsley, J. The Elements, 2nd ed.; Clarendon Press, Oxford University Press: Oxford, 1991.There is no corresponding record for this reference.
- 61Denninger, U.; Schneider, J. J.; Wilke, G.; Goddard, R.; Krüger, C. Inorg. Chim. Acta 1993, 213, 129– 140 DOI: 10.1016/S0020-1693(00)83823-261https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaK2cXitFyju74%253D&md5=5fe10f33a8603b3025fef694722346c7Transition metal complexes. VII. [(η5-Cp)Ni(PEt3)]2, a dinuclear organometallic complex with an unbridged Ni-Ni bond; structure and heteronuclear complexes thereofDenninger, Uwe; Schneider, Joerg J.; Wilke, Guenther; Goddard, Richard; Krueger, CarlInorganica Chimica Acta (1993), 213 (1-2), 129-40CODEN: ICHAA3; ISSN:0020-1693.[(η5-Cp)Ni(PEt3)]2 (1) was synthesized by reacting (η5-Cp)Ni(PEt3)Cl with activated magnesium. 1 Contains an unbridged nickel-nickel bond. Reaction of 1 with elemental sulfur yields the clusters I and II. The homologous selenium compd. III was obtained by the reaction of 1 with elemental selenium. 1 Reacts with tellurium by insertion to yield IV (M = Te). Tin(II) chloride can also be inserted into the nickel-nickel bond of 1 to give IV (M = SnCl2). Both chlorine atoms in IV (M = SnCl2) react with alkyllithium to give compds. of the type {[(η5-Cp)Ni(PEt3)]2SnR2} (7) (a: R = Me, b: R = Bu). The reaction of 6 with activated magnesium yields {[(η5-Cp)Ni(PEt3)]3SnCl} (8). Crystal structures of 1, I, II, IV (M = Te, SnCl2) and 8 were detd.
- 62Heinicke, J.; Dal, A.; Klein, H.-F.; Hetche, O.; Flörke, U.; Haupt, H.-J. Z. Naturforsch., B: J. Chem. Sci. 1999, 54, 1235– 1243 DOI: 10.1515/znb-1999-100462https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaK1MXntFaktLg%253D&md5=5ac32cf772b80daf644d43e7723d6860Formation of η1-P-(2-phosphinophenol)Ni(0)(PMe3)3 and oxidation to cis/trans-bis(2-phosphinophenolato)nickel(II) complexesHeinicke, Joachim; Dal, Attila; Klein, Hans-Friedrich; Hetche, Olaf; Florke, Ulrich; Haupt, Hans-JurgenZeitschrift fuer Naturforschung, B: Chemical Sciences (1999), 54 (10), 1235-1243CODEN: ZNBSEN; ISSN:0932-0776. (Verlag der Zeitschrift fuer Naturforschung)O-Phosphinophenols (P∼OH) react with equimolar amts. of Ni(PMe3)4 at low temps. to give yellow Ni(0) complexes such as [(HO∼P)Ni(PMe3)3] (2a) with only P coordination of the P∼OH ligand. Oxidn. of solns. of 1 and Ni(PMe3)4 by dioxygen leads to brown bis(HO∼P)nickel chelate complexes 3a-d. Structure elucidation by NMR is consistent with a cis-square planar geometry for 3a-c and a trans-square planar soln. structure of the tert-butylphenylphosphino deriv. 3d. The geometric isomers were distinguished by different ranges of P coordination shifts and 31P-13C-2 and 31P-13C-1 coupling consts. In the solid state, 3d adopts also a cis-square planar geometry. The steric stress of the substituents causes anti-orientation of the tert-Bu groups at P (R,R and S,S diastereoisomers) and a significant distorsion (22°) of the planes of the two five-membered rings. With less bulky substituents the R,S and S,R diastereoisomers are preferred as in the cis-square planar complex 3c with syn-orientation of the two iso-Pr and Ph groups, resp.
- 63Zi, G.; Jia, L.; Werkema, E. L.; Walter, M. D.; Gottfriedsen, J. P.; Andersen, R. A. Organometallics 2005, 24, 4251– 4264 DOI: 10.1021/om050406qThere is no corresponding record for this reference.
- 64Fortier, S.; Kaltsoyannis, N.; Wu, G.; Hayton, T. W. J. Am. Chem. Soc. 2011, 133, 14224– 14227 DOI: 10.1021/ja206083pThere is no corresponding record for this reference.
- 65Brown, J. L.; Mokhtarzadeh, C. C.; Lever, J. M.; Wu, G.; Hayton, T. W. Inorg. Chem. 2011, 50, 5105– 5112 DOI: 10.1021/ic200387nThere is no corresponding record for this reference.
- 66Arnold, P. L.; Jones, G. M.; Odoh, S. O.; Schreckenbach, G.; Magnani, N.; Love, J. B. Nat. Chem. 2012, 4, 221– 227 DOI: 10.1038/nchem.127066https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC38Xis1eqsbg%253D&md5=7097dd42dfa9215058320c9fd5eb71c4Strongly coupled binuclear uranium-oxo complexes from uranyl oxo rearrangement and reductive silylationArnold, Polly L.; Jones, Guy M.; Odoh, Samuel O.; Schreckenbach, Georg; Magnani, Nicola; Love, Jason B.Nature Chemistry (2012), 4 (3), 221-227CODEN: NCAHBB; ISSN:1755-4330. (Nature Publishing Group)The most common motif in uranium chem. is the d0f0 uranyl ion [UO2]2+ in which the oxo groups are rigorously linear and inert. Alternative geometries, such as the cis-uranyl, were identified theor. and implicated in oxo-atom transfer reactions that are relevant to environmental speciation and nuclear waste remediation. Single electron redn. is now known to impart greater oxo-group reactivity, but with retention of the linear OUO motif, and reactions of the oxo groups to form new covalent bonds remain rare. Here, the authors describe the synthesis, structure, reactivity and magnetic properties of a binuclear uranium-oxo complex [U2(μ-O)2(L)(OSiR3)2] (SiR3 = SiMe3, SiMe2Ph and H4L = nitrogen macrocyclic ligand (I)). Formed through a combination of redn. and oxo-silylation and migration from a trans to a cis position, the new butterfly-shaped Si-OUO2UO-Si mol. shows remarkably strong UV-UV coupling and chem. inertness, suggesting that this rearranged uranium oxo motif might exist for other actinide species in the environment, and have relevance to the aggregation of actinide oxide clusters.
- 67Siffredi, G.; Berthet, J. C.; Thuery, P. Private communication to the Cambridge Structural Database, deposition number CCDC 958346, 2013.There is no corresponding record for this reference.
- 68Jones, G. M.; Arnold, P. L.; Love, J. B. Chem. - Eur. J. 2013, 19, 10287– 10294 DOI: 10.1002/chem.20130106768https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3sXpvVegtLk%253D&md5=705be1c8ceaed55fcf228f9ba21ed4ccOxo-Group 14 Element-Bond Formation in Binuclear Uranium(V) Pacman ComplexesJones, Guy M.; Arnold, Polly L.; Love, Jason B.Chemistry - A European Journal (2013), 19 (31), 10287-10294CODEN: CEUJED; ISSN:0947-6539. (Wiley-VCH Verlag GmbH & Co. KGaA)Simple and versatile routes to the functionalization of uranyl-derived UV-oxo groups are presented. The oxo-lithiated, binuclear uranium(V)-oxo complexes [{(py)3LiOUO}2(L)] and [{(py)3LiOUO}(OUOSiMe3)(L)] were prepd. by the direct combination of the uranyl(VI) silylamide "ate" complex [Li(py)2][(OUO)(N")3] (N" = N(SiMe3)2) with the polypyrrolic macrocycle H4L or the mononuclear uranyl(VI) Pacman complex [UO2(py)(H2L)], resp. These oxo-metalated complexes display distinct U-O single and multiple bonding patterns and an axial/equatorial arrangement of oxo ligands. Their ready availability allows the direct functionalization of the uranyl oxo group leading to the binuclear uranium(V) oxo-stannylated complexes [{(R3Sn)OUO}2(L)] (R = nBu, Ph), which represent rare examples of mixed uranium/tin complexes. Also, uranium-oxo-group exchange occurred in reactions with [TiCl(OiPr)3] to form U-O-C bonds [{(py)3LiOUO}(OUOiPr)(L)] and [(iPrOUO)2(L)]. Overall, these represent the first family of uranium(V) complexes that are oxo-functionalized by Group 14 elements.
- 69Crabtree, R. H. The Organometallic Chemistry of the Transition Metals, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2005.There is no corresponding record for this reference.
- 70Hildenbrand, D. L.; Lau, K. H. Pure Appl. Chem. 1992, 64, 87– 92 DOI: 10.1351/pac199264010087There is no corresponding record for this reference.
- 71Kindra, D. R.; Evans, W. J. Chem. Rev. 2014, 114, 8865– 8882 DOI: 10.1021/cr500242wThere is no corresponding record for this reference.
- 72Kosog, B.; La Pierre, H. S.; Denecke, M. A.; Heinemann, F. W.; Meyer, K. Inorg. Chem. 2012, 51, 7940– 7944 DOI: 10.1021/ic3011234There is no corresponding record for this reference.
- 73King, D. M.; Tuna, F.; McInnes, E. J. L.; McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T. Nat. Chem. 2013, 5, 482– 488 DOI: 10.1038/nchem.164273https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3sXntVaksrk%253D&md5=cece9f15ad65d5cddc32029f1ef76459Isolation and characterization of a uranium(VI)-nitride triple bondKing, David M.; Tuna, Floriana; McInnes, Eric J. L.; McMaster, Jonathan; Lewis, William; Blake, Alexander J.; Liddle, Stephen T.Nature Chemistry (2013), 5 (6), 482-488CODEN: NCAHBB; ISSN:1755-4330. (Nature Publishing Group)The nature and extent of covalency in U bonding is still unclear compared with that of transition metals, and there is great interest in studying U-ligand multiple bonds. Although U=O and U=NR double bonds (R is an alkyl group) are known analogs to transition-metal oxo and imido complexes, the U(VI)-nitride triple bond has long remained a synthetic target in actinide chem. Here, the authors report the prepn. of a U(VI)-nitride triple bond. The authors highlight the importance of (1) ancillary ligand design, (2) employing mild redox reactions instead of harsh photochem. methods that decomp. transiently formed U(VI) nitrides, (3) an electrostatically stabilizing Na ion during nitride installation, (4) selecting the right Na sequestering reagent, (5) inner vs. outer sphere oxidn. and (6) stability with respect to the U oxidn. state. Computational analyses suggest covalent contributions to U≡N triple bonds that are surprisingly comparable to those of their Group 6 transition-metal nitride counterparts.
- 74Edelstein, N. M.; Lander, G. H. In The Chemistry of Actinides and Transactinide Elements; Morss, L. R.; Edelstein, N. M.; Fuger, J., Eds.; Springer: The Netherlands, 2010; Vols. 1–6, p 2225.There is no corresponding record for this reference.
- 75Natrajan, L. S. Coord. Chem. Rev. 2012, 256, 1583– 1603 DOI: 10.1016/j.ccr.2012.03.029There is no corresponding record for this reference.
- 76Schmidt, A.-C.; Heinemann, F. W.; Lukens, W. W.; Meyer, K. J. Am. Chem. Soc. 2014, 136, 11980– 11993 DOI: 10.1021/ja504528nThere is no corresponding record for this reference.
- 77Franke, S. M.; Rosenzweig, M. W.; Heinemann, F. W.; Meyer, K. Chem. Sci. 2015, 6, 275– 282 DOI: 10.1039/C4SC02602K77https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2cXhs1emtL%252FM&md5=55cc608465d63cf7dc0eec11bda27adaReactivity of uranium(III) with H2E (E = S, Se, Te): synthesis of a series of mononuclear and dinuclear uranium(IV) hydrochalcogenido complexesFranke, Sebastian M.; Rosenzweig, Michael W.; Heinemann, Frank W.; Meyer, KarstenChemical Science (2015), 6 (1), 275-282CODEN: CSHCCN; ISSN:2041-6520. (Royal Society of Chemistry)The authors report the syntheses, electronic properties, and mol. structures of a series of mono- and dinuclear uranium(IV) hydrochalcogenido complexes supported by the sterically demanding but very flexible, single N-anchored tris(aryloxide) ligand [(AdArO)3N]3-. The mononuclear complexes [((AdArO)3N)U(DME)(EH)] (E = S, Se, Te) can be obtained from the reaction of the uranium(III) starting material [((AdArO)3N)UIII(DME)] in DME via redn. of H2E and the elimination of 0.5 equiv of H2. The dinuclear complexes [{((AdArO)3N)U}2(μ-EH)2] can be obtained by dissolving their mononuclear counterparts in non-coordinating solvents such as benzene. In order to facilitate the work with the highly toxic gases, the authors created concd. THF solns. that can be handled using simple glovebox techniques and can be stored at -35° for several weeks.
- 78Arnold, P. L. Chem. Commun. 2011, 47, 9005 DOI: 10.1039/c1cc10834dThere is no corresponding record for this reference.
- 79Vallat, A.; Laviron, E.; Dormond, A. J. Chem. Soc., Dalton Trans. 1990, 921– 924 DOI: 10.1039/dt9900000921There is no corresponding record for this reference.
- 80Morris, D. E.; Da Re, R. E.; Jantunen, K. C.; Castro-Rodriguez, I.; Kiplinger, J. L. Organometallics 2004, 23, 5142– 5153 DOI: 10.1021/om049634vThere is no corresponding record for this reference.
- 81Dessy, R. E.; Weissman, P. M.; Pohl, R. L. J. Am. Chem. Soc. 1966, 88, 5117– 5121 DOI: 10.1021/ja00974a014There is no corresponding record for this reference.
- 82Evans, D. F. J. Chem. Soc. 1959, 2003– 2005 DOI: 10.1039/jr9590002003There is no corresponding record for this reference.
- 83Sur, S. K. J. Magn. Reson. 1989, 82, 169– 173There is no corresponding record for this reference.
- 84Schubert, E. M. J. Chem. Educ. 1992, 69, 62 DOI: 10.1021/ed069p62.1There is no corresponding record for this reference.
- 85Piguet, C. J. Chem. Educ. 1997, 74, 815– 816 DOI: 10.1021/ed074p815There is no corresponding record for this reference.
- 86Ruiz, J.; Astruc, D. C. R. Acad. Sci., Ser. IIc: Chim. 1998, 1, 21– 27 DOI: 10.1016/S1251-8069(97)86255-086https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaK1cXhsFWrt7c%253D&md5=d499ec76012ef312382ee0cdf6e96916Permethylated electron-reservoir sandwich complexes as references for the determination of redox potentials. Suggestion of a new redox scaleRuiz, Jaime; Astruc, DidierComptes Rendus de l'Academie des Sciences, Serie IIc: Chimie (1998), 1 (1), 21-27CODEN: CASCFN; ISSN:1387-1609. (Editions Scientifiques et Medicales Elsevier)The difference between the redox potentials of decamethylferrocene (FeCp2*), decamethylcobalticinium (CoCp2*)+ and (pentamethylcyclopentadienyl)(hexamethylbenzene)iron(1+) cation (FeCp*C6Me6)+ is shown not to depend on the solvent and anion of the supporting electrolyte whereas ferrocene, whose redox potential is solvent dependent, does not fit in this series. Suggestions are made concerning the possible use of the three permethylated complexes as reliable refs. for the detn. of redox potentials, and a redox scale vs. decamethylferrocene is proposed.
- 87Monreal, M. J.; Thomson, R. K.; Cantat, T.; Travia, N. E.; Scott, B. L.; Kiplinger, J. L. Organometallics 2011, 30, 2031– 2038 DOI: 10.1021/om200093qThere is no corresponding record for this reference.
- 88Bochmann, M.; Jaggar, A. J.; Wilson, L. M.; Hursthouse, M. B.; Motevalli, M. Polyhedron 1989, 8, 1838– 1843 DOI: 10.1016/S0277-5387(00)80665-8There is no corresponding record for this reference.
- 89Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Olgairo, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.There is no corresponding record for this reference.
- 90ADF2014; SCM: Amsterdam, The Netherlands; http://www.scm.com.There is no corresponding record for this reference.
- 91te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. J. Comput. Chem. 2001, 22, 931– 967 DOI: 10.1002/jcc.105691https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD3MXjtlGntrw%253D&md5=314e7e942de9b28e664afc5adb2f574fChemistry with ADFTe Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; Van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T.Journal of Computational Chemistry (2001), 22 (9), 931-967CODEN: JCCHDD; ISSN:0192-8651. (John Wiley & Sons, Inc.)A review with 241 refs. We present the theor. and tech. foundations of the Amsterdam D. Functional (ADF) program with a survey of the characteristics of the code (numerical integration, d. fitting for the Coulomb potential, and STO basis functions). Recent developments enhance the efficiency of ADF (e.g., parallelization, near order-N scaling, QM/MM) and its functionality (e.g., NMR chem. shifts, COSMO solvent effects, ZORA relativistic method, excitation energies, frequency-dependent (hyper)polarizabilities, at. VDD charges). In the Applications section we discuss the phys. model of the electronic structure and the chem. bond, i.e., the Kohn-Sham MO (MO) theory, and illustrate the power of the Kohn-Sham MO model in conjunction with the ADF-typical fragment approach to quant. understand and predict chem. phenomena. We review the "Activation-strain TS interaction" (ATS) model of chem. reactivity as a conceptual framework for understanding how activation barriers of various types of (competing) reaction mechanisms arise and how they may be controlled, for example, in org. chem. or homogeneous catalysis. Finally, we include a brief discussion of exemplary applications in the field of biochem. (structure and bonding of DNA) and of time-dependent d. functional theory (TDDFT) to indicate how this development further reinforces the ADF tools for the anal. of chem. phenomena.
- 92Fonseca Guerra, C.; Snijders, J. G.; te Velde, G.; Baerends, E. J. Theor. Chem. Acc. 1998, 99, 391– 403 DOI: 10.1007/s002140050353There is no corresponding record for this reference.
- 93Cao, X.; Dolg, M. J. Mol. Struct.: THEOCHEM 2004, 673, 203– 209 DOI: 10.1016/j.theochem.2003.12.01593https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD2cXhslWjtbs%253D&md5=5983981657b44a155e9fd49e3a0ee81fSegmented contraction scheme for small-core actinide pseudopotential basis setsCao, Xiaoyan; Dolg, MichaelJournal of Molecular Structure: THEOCHEM (2004), 673 (1-3), 203-209CODEN: THEODJ; ISSN:0166-1280. (Elsevier Science B.V.)Gaussian (14s13p10d8f6g)/[10s9p5d4f3g] valence basis sets using a segmented contraction scheme have been derived for relativistic energy-consistent small-core actinide pseudopotentials of the Stuttgart-Koln variety. The present basis sets are only slightly larger than previously published (14s13p10d8f6g)/[6s6p5d4f3g] at. natural orbital basis sets, which use a generalized contraction scheme, and achieve a similar accuracy in at. and mol. calcns. For calibration purposes multi-configuration SCF and subsequent multi-ref. averaged coupled-pair functional calcns. are presented for the first to fourth ionization potentials of all actinide elements. Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr. In addn., results of mol. calibration studies using the coupled-cluster singles, doubles and perturbative triples approach as well as gradient-cor. d. functional theory are reported for the monohydrides, monoxides and monofluorides of actinium and lawrencium.
- 94Bergner, A.; Dolg, M.; Küchle, W.; Stoll, H.; Preuß, H. Mol. Phys. 1993, 80, 1431– 1441 DOI: 10.1080/0026897930010312194https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaK2cXhsVCmsLo%253D&md5=119c69262dd9ce622673821c0dfb68a0Ab initio energy-adjusted pseudopotentials for elements of groups 13-17Bergner, Andreas; Dolg, Michael; Kuechle, Wolfgang; Stoll, Hermann; Preuss, HeinzwernerMolecular Physics (1993), 80 (6), 1431-41CODEN: MOPHAM; ISSN:0026-8976.Quasi-relativistic energy-adjusted ab initio pseudopotentials for the elements of groups 13-17 up to at. no. 53 (iodine) are presented together with corresponding energy-optimized valence basis sets. Test calcns. for at. excitation and ionization energies show the reliability of the derived pseudopotentials and basis sets.
- 95Martin, J. M. L.; Sundermann, A. J. Chem. Phys. 2001, 114, 3408 DOI: 10.1063/1.1337864There is no corresponding record for this reference.
- 96Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Theor. Chim. Acta 1990, 77, 123– 141 DOI: 10.1007/BF0111453796https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaK3cXkt12ntLo%253D&md5=8203c6bc6149924cbd4b23b3063715e1Energy-adjusted ab initio pseudopotentials for the second and third row transition elementsAndrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H.Theoretica Chimica Acta (1990), 77 (2), 123-41CODEN: TCHAAM; ISSN:0040-5744.Nonrelativistic and quasirelativistic ab initio pseudopotentials substituting the M(z-28)+-core orbitals of the second row transition elements and M(z-60)+-core orbitals of the third row transition elements, resp., and optimized (8s7p6d)/[6s5p3d]-GTO valence basis sets for use in mol. calcns. have been generated. Addnl., corresponding spin-orbit operators have also been derived. At. excitation and ionization energies from numerical HF as well as from SCF pseudopotential calcns. using the derived basis sets differ in most cases by less than 0.1 eV from corresponding numerical all-electron results. Spin-orbit splittings for low-lying states are in reasonable agreement with corresponding all-electron Dirac-Fock (DF) results.
- 97Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Landis, C. R.; Weinhold, F.NBO 6.0; Theoretical Chemistry Institute, University of Wisconsin: Madison,WI, 2013.There is no corresponding record for this reference.
- 98Keith, T. A.AIMAll, version 14.11.23; http://aim.tkgristmill.com.There is no corresponding record for this reference.
- 99Mayer, I. Chem. Phys. Lett. 1983, 97, 270– 274 DOI: 10.1016/0009-2614(83)80005-099https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaL3sXksVeltL0%253D&md5=e46fb0f0565a0025015ea070b5f89e25Charge, bond order and valence in the ab initio SCF theoryMayer, I.Chemical Physics Letters (1983), 97 (3), 270-4CODEN: CHPLBC; ISSN:0009-2614.An operator of at. charge is introduced, the expectation values of which are the Mulliken gross at. populations on the individual atoms. Suitable definitions of the bond-order (multiplicity) index and of the valence no. of an atom in a mol. are also proposed for the SCF-LCAO-MO method. (The results apply also in the EHMO theory.).
- 100Gopinathan, M. S.; Jug, K. Theor. Chim. Acta 1983, 63, 497– 509 DOI: 10.1007/BF02394809100https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaL3sXls1Cgsro%253D&md5=8694cb2d59b4c000464665b7c70ac691Valency. I. A quantum chemical definition and propertiesGopinathan, M. S.; Jug, KarlTheoretica Chimica Acta (1983), 63 (6), 497-509CODEN: TCHAAM; ISSN:0040-5744.A quantum chem. definition of the valency of an atom in a mol. is proposed. It is defined as the sum of the squares of the appropriate off-diagonal elements of the first-order d. matrix of the system in an orthogonal basis. It is a measure of the degree of electron sharing of the given atom with the other atoms. Its properties such as invariance to rotation of the coordinate system, its limiting values as well as its relation to natural hybrids and bond orbitals are discussed.
Supporting Information
Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b10698. Crystallographic files were deposited at the Cambridge Crystallographic Data Centre (CCDC): 1430506 (2), 1430507 (3–Ni), 1430511 (3–Pd), 1430512 (3–Pt), 1430513 (4), 1438934 (5), and 1430514 (6). Open data files are available at DOI: 10.7488/ds/1351.
Crystallographic data, additional variable-temperature NMR spectra, additional synthetic data, including other reactivity studies, and solid-state structure details of all complexes (PDF).
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.