ACS Publications. Most Trusted. Most Cited. Most Read
Metal–Metal Bonding in Uranium–Group 10 Complexes
My Activity

Figure 1Loading Img
  • Open Access
Article

Metal–Metal Bonding in Uranium–Group 10 Complexes
Click to copy article linkArticle link copied!

View Author Information
EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, The King’s Buildings, Edinburgh EH9 3FJ, U.K.
Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, U.K.
§ School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
Open PDFSupporting Information (1)

Journal of the American Chemical Society

Cite this: J. Am. Chem. Soc. 2016, 138, 10, 3333–3345
Click to copy citationCitation copied!
https://doi.org/10.1021/jacs.5b10698
Published March 4, 2016

Copyright © 2016 American Chemical Society. This publication is licensed under CC-BY.

Abstract

Click to copy section linkSection link copied!

Heterobimetallic complexes containing short uranium–group 10 metal bonds have been prepared from monometallic IUIV(OArP2O,P)3 (2) {[ArPO] = 2-tert-butyl-4-methyl-6-(diphenylphosphino)phenolate}. The U–M bond in IUIV(μ-OArP-1κ1O,2κ1P)3M0, M = Ni (3–Ni), Pd (3–Pd), and Pt (3–Pt), has been investigated by experimental and DFT computational methods. Comparisons of 3–Ni with two further U–Ni complexes XUIV(μ-OArP-1κ1O,2κ1P)3Ni0, X = Me3SiO (4) and F (5), was also possible via iodide substitution. All complexes were characterized by variable-temperature NMR spectroscopy, electrochemistry, and single crystal X-ray diffraction. The U–M bonds are significantly shorter than any other crystallographically characterized d–f-block bimetallic, even though the ligand flexes to allow a variable U–M separation. Excellent agreement is found between the experimental and computed structures for 3–Ni and 3–Pd. Natural population analysis and natural localized molecular orbital (NLMO) compositions indicate that U employs both 5f and 6d orbitals in covalent bonding to a significant extent. Quantum theory of atoms-in-molecules analysis reveals U–M bond critical point properties typical of metallic bonding and a larger delocalization index (bond order) for the less polar U–Ni bond than U–Pd. Electrochemical studies agree with the computational analyses and the X-ray structural data for the U–X adducts 3–Ni, 4, and 5. The data show a trend in uranium–metal bond strength that decreases from 3–Ni down to 3–Pt and suggest that exchanging the iodide for a fluoride strengthens the metal–metal bond. Despite short U–TM (transition metal) distances, four other computational approaches also suggest low U–TM bond orders, reflecting highly transition metal localized valence NLMOs. These are more so for 3–Pd than 3–Ni, consistent with slightly larger U–TM bond orders in the latter. Computational studies of the model systems (PH3)3MU(OH)3I (M = Ni, Pd) reveal longer and weaker unsupported U–TM bonds vs 3.

Copyright © 2016 American Chemical Society

Introduction

Click to copy section linkSection link copied!

The nature of the bonding in f-block metal–ligand bonds is still far from fully understood, and bonding between f-block metals and other metal cations even less so. By contrast, studies of the bonding between d-block and other metal cations are 50 years old and have furthered our understanding of d-orbital interactions and generated some unique small molecule activation chemistry and catalyzed reactions not seen in single metal chemistry. (1) The few complexes that feature bonds between an f-block and d-block cation (2-4) have begun to help to improve our understanding of metal–metal bonding and to challenge and help the development of computational methods; however, the challenges associated with their synthesis and characterization have precluded the systematic study of any families of heterobimetallics that would enable the prediction of trends in other systems. The 5f orbitals have a suitable spatial extension but not yet a predictability of participation in bonding that makes the d–f heterobimetallic bond a particularly interesting target to improve our understanding of the relative involvement of f- and d-orbital participation. A better understanding of the subtleties of the 5f/6d contributions to actinide bonding in general is important in the handling of nuclear materials, where differences in behavior are dominated by small covalency differences in bonding.
Compounds with a uranium–transition metal bond are limited to iron, (5-7) ruthenium, (5, 8) cobalt, (9-11) rhenium, (12-14) and silver. (15) The first pair, Cp3U-MCp(CO)2 (M = Fe, Ru), was reported in 1987, (5) prepared via salt metathesis from Cp3UCl and Na[MCp(CO)2]. The investigation confirmed the presence of a metal–metal bond rather than an isocarbonyl bridge, but without crystallographic data, further analyses were difficult. We were able to isolate and structurally confirm the stable lanthanide analogue, (L)(N″)NdFeCp(CO)2 [L = ButNCH2CH2{C(NCSiMe3CHNBut)}; N″ = N(SiMe3)2], the first complex with an unsupported 4f–3d metal–metal bond. (16) Liddle and co-workers translated this chemistry back to a uranium-supported bond by the tris(amido) tren framework (17) and extended the range of unsupported uranium–transition metal complexes further to cobalt and rhenium. (8, 9, 12-14)
Complementary to unsupported f/d-block metal bonds, which intrinsically rely on a negatively charged, ligating d-block fragment, bridging ligands can provide more robust molecules. The Group 10 metal–thorium derivatives (Cp*)2Th(μ-PPh2)2Ni(CO)2 and (Cp*)2Th(μ-PPh2)2PtPMe3 (Cp* = C5Me5) have unusual geometries and short Th–M distances of 3.206(2) and 2.984(1) Å, respectively, (18, 19) the latter being described by calculations as a donor–acceptor bond from the pseudotrigonal-bipyramidal M0 to the redox-inactive ThIV center.
The groups of Bart and Thomas reported uranium–cobalt compounds with bridging heterobidentate monoanionic PN ligands. (10) At 2.874(3) Å, ICo(μ-Ph2PNPri1P1N)3UI (A) exhibits the shortest uranium–transition metal bond reported prior to this study; in this most instructive work, the analogue with Pr2iPNMes ligands (Mes = C6H2Me3-2,4,6) was proposed from voltammetric experiments to have a stronger Co → U dative interaction than the relatively modest one in A, although the changes at both ends of the bidentate ligand make the components difficult to separate, and the latter complex was not structurally characterized. One of the arguments for using heterobidentate ligands has been to expand the variety of synthetic routes to M–M′ bonds; the photolytic release of CO from the isocarbonyl U–OC–Co moiety upon photolysis is arguably the most inventive synthesis yet, forming a 3.0319(7) Å U(IV)–Co(I) bond within the rigid NP scaffold N[ο-(NHCH2PPr2i)C6H4]3 and with the suggestion of a close contact between the U center and another Co-bound CO ligand, while vibrational data suggest stronger donation of Co electron density to uranium through the bond than through the original isocarbonyl link, although the coordination of additional phosphines has also changed the ancillary ligand set somewhat. (11)
For comparison, the shortest distance yet found between an f and a d block metal is in the lutetium–platinum complex (C5Me4SiMe2CH2PPh2)Lu(μ-CH2SiMe2CH2)(OC4H8)PtMe2, 2.7668(5) Å, (20) which shows interesting intramolecular C–H bond cleavage chemistry at elevated temperatures.
Even though the heterobimetallic chemistry of rare-earth transition-metal compounds has now begun to receive considerable attention, examples with late transition metals are still rare. (2-4) Roesky also used phosphinoamido ligands to combine palladium with yttrium and lutetium in bi- and trimetallic compounds with 2.9898(6) Å (Y–Pd), 2.9712(8) Å (Lu–Pd), and 3.141(13) Å (Y–Pd2) bond lengths for the trimetallic compound. (21)
We have targeted phosphine-functionalized aryloxide analogues of U(IV)(OAr)3X (OAr = 2,6-di-tert-butylphenoxide) first reported in the 1980s, anticipating binding of a second metal by the incorporated phosphine groups, and since then work by others and us has shown that the U–OAr bonds are sufficiently robust to allow many X-substitution reactions without ligand scrambling that can dominate f-block coordination chemistry. (22-27) Other robust ligand sets, such as bis(permethylcyclopentadienyl) or polydentate chelates, can be insufficiently mobile to allow the M–M′ distance to change according to metal size or electronic preference. We also considered that the X ligand in the trans position to a ligated metal ion would provide the possibility to exploit the inverse trans influence (ITI) in the formation of stronger bonds to an atom (here the second metal) in the position trans to X, the phenomenon whereby mutually trans-ligands bind closer and more tightly to a uranium center than they would in a d-block system, since the available (pseudocore) U 6p orbitals can mix with the valence 5f. (28-31)
We present a set of new heterobimetallic uranium–group 10 metal complexes using these simple ligands, the first study of an actinide–M bond for a complete transition-metal group and the first set of differently trans-ligand-functionalized uranium–metal bonds. We show how the ligand supports the shortest 5f–nd metal–metal bonds yet stabilized and preserves the metal–metal bond while allowing steric/electronic variation of the metal-bound X-ligand. These features have enabled a thorough study of the electronic structure of the metal–metal bond and its variation from 3d to 5d, and with ancillary ligand, for the first time.

Synthesis

Click to copy section linkSection link copied!

Preparation of the Ligand and Monometallic Compounds

The base-free potassium salt of the heterobidentate ligand 2-tert-butyl-4-methyl-6-(diphenylphosphino)phenolate (1, KOArP) may be prepared by deprotonation of 2-tert-butyl-4-methyl-6-(diphenylphosphino)phenol (32) in THF with KH.
The reaction of 3 mol equiv of 1 with uranium(IV) iodide etherate in THF gives IU(OC6H2-6-But-4-Me-2-PPh22O,P)3 [IU(OArP2O,P)3, 2] as a bright green powder in 78% yield (Scheme 1). (25) Compound 2 is moderately soluble in benzene and toluene; 1H NMR spectroscopy shows broad overlapping resonances at ambient temperature but seven resonances at elevated temperatures, although even at 370 K these are still broad. No 31P NMR resonance is observed at 300 or 370 K, similarly to other uranium phosphine complexes, e.g., U(dmpe)2X4 (X = Cl, OPh, Me). (33, 34) This could indicate a persistent coordination of the phosphine groups to the paramagnetic uranium or a more dynamic process that broadens the resonances to baseline. The room-temperature magnetic moment (Evans’ method) of 2 is 2.4 μB.

Scheme 1

Scheme 1. Synthesis of Uranium(IV) Tris(aryloxide) Iodide 2
Green crystals of 2 suitable for single-crystal X-ray diffraction were grown from a benzene solution at ambient temperature. The solid-state structure shows a coordination number of 7 for the uranium center with three bidentate phosphino-aryloxides (Figure 1). The U–O and U–I distances (ranging from 2.150(3) to 2.162(3) and 3.0414(6) Å, respectively) are slightly longer than those previously reported for IU(OC6H3-2,6-But2)3 [U–O, 2.092(8)–2.114(11) Å; U–I, 3.011(2) Å]. (24) The difference is probably due to the three additional phosphine donor atoms in 2. The U–P bonds lie between 3.041(1) and 3.056(1) Å. To the best of our knowledge there are no other examples of triarylphosphine uranium complexes; hence, a comparison is limited to the few crystallographically characterized trialkylphosphine uranium compounds. The U–P bond distances in 2 are similar to those of U(dmpe)2X4 (X = Cl, OPh, Me). (33, 34) The related U(IV)(Pr2iPNMes-κ2P,N)3UI has U–P distances between 2.8662(12) and 2.8828(4) Å. (10)

Figure 1

Figure 1. Molecular structure of 2. Solvent molecules and hydrogen atoms are omitted, and peripheral carbon atoms are depicted as a wireframe, for clarity. Thermal ellipsoids are drawn at 50% probability. Selected distances (Å) and angles (deg): U–I, 3.0414(6); U–O, 2.150(3)–2.162(3); U–P, 3.041(1)–3.056(1); O–U–P, 62.93(8)–63.14(8); O–U–I, 79.98(2)–82.43(2), 119.43(8)–124.53(8).

Preparation of the Bimetallic Compounds

The reaction of 2 with low oxidation state group 10 metal compounds incorporates the respective metal through phosphine ligation. The uranium(IV)–nickel(0) derivative is prepared by treatment of 2 with an equimolar amount of Ni0(cod)2 (cod = 1,5-cyclooctadiene) in toluene at ambient temperature (Scheme 2). An immediate color change to dark red indicates fast displacement of cod by the triarylphosphine donor groups. The new heterobimetallic IU(μ-OArP-1κ1O,2κ1P)3Ni (3–Ni) is isolated as dark red crystals in excellent yield and exhibits similar solubility to the parent compound 2.

Scheme 2

Scheme 2. Preparation of the Bimetallic Uranium(IV) Complex 3–Ni, 3–Pd, and 3–Pt
For the preparation of the heavier congeners, palladium(0) and platinum(0) phosphines proved to be suitable precursors, whereas Pd2(dba)3 (dba = dibenzylideneacetone) was unsuitable due to the ketone functional group [see the Supporting Information (SI)]. Reactions between equimolar amounts of 2 and tetrakis(triphenylphosphine)M(0) (M = Pd, Pt) in toluene at 80 °C give the bimetallic uranium(IV)–palladium(0) complex IU(μ-OArP-1κ1O,2κ1P)3Pd (3–Pd) and uranium(IV)–platinum(0) complex IU(μ-OArP-1κ1O,2κ1P)3Pt (3–Pt), respectively (Scheme 2). All three bimetallic complexes 3–Ni, 3–Pd, and 3–Pt show remarkable thermal stability.
Upon introduction of the group 10 metal centers, the magnetic moment decreases from 2.4 μB in 2 to 1.9 μB (3–Ni), 1.8 μB (3–Pd), and 2.0 μB (3–Pt), respectively. The similarity of the values for the bimetallic systems might indicate analogous interaction between the different d10-metals and uranium. However, a comparison of this group trend with previously reported systems is not possible, since no magnetic data were given for the only pair of complexes in which the ligand system remained unchanged between different transition-metal derivatives, Cp3UMCp(CO)2 (M = Fe, Ru). (5) Our observation contrasts with that of the groups of Bart and Thomas and of Arnold and Lu, who reported an increase of the magnetic susceptibility after introduction of the cobalt center into the amidophosphine-ligated uranium compounds. (10, 11)
Single crystals suitable for X-ray diffraction studies of the bimetallic compounds were grown at ambient temperature by vapor diffusion of hexane into benzene solutions. The solid-state structures of the bimetallic complexes 3–Ni, 3–Pd, and 3–Pt are similar and are shown in Figure 2. Selected distances and angles are collected in Table 1, along with the data from the DFT calculations described below. The agreement between experiment and theory is very good.

Figure 2

Figure 2. Thermal ellipsoid plot for 3–Ni, 3–Pd, and 3–Pt. Solvent molecules and hydrogen atoms are omitted, and selected carbon atoms are depicted as a wireframe, for clarity. Thermal ellipsoids are drawn at 50% probability, and only one independent molecule out of nine in the asymmetric unit is shown. Selected bond distances (Å) and angles (deg) are shown in Table 1.

Table 1. Selected Bond Distances (Å) and Angles (deg) of the Solid-State Structures of 3–Ni, 3–Pd, and 3–Pt and the Calculated Values, Respectivelya
 3–Ni3–Pd3–Pt
  explcalcd explcalcd expl
U–M (Å)2.527(2)–2.540(2)2.5342.686(2)–2.694(1)2.7012.706(1)–2.709(1)
U–I (Å)3.007(1)–3.012(1)3.0082.994(1)–3.007(1)3.0143.007(1)–3.014(1)
U–O (Å)2.134(8)–2.16(1),2.166 (av)2.12(1)–2.14(1)2.162 (av)2.125(5)–2.15(1)
M–P (Å)2.222(5)–2.239(4)2.264 (av)2.361(3)–2.368(3)2.396 (av)2.320(4)–2.330(3)
I–U–M (deg)178.94(5)–179.58(6)178.0178.90(5)–179.34(4)178.3178.80(3)–179.13(3)
U–M–P (deg)91.7(1)–94.3(1) 90.36(9)–92.68(8) 91.11(7)–93.57(7)
O–U–M–P (deg)26.4(3)–31.8(3) 25.3(2)–30.2(2) 24.6(2)–29.3(2)
a

Torsion angles are given for oxygen and phosphorus atoms bound to the same bridging ligand.

Despite the C3-symmetry of the individual molecules, the structures of 3–Ni and 3–Pt could be refined only in the triclinic space group P1. The asymmetric unit of each contains nine molecules of the compound along with three benzene molecules each. The individual molecules show slightly different orientations and could not be refined using a space group of higher symmetry. Complex 3–Pd was solved and refined in the trigonal space group P32 and contains three molecules of complex, with three benzene molecules per complex, in the asymmetric unit. The U–M bond distances increase from 2.527(2)–2.540(2) Å in 3–Ni to 2.686(2)–2.694(1) Å in 3–Pd and 2.706(1)–2.709(1) Å in 3–Pt (Figure 2). The intermetallic bond distances are significantly shorter than those of any other crystallographically characterized d- and f-block bimetallic compound previously reported. [The shortest, Lu–Pt, noted above, is 2.7668(5) Å. (20)] The only other actinide–group 10 derivatives reported are Cp*Th(μ-PPh2)2Ni(CO)2 and Cp*Th(μ-PPh2)2PtPMe3, featuring intermetallic distances of 3.206(2) and 2.984(1) Å, respectively. (18, 19) To the best of our knowledge, no other uranium–group 10 derivatives have been reported; comparison with the bimetallic UIV–CoI ICo(μ-Ph2PNPri-1κ1P,2κ1N)3U[η2-Ph2PNPri] and ICo(μ-Ph2PNPri-1κ1P,2κ1N)3UI reported by the groups of Bart and Thomas is most instructive. (10) The short intermetallic bonds are accompanied by U–M–P bond angles larger than 90°: 91.7(1)–94.3(1)° (3–Ni), 90.36(9)–92.68(8)° (3–Pd), and 91.11(7)–93.57(7)° (3–Pt). The increase in U–M bond length caused by the increased atomic radius in the series from nickel to platinum appears to be compensated by a decrease in O–U–M–P torsion angle, leaving the anionic ligand sphere around the uranium centers virtually unaffected.
The U–I bonds of 3–Ni, 3–Pd, and 3–Pt are shorter than those in the parent monometallic derivative 2 by around 0.04 Å in all cases. It is tempting to attribute this to the ITI. However, it could simply be a result of the lower coordination number in the bimetallic complexes (5-coordinate at U, including the M–M bond) compared to the phosphine-ligated parent compound (7-coordinate at U) since the effective ionic radius of the 5-coordinate U will be up to 0.1 Å smaller. (35)
The compounds 3–Ni, 3–Pd, and 3–Pt show paramagnetically shifted 1H NMR resonances in the range 3.56–11.82 ppm (3–Ni), 5.32–15.44 ppm (3–Pd), and 1.99–10.95 ppm (3–Pt). Again, the C3-symmetry of the solid-state structures is evident in solution, but the interconversion of the Δ and Λ isomers can now be observed using variable-temperature (VT) NMR spectroscopic experiments in the range 300–370 K (Figure 3 for 3–Ni), with coalescence relating to the interconversion shown in Figure 4, which requires the breaking of the U–M bond.

Figure 3

Figure 3. Stacked variable-temperature 1H NMR spectra of 3–Ni in toluene-d8 from 3.2 to 6.6 ppm over a temperature range of 300–370 K. Asterisks indicate resonances of phenyl hydrogen atoms observable at 300 and 370 K.

Figure 4

Figure 4. Simplified Newman projection illustrating the helicity of the bimetallic complexes.

In the case of 3–Ni, two sets of distinct resonances are observed at ambient temperature for the two phenyl groups on the diphenylphosphine substituents. These can be accounted for by the two orientations of the rings either close to perpendicular or along the metal–metal axis, which are visible at elevated temperatures (see the SI). For 3–Pd, no phenyl resonances are observed at ambient temperature and for 3–Pt they are strongly broadened.
The coalescence temperatures (TC) were highest for 3–Ni at ca. 332 K followed by 3–Pt at around 314 and 300 K for 3–Pd. In the case of 3–Pt, strong broadening and overlapping of unrelated shifts allow only a rough estimation of TC. This agrees with the other data, making U–Ni the hardest bond and U–Pt the easiest bond to break to interconvert the isomers. Unfortunately, the presence of the paramagnetic U center precludes the calculation of the energy associated with these dynamic processes due to the additional temperature dependence of the chemical shifts.
The broadened 31P{1H} resonances appear at 300 K at 93.2 ppm (3–Ni), 68.0 ppm (3–Pd), and 85.5 ppm (3–Pt), with the latter compound showing a 31P–195Pt coupling constant of 3742 Hz. These chemical shifts are all higher than the 31P NMR resonances for the “naked equivalent” group 10 metal complexes M(PPh3)3, M = Ni (21 ppm), Pd (23 ppm), Pt [50 ppm, 1J(31P–195Pt) = 4438 Hz], but the influence from the uranium paramagnet cannot be quantified. In the absence of paramagnetism, a related shift to higher frequency on incorporation of the more electropositive metal has been used as an (unquantified) indication of group 10 metal → metal electron donation. (17, 18, 36, 37, 18, 19, 38) The significantly lower 31P–195Pt coupling constant in 3–Pt compared to Pt(PPh3)3 can also be taken as an indication of a 4-coordinate platinum(0). (19)

Computational Investigation of 3–Ni and 3–Pd

In order to probe the uranium–TM (transition metal) bonding within 3–M, we turned to density functional theory (DFT) at the PBE level. Calculated geometric data for 3–Ni and 3–Pd are collected in Table 1. (39) As noted above, the agreement between the calculated and experimental structures is excellent, the largest discrepancy being <0.04 Å (for the average Ni–P distances in 3–Ni).
Natural population analysis (NPA) data are presented in Table 2, from which it can be seen that the two systems have very similar electronic structures at the NPA level. The spin densities are very much in keeping with a U(IV) system. Partial charges rarely tally well with formal oxidation state, but those calculated here show that the actinide atoms are much more positive than the transition metals and are very close to zero for the latter, in keeping with an M(0) formalism. The population analysis shows that the 10 electrons expected for Ni(0) and Pd(0) are located mainly in the 3d and 4d orbitals, with a small 4s/5s population. The uranium populations show the expected buildup in 5f and 6d, 1.12/1.08 and 1.50/1.46 electrons, respectively, above the value expected for U(IV) (data for 3–Pd in italics). Such buildups are often taken as a measure of the extent to which the 5f and 6d orbitals are involved in covalent bonding with the surrounding ligand framework. (39-41) We are happy to adopt this approach for the early part of the 5f series, and the present data indicate significant involvement of both f- and d-orbitals.
Table 2. Natural Population Analysis Data for 3–Ni and, in Italics, 3–Pd
 spin densitypartial chargeatomic populations
U2.1461.0795f3.126d1.507s0.217p0.01
U2.1371.1985f3.086d1.467s0.197p0.01
Ni–0.0750.0913d9.394s0.48
Pd–0.0320.0504d9.445s0.47
I–0.038–0.2775s1.885p5.395d0.01
I–0.040–0.2985s1.895p5.405d0.01
P (av)0.0000.881 
P (av)–0.0030.872 
O (av)–0.018–0.700 
O (av)–0.018–0.708 
Further insight into 3–Ni is provided by analysis of the valence natural localized molecular orbitals (NLMOs), the compositions and characters of an α spin selection of which are collected in Table 3 and shown pictorially in Figure 5. NLMOs 110 and 111 are the two U 5f electrons. NLMOs 113 and 114 are strongly iodine-localized (ca. 92%) and pπ in character, while NLMO 128 is I pσ, with a significantly larger (ca. 20%) uranium contribution than the pπ levels. The remaining orbitals (115–118 and 129) are nickel 3d-based. Together with the five β spin equivalents, these NLMOs house the 10 nickel electrons located by the NPA. They separate into σ + 2π + 2δ with respect to the U–Ni axis, with differing contributions from the actinide. The δ orbitals (115 and 116) have essentially no uranium contribution, while the π orbitals (117 and 118), also strongly nickel-localized, have slightly larger uranium contributions (similar to those of the iodine pπ-localized orbitals). Finally, NLMO 129 is nickel dσ, with ca. 10% uranium character. The uranium contributions to the iodine-based NLMOs are more 6d-based than 5f, while the reverse is true for the nickel-localized orbitals.
Table 3. Compositions (%) and Principal Characters of Selected α Spin Valence NLMOs of 3–Ni and, in Italics, 3–Pd
NLMOcompositioncharacter
11099.18 U (99.56 f)U f
 99.30 U (99.57 f) 
11194.81 U (2.05 s, 97.24 f); all others <0.78U f
 97.24 U (1.49 s, 97.74 f) 
11392.23 I (99.96 p); 6.62 U (59.44 d, 40.29 f)I pπ
 92.47 I (99.95 p); 6.30 U (59.33 d, 40.48 f) 
11491.80 I (99.95 p); 8.02 U (54.62 d, 45.20 f)I pπ
 90.32 I (99.70 p); 9.05 U (50.96 d, 48.62 f) 
11595.97 Ni (99.98 d); all others <0.95Ni/Pd
 96.17 Pd (99.99 d); all others <0.78 
11695.97 Ni (99.98 d); all others <0.95Ni/Pd
 96.17 Pd (99.99 d); all others <0.78 
11792.29 Ni (99.99 d); 5.34 U (40.82 d, 58.49 f)Ni/Pd
 93.55 Pd (99.94 d); 3.61 U (1.56 s, 46.24 d, 52.06 f) 
11890.60 Ni (99.99 d); 7.13 U (31.02 d, 68.82 f)Ni/Pd
 92.57 Pd (99.96 d); 4.73 U (40.52 d, 59.16 f) 
12878.17 I (24.36 s, 75.39 p); 20.91 U (18.95 s, 54.48 d, 26.18 f)I pσ
 79.60 I (24.65 s, 75.09 p); 19.66 U (16.36 s, 56.56 d, 26.61 f) 
12988.75 Ni (1.21 s, 98.61 d); 10.40 U (3.55 s, 24.54 d, 70.91 f)Ni/Pd dσ
 91.86 Pd (1.41 s, 98.47 d); 6.81 U (5.13 s, 29.41 d, 64.29 f) 

Figure 5

Figure 5. Selected valence NLMOs of 3–Ni. Isosurface value = 0.04. Atom colors: iodine = purple, uranium = lighter blue, oxygen = red, nickel = darker blue, phosphorus = yellow, and carbon = gray. Hydrogen atoms are omitted for clarity.

In order to probe further the nature of the U–Ni and U–Pd bonds, we turned to the quantum theory of atoms-in-molecules (QTAIM) approach, which we have used extensively to study the electronic structure of 5f molecules. (26, 41-43) Bond critical point (BCP) data are collected in Table 4, together with five different measures of U–TM bond order. The BCP electron and energy densities and the electron density Laplacian (ρ, H, and ∇2ρ) are very similar for the two target systems and very much in keeping with the extensive previous QTAIM studies of metal–metal bonds, in both bulk metals and polynuclear complexes. (44-57) These have suggested that metal–metal bonding should not be pigeon-holed as either closed-shell or shared-shell, but that “metallic” bonding has a topological behavior of its own, possessing neither ionic nor covalent features; metal–metal bonds are identified by relatively low electron density at the BCP and positive ∇2ρ (normally associated with closed shell or ionic bonding) and negative H (usually typical of shared shell or covalent bonding).
The BCP ellipticity ε is a measure of the cylindrical symmetry of a bond. Values close to zero are associated with either single or triple bonds, while significant deviations from zero (up to ca. 0.45) are typical of double bond character. (58) For both 3–Ni and 3–Pd, ε is very close to zero. The highly nickel localized nature of NLMOs 115–118 and 129 of 3–Ni strongly suggests that these ellipticities are not indicative of the higher, i.e., triple bond order, and this is supported by the QTAIM delocalization indices δ(U,TM), which are measures of bond order and which are below 1 for both 3–Ni and 3–Pd. Table 4 also provides four further U–TM bond order metrics. All of these agree that the U–Ni bond order is less than 1 and that that of U–Pd is smaller than for the 3d analogue. The lower bond orders found for the Pd system are in keeping with the composition of the NLMOs (Table 3). Specifically, the TM-based dσ and dπ orbitals are even more localized on the transition metal in 3–Pd than in 3–Ni, leading to reduced U–TM covalency. Although metal–metal bonding interactions typically increase down a transition-metal group, (59) the present NLMO data are consistent with the electronegativities of Ni, Pd, and U, 1.91, 2.20, and 1.38, respectively, on the Pauling scale. (60) The more electronegative 4d element has a more polar interaction with the actinide than does Ni, leading to reduced bond order.
Table 4. QTAIM U–TM BCP Parameters and Delocalization Indices and Bond Orders for 3–Ni and 3–Pd and Model Compounds 3–Ni(m) and 3–Pd(m) [(PH3)3MU(OH)3I (M = Ni, Pd)]a
 3–Ni3–Pd3–Ni(m)3–Pd(m)
ρ0.0680.0650.0430.041
2ρ0.1440.1280.0640.078
H–0.019–0.018–0.010–0.008
ε0.0240.0280.0190.012
δ(U,TM)0.9550.7770.6330.514
Wiberg bond order0.7200.6250.4570.403
atom–atom net linear NLMO/NPA bond order0.8130.6850.4460.363
Mayer bond order0.8310.5980.7160.489
Gopinathan–Jug bond order0.9110.6400.5950.411
a

ρ, H, and ∇2ρ are in atomic units.

To the best of our knowledge, there are no comparable computational analyses of the bond order in zero oxidation state group 10 complexes containing a homobimetallic metal–metal bond, so we carried out our own calculations on a previously reported low oxidation state system with an unconstrained Ni–Ni (or Pd–Pd) bond, [(η5-Cp)M(PEt3)]2. (61) Unfortunately, while geometry optimization of the 3d system proceeded smoothly, that for the Pd dimer did not, collapsing to a nonsensical solution. Thus, comparative M–M bond data are not available.
In summary, we conclude that the U–Ni and U–Pd interactions have topological features typical of metal–metal bonds. Analysis of the localized orbital structure locates MOs of σ and π symmetry between the actinide and the transition metals, but these are heavily polarized toward the latter, resulting in small orders. 3–Pd features consistently smaller bond orders than 3–Ni, in agreement with greater TM σ and π NLMO localization.
In order to probe the extent to which the U–TM interaction is a function of the geometric constraints placed on the metal atoms by the bidentate ligand framework, we have optimized the geometries of the model compounds 3–Ni(m) and 3–Pd(m) [(PH3)3MU(OH)3I (M = Ni, Pd)], i.e., with the chelate bridge broken, to ascertain whether L really does flex/twist sufficiently to enable the “ideal” M–M separation. The U–I distances are very similar to those calculated for 3–Ni and 3–Pd, 2.993 and 2.995 Å, respectively. By contrast, there is a significant lengthening of the U–TM distances, to 2.784 and 2.932 Å, respectively, for 3–Ni(m) and 3–Pd(m), an increase of ca. 0.25 Å vs 3–Ni and 3–Pd. This lengthening is reflected in the QTAIM and bond order metrics for the U–TM interaction, collected in Table 4, which are all smaller (in an absolute sense) than in 3–Ni and 3–Pd. As with the full molecules, all of the bond orders are smaller in the model Pd system than the Ni one.
The data on these model compounds therefore indicate that the very short uranium–TM bonds observed in 3–Ni and 3–Pd are partly a function of the ligand framework. In the absence of constraining ligands, the 5f–nd bonds lengthen, though uranium–TM interactions are clearly still present. The bond orders in the unchelated compounds are, in general, a little more than half of those calculated for 3–Ni and 3–Pd.

Derivatization of the Bimetallic Compounds

In addition to the variation of the d-metal center, we investigated the effect on the metal–metal bond of exchanging the iodide for other ligands, focusing on the smaller Ni because of its stronger U–Ni bond. For this purpose it seemed reasonable to substitute the large, polarizable iodide for the more electronegative and strongly bonding fluoride. In order to differentiate between electronic and steric effects, we also included a sterically demanding and hard O-donor ligand trimethylsiloxide (OSiMe3). Treatment of 3–Ni with sodium trimethylsiloxide yields the corresponding uranium(IV) siloxide compound 4 (Scheme 3) and sodium iodide. The reaction of 3–Ni with cesium fluoride results in the elimination of cesium iodide to give the F–UIV–Ni0 complex 5 (Scheme 3). Reaction monitoring via 1H and 31P NMR spectroscopy shows quantitative formation of 4 and 5, respectively, within 24 h. Attempts to use silver fluoride instead of cesium fluoride resulted in decomposition of the bimetallic species and release of an oxidized nickel(II) complex NiII(OArP2O,P)2 (6), which was characterized crystallographically (see the SI). Adaptation of a published preparation allowed 6 to be prepared independently by reaction of 2 equiv of HOArP with 1 equiv of Ni(cod)2 in toluene (see the SI). (62) Reactions of 3–Ni aimed at the formation of a cationic compound using silver tetraphenylborate or potassium tetraphenylborate gave 6 or no conversion, respectively (see the SI). A bis(trimethylsilyl)amido derivative of 3–Ni was also targeted, but the reaction between 3–Ni and potassium bis(trimethylsilyl)amide did not show any conversion (see the SI).

Scheme 3

Scheme 3. Preparation of Bimetallic Trimethylsiloxide (4) and Fluoride Derivatives (5)
Dark red crystals of 4 suitable for X-ray crystallography were grown from a benzene/hexane solution at ambient temperature. Single crystals of 5 were obtained from a benzene-layered THF solution. The two bimetallic complexes feature U–Ni bond distances of 2.556(1) Å (4) and 2.520(1) Å (5) (Figures 6 and 7), respectively. For 4, this is slightly longer than in 3–Ni, likely a result of the increased spatial demand of the OSiMe3 substituent compared with the iodide and thus a greater steric clash with the tert-butyl groups of the aryl oxide ligands. However, the exchange of iodide for the smaller, more electronegative fluoride in 5 is accompanied by a decrease of the intermetallic bond distance. While this could be associated with a reorganization of the OArP ligand set, it could also be attributed to the inverse trans influence. The siloxide U–O bond distance of 2.093(6) Å in 4 is significantly shorter than the U–OAr bonds but within the range of previously reported values for uranium(IV) trimethylsiloxides. (63-68) The U–F distance of 2.091(5) Å in 5 is within the range of other nonbridging uranium(IV) fluoride compounds. The Ni–P bonds in 4, 2.208(1)–2.221(2) Å, and 5, 2.212(2)–2.225(3) Å, are slightly shorter than in the parent compound, indicating increased back-bonding via the σ*(Ni–P) orbitals. (69) In the solid state, both the U1–O4–Si1 [174.9(4)°] and Ni1–U1–O4 [178.6(2)°] angles in 4 are nearly linear. The F–U–Ni angle in 5 is 178.8(2)°, similar to that of its congener. The U–F bond dissociation energy is measured to be around 50% stronger than the other U–halide bonds in UX4, and the U–Ni bond length decreases in the order SiO–U–Ni > I–U–Ni > F–U–Ni (i.e., 4 > 3–Ni > 5). The ITI would predict a stronger than usual U–O bond in the linearly bound siloxide 4. If the MM strength order predicted by electrochemistry (vide infra) (SiO–U–Ni > F–U–Ni > I–U–Ni, i.e., 4 > 5 > 3–Ni) directly correlated with M–M bond length, then the solid-state and solution methods would agree on the halide ordering, perhaps indicating the strongest ITI in the fluoride complex 5. (70) However, the steric congestion around the U–siloxide evidenced by the solid-state structure and the NMR spectra of 4 suggests that in this instance there is insufficient space for an (ITI-facilitated) closer approach of the O and Ni atoms to U.
The aryloxide U–O bonds in both 4 and 5 are longer than they are in 3–Ni [2.160(6) to 2.210(6) Å in 4 and 2.159(8) to 2.199(5) Å in 5], a feature which could be attributed to the preferential shortening of the trans X–U–Ni unit, even for the sterically demanding OSiMe3 group. The top-view of the solid-state structures of the U–Ni iodide and siloxide (3–Ni and 4, respectively) are also shown in Figure 7 to highlight the C3-propeller shape and similarity of the overall structures.

Figure 6

Figure 6. Thermal ellipsoid plots for 4 and 5. Solvent molecules and hydrogen atoms are omitted, and selected carbon atoms are depicted as a wireframe, for clarity. Thermal ellipsoids drawn at 50% probability. Selected bond distances (Å) and angles (deg) for 4: U1–Ni1, 2.556(1); U1–O1, 2.210(6); U1–O2, 2.188(6); U1–O3, 2.160(6); U1–O4, 2.093(6); Ni1–P1, 2.208(2); Ni1–P2, 2.213(3); Ni1–P3, 2.221(2); O4–U1–Ni1, 178.6(2); U1–Ni1–P1, 87.85(7); U1–Ni1–P2, 97.84(7); U1–Ni1–P3, 94.95(7); O1–U1–Ni1–P1, 37.4(2); O2–U1–Ni1–P2, 18.4(2); O3–U1–Ni1–P3, 28.1(2). For 5: U1–Ni1, 2.520(1); U1–F1, 2.091(5); U1–O1, 2.159(8); U1–O2, 2.174(6); U1–O3, 2.199(5); Ni1–P1, 2.225(3); Ni1–P2, 2.215(3); Ni1–P3, 2.212(2); F1–U1–Ni1, 178.8(2); U1–Ni1–P1, 96.16(7); U1–Ni1–P2, 91.56(7); U1–Ni1–P3, 91.82(7); O1–U1–Ni1–P1, 22.2(2); O2–U1–Ni1–P2, 30.1(2); O3–U1–Ni1–P3, 29.1(2).

According to NMR spectroscopy, both 4 and 5 differ significantly in solution from the parent compound 3–Ni. The 1H NMR resonances for the aryl oxide ligands are in the range from −15.28 to 19.44 ppm for 4 and from −11.70 to 19.04 ppm for 5, with a more strongly pronounced paramagnetic influence on the ligand sphere compared with 3–Ni. The proton chemical shift of the trimethylsiloxide group of 4 is 48.67 ppm. Further, the 31P resonances are strongly shifted to high frequencies, 469.4 ppm (4) and 474.5 ppm (5) (compared with 92.3 ppm for 3–Ni). Having studied the NLMOs of the complexes involved and not found any significant differences, we attribute the large chemical shift difference to two factors. First, the extensive electronic differences of I vs F/TMSO. Second, the slightly shorter Ni–P bonds in 4 than 5 that indicate stronger Ni–P backbonding. Both of these would combine to enhance the through-bond paramagnetic influence from the f2-uranium center. Resonances for the heteronuclei 19F and 29Si could not be observed within the spectral range from −740 to 620 and −1050 to 870 ppm, respectively. VT NMR experiments of 4 and 5 show that both have rigid structures in solution as high as 100 °C. This represents a significantly higher energy barrier to the interconversion of Δ and Λ isomers compared with 3, supporting the ITI-induced stronger U–M bond being formed when the more electronegative X-ligands are uranium-bound. The replacement of the iodide changes the magnetic moment values from 1.9 μB (3–Ni) to 2.8 μB (4) and 2.1 μB (5), respectively. Similarity of magnetic moment throughout series of U(IV) aryl oxide and amide complexes with different halides has been reported. (71-73) The value of the trimethylsiloxide derivative 4 is similar to that of other R3SiO-ligated uranium complexes, U(OSiBu3t)4 (2.83 μB) and U(OSiMe3)2I2(bipy)2 (bipy = 2,2′-bipyridine) (2.7 μB). (65, 74) To account for these increases, and the strongly paramagnetically shifted 31P chemical shifts for 4 and 5, we compared the composition of the two f-based NLMOs for the iodide (3–Ni) and fluoride (5) to look for different U 5f contributions that would lead to larger paramagnetic shifts for the Ni-bound atoms. For the iodide, they are 99.18% U (99.56% 5f) and 94.81% U (97.24 5f, 2.05 s, 1.75% total contribution from P) (see also Table S4 of the SI for a comparison of the predominantly Ni d-σ and π NLMOs). For the fluoride they are 99.22% U (99.68% 5f) and 92.54% U (97.58 5f, 1.63 s, 2.48% total contribution from P). While these data indicate a marginally greater through-bond mixing of unpaired 5f electron with the phosphorus, there is really very little difference between the two systems.

Figure 7

Figure 7. Thermal ellipsoid plot for 3–Ni (left) and 4 (right) viewed along the U–Ni bond axes. Solvent molecules and hydrogen atoms are omitted and selected carbon atoms are depicted as a wireframe for clarity. Thermal ellipsoids are drawn at 50% probability.

The electronic absorption spectra of toluene solutions of the compounds 25 were recorded to locate potential metal–metal charge transfer bands (see the SI). UV–vis spectra of monometallic 2 show several weak U(IV) f–f transitions (75) up to ca. 700 nm and more intense π–π* charge-transfer processes below 500 nm. (76, 77) The second metalation to form 3–Ni, 3–Pd, and 3–Pt causes a bathochromic shift of the predominately ligand-based absorption at short wavelengths. In the visible region, the nickel derivative 3–Ni differs significantly from 3–Pd and 3–Pt, with an absorption at 511 nm (ε 598 M–1 cm–1) that is much stronger than that in 4 and 5, with weaker absorptions at 527 nm (ε 103 M–1 cm–1) and 533 nm (ε 90 M–1 cm–1), respectively. In the NIR region the monometallic complex 2 shows several absorption bands in the 850–2060 nm region (ε 18–45 M–1 cm–1). The NIR spectra of 3–Ni, 3–Pd, and 3–Pt are similar to each other but feature fewer absorption bands. As such, an unambiguous assignment of absorptions in this region to a metal–metal charge transfer appears to be not possible.

Electrochemistry

Click to copy section linkSection link copied!

The electronic structures of complexes 25 were investigated using a range of voltammetric techniques (Figure 8 and the SI). In the electrochemical window provided by THF/[nBu4N][BPh4], a single reduction process was observed for 2 during the cyclic voltammetry (CV) experiment, at Epc −2.87 V versus Fc+/Fc, assigned to the U(IV)/U(III) couple and it is irreversible. The U(IV)/U(III) redox couple is sensitive to the ligand environment and has been reported in the range from −1.83 to −2.78 V for metallocene and acetylacetonate (acac) complexes. (78-80)

Figure 8

Figure 8. Cyclic voltammograms for 3–Pt, 3–Pd, 3–Ni, 4, and 5. All measured in THF using 0.1 M [nBu4N][BPh4] as the supporting electrolyte, at a scan rate of 100 mV s–1. The currents are normalized against the peak height of reduction process I for 3–Pt.

Incorporation of the group 10 transition metal alters the electrochemistry significantly. The CVs of 3–Ni, 3–Pd, and 3–Pt are qualitatively very similar, having three reduction processes each, suggesting a common electronic structure. The electrochemical behavior of 3–Pt will be described as a representative example. The first reduction (denoted I) at Epc −1.92 V is irreversible; two further quasi-reversible reduction processes are observed as overlapping cathodic waves at Epc −2.39 and −2.55 V, denoted II and III, respectively. Determination of the peak areas in the CV of 3–Pt reveals that the charge passed during reduction I is equal to that passed during II and III combined, indicating that process I is a two-electron reduction, whereas II and III are single-electron reduction processes.
The electrochemical experiments with 3–Ni and 3–Pd generated identical conclusions, and in the series 3, the reduction potentials for all three processes are cathodically shifted when the transition metal is changed from Pt to Pd to Ni. The Kohn–Sham α spin LUMOs of both 3–Ni and 3–Pd are primarily U–M antibonding, so we ascribe reduction I to the filling of this orbital and conclude that the cathodic shift of the reduction process moving up the group 10 metals is due to a strengthening of the metal–metal bond. (81) This agrees with the computational results that showed higher bond order for 3–Ni compared to 3–Pd and also correlates with the shorter M–M′ distance determined crystallographically.
The CV of 5, the fluoride analogue of 3–Ni, shows only an irreversible reduction at Epc −2.39 V, but square-wave voltammetry (SWV) reveals a second process at the edge of the electrochemical window, Epc −2.81 V. This implies that 5 displays similar electrochemical behavior to the iodo complexes, albeit at more negative potentials; i.e., replacing the iodide with a fluoride strengthens the metal–metal bond trans to it.
The replacement of iodide with siloxide to make 4 cathodically shifts the reduction I further still, to Epc −2.50 V; no other reduction processes are observed by CV or SWV. This reduction is now quasi-reversible and suggests that the reduced species is stabilized to a certain degree. A reversible oxidation process is also observed at E1/2 −0.20 V, denoted IV. The area of the anodic CV wave for IV is approximately equal to the area of the cathodic wave for reduction I, and both processes therefore involve two electrons. It is not known whether this oxidation IV is unique to 4; it may be that this oxidation is possible for all but lies outside of the electrochemical window.
Thus, we infer from the electrochemical data that the metal–metal bond strength increases in the series 3–Pt < 3–Pd < 3–Ni < 5 < 4.

Conclusions

Click to copy section linkSection link copied!

The use of a relatively rigid heterobidentate phosphinoaryl oxide ligand that forms strong U–O bonds and weak, labile U–P bonds in the new complex IUIV(OArP2O,P)3 has allowed the systematic incorporation of Ni(0), Pd(0), or Pt(0) via phosphine coordination, and the replacement of the iodide anion with Me3SiO or F, to form a set of five heterobimetallic U–M complexes XUIV(μ-OArP-1κ1O,2κ1P)3M0 (X = I, OSiMe3, F; M = Ni, Pd, Pt), all of which have shorter An−TM bonds than any previously reported example. The synthesis of a complete set of adducts from a single group for the first time and the solution and solid-state structural characterization of the complexes have enabled a thorough study of the uranium–metal bond. The U–I bond length in the starting material 2 becomes significantly shorter upon formation of the U–M complexes 3, but the coordination number changes from 7 to 5 (replacing three phosphines with one metal center), so inferences of the inverse trans influence (ITI) cannot be made here. Upon introduction of the group 10 metal centers, the magnetic moment decreases from 2.4 μB to around 1.9 μB in 3, respectively, an opposite change in moment to that reported upon secondary metalation of U complexes by CoI as a donor. (10)
Although the changes in magnetic moment and UV–vis–NIR spectra cannot yet be interpreted in terms of bonding trends in the series, the combination of experimental electrochemistry and computation is particularly informative. A cathodic shift of the first reduction process observed upon moving from U–Pt up to U–Ni indicates a strengthening of the metal–metal bond in the order 3–Ni > 3–Pd > 3–Pt. This correlates with the shortening of the internuclear distance determined crystallographically. Natural population analysis and natural localized molecular orbital compositions indicate that U employs both its 5f and 6d orbitals in covalent bonding to a significant extent, and this agrees with experimental data that the oxidation states of the metals are best described as U(IV) and zero for the group 10 atoms. Quantum theory of atoms-in-molecules analysis yields bond critical point properties in keeping with many previous studies of transition-metal–metal bonds in both bulk metals and polynuclear clusters (relatively low electron density, positive ∇2ρ, and negative H). Replacing the uranium-bound iodide trans to the nickel center with the more electronegative fluoride and siloxide also results in NMR spectroscopic and electrochemical responses consistent with a strengthening of the U–Ni bond and with the existence of an ITI. If an ITI is influencing the M–M′ bond strength, then this is also borne out by the crystallographic data for 3 and 5, which show a shorter U–Ni bond in the F–U–Ni (5) than in I–U–Ni (3) complexes. Despite the short U–M distances, the bond orders are calculated by five different approaches to be small; less than 1 in all cases. All bond order metrics are smaller for U–Pd than U–Ni, in agreement with the electrochemical and QTAIM bond critical point data and with population analysis of the U–TM σ and π NLMOs which, while heavily localized on the TM in both cases, are even more so for the 4d system than the 3d, in keeping with the larger electronegativity difference between U and Pd vs U and Ni. Calculations on a monodentate analogue of 3 show that in the absence of the constraining ligand geometry there is clearly still a U–TM interaction, but it is enhanced by about 0.25 Å in the constraining ligand framework.
Thus, by combining the spectroscopic, computational, electrochemical, and structural studies, the U–M bond strength can be placed in increasing order: 3–Pt < 3–Pd < 3–Ni < 5 < 4, i.e., I–U–Pt < I–U–Pd < I–U–Ni < F–U–Ni < SiO–U–Ni.

Experimental Section

Click to copy section linkSection link copied!

General Details

All manipulations were carried out under a dry, oxygen-free atmosphere of nitrogen using standard Schlenk and glovebox technique. Benzene was distilled from potassium and stored over 4 Å molecular sieves. Hexane, THF, and toluene were degassed and purified by passage through activated 4 Å molecular sieves or activated alumina towers and stored over 4 Å molecular sieves. Deuterated solvents, benzene-d6 and toluene-d8, were boiled over potassium, vacuum-transferred, and freeze–pump–thaw degassed prior to use. 1H, 13C, 19F, 29Si, and 31P NMR spectra were recorded on Bruker AVA400, AVA500, or PRO500 spectrometers at 300 K. Variable-temperature NMR spectra were recorded on a Bruker AVA400 spectrometer between 300 and 370 K. Chemical shifts are reported in parts per million, δ, referenced to residual proton resonances, and calibrated against external TMS. Magnetic moment values were determined by Evans’ method using a sealed benzene-d6 capillary as reference. (82-85) UV–vis–NIR spectra were recorded on a JASCO V-670 spectrophotometer using a sealed quartz cuvette with 0.02–5 mM toluene solutions. Artifacts at 1650–1750 nm relate to solvent absorption. Electrochemical measurements were made on 1–10 mM of the analyte in 12 cm3 THF, 0.1 M [nBu4N][BPh4], in a N2-filled glovebox using an Autolab ECO Chemie PGSTAT potentiostat, glassy-carbon disk (d = 3 mm) working electrode, Pt-gauze counter electrode, Ag-wire quasi-reference electrode, and ferrocenium/ferrocene (Fc+/Fc = 0 V) standard. (86) Scan details are in the SI, and data were processed using GPES Manager 4.9. Elemental analyses were carried out at London Metropolitan University, London, UK, and Pascher Labor, Remagen, Germany. UI4(dioxane)1.5, (87) HOC6H2-6-But-4-Me-2-PPh2, (32) and AgBPh4 (88) were prepared according to published procedures. All other reagents were from commercial sources and used as received.

KOC6H2-6-But-4-Me-2-PPh2 (KL, 1)

A Schlenk flask was charged with 6-tert-butyl-4-methyl-2-(diphenylphosphino)phenol (5.92 g, 17.0 mmol, 1 equiv), potassium hydride (682 mg, 17.0 mmol, 1 equiv), and a stir bar and cooled in an ice bath. THF (40 mL) was added under vigorous stirring, and the mixture was allowed to warm to 20 °C after 30 min, and no further H2 evolution was observable. After storage at 5 °C for 18 h, the colorless solids were isolated via filtration, washed with hexane (3 × 10 mL), and dried in vacuo to give 1 as a colorless powder (5.33 g, 81%). 1H NMR (THF-d8): 1.40 (s, 9H, tBu), 1.93 (s, 3H, Me), 5.99 (m, 1H, ArH), 6.79 (d, 4JH,H 2.4 Hz), 7.20–7.26 (m, 6H, Ph), 7.30–7.34 (m, 4H, Ph). 13C NMR (THF-d8): 21.4, 30.4, 35.4 (d, 4JC,P 2.3 Hz), 116.8 (d, 3JC,P 3.1 Hz), 122.4 (d, 1JC,P 13.8 Hz), 128.6 (d, 2JC,P 6.5 Hz), 128.6, 135.0 (d, 3JC,P 18.8 Hz), 136.2 (d, 3JC,P 1.5 Hz), 142.2 (d, 1JC,P 11.5 Hz), 171.1 (d, 1JC,P 17.2 Hz). 31P{1H} NMR (THF-d8): −15.0. Anal. Calcd for C23H24KOP: C 71.47. H 6.26. Found: C 71.56, H 6.31.

IU(μ-OC6H2-6-But-4-Me-2-PPh22O,P)3 (IUL3, 2)

A Schlenk flask was charged with UI4(Et2O)2 (2.68 g, 3.00 mmol), a stir bar, and THF (20 mL). Under vigorous stirring a THF solution of 1 (3.48 g, 9.00 mmol, 3.00 equiv, 30 mL) was added via syringe. The green mixture was stirred at room temperature for 16 h, followed by evaporation of volatiles under reduced pressure. The green residue was extracted four times with warm toluene. The green extract was concentrated to 40 mL and stored at −30 °C, giving 3.28 g (78%) of 2 as a bright green powder. 1H NMR (toluene-d8): 4.96 (v br). 1H NMR (toluene-d8, 370 K): 1.83 (br), 4.88 (br), 5.12, 5.30 (br), 6.54 (v br), 8.89 (v br), 15.10 (v br). Evans’ method (C6D6): 2.4 μB. UV–vis–NIR [λ in nm (ε in M–1 cm–1)]: 300 (1.8 × 104), 516 (38), 550 (18), 598 (16), 633 (26), 895 (29), 976 (19), 1023 (27), 1069 (31), 1102 (35), 1139 (32), 1175 (27), 1198 (26), 1351 (22), 1406 (27), 1484 (18), 1829 (10), 2055 (45). Anal. Calcd for C69H72IO3P3U: C 58.89. H 5.16. Found: C 59.03, H 5.06.

IUIVL3Ni0 (3–Ni)

A Schlenk flask equipped with a stirring bar was charged with 2 (422 mg, 0.300 mmol) and bis(1,8-cyclooctadiene)nickel (28 mg, 0.30 mmol, 1.0 equiv). The reagents were dissolved in toluene (20 mL) to give a red solution and stirred at ambient temperature for 18 h, during which time the mixture turned dark red and deposited a metal mirror. After removal of volatiles under reduced pressure, the dark red residue was extracted with warm toluene (3 × 5 mL). The combined extracts were concentrated to ca. 10 mL and stored at −30 °C for 1 d. Dark red crystals of 3–Ni were isolated, washed with hexane, and dried in vacuo. Yield: 316 mg (72%). 1H NMR (toluene-d8): 3.51 (s, 9H, ArMe), 4.05 (s, 6H, PPhH), 4.66 (s, 6H, PPhH), 4.97 (s, 6H, PPhH), 5.74 (s, 6H, PPhH), 5.93 (s, 30H, tBu/PPhHp), 6.29 (s, 3H, PPhHp), 6.35 (s, 3H, ArH), 11.65 (s, 3H, ArH). 1H NMR (toluene-d8, 370 K): 3.30 (s, 9H, ArMe), 4.61 (s, 12H, PPhH), 5.07 (s, 27H, tBu), 5.57 (s, 6H, PPhH), 6.22 (s, 6H, PPhHp), 6.32 (s, 3H, ArH), 11.03 (s, 3H, ArH). 31P{1H} NMR (C6D6): 92.3. Evans’ method (C6D6): 1.9 μB. UV–vis–NIR [λ in nm (ε in M–1 cm–1)]: 305 (3.4 × 104), 511 (598), 666 (41), 709 (51), 814 (8), 948 (13), 1056 (25), 1120 (36), 1202 (39), 1411 (13), 1547 (15), 1649 (14), 1748 (15), 1754 (15). Anal. Calcd for C69H72INiO3P3U: C 56.54. H 4.95. Found: C 56.65, H 5.01.

IUIVL3Pd0 (3–Pd)

A Schlenk flask was charged with 2 (141 mg, 0.100 mmol), tetrakis(triphenylphosphine)palladium (116 mg, 0.100 mmol, 1.00 equiv), a stir bar, and toluene (5 mL) and the solution stirred at 80 °C for 3 d. The red mixture was cannula filtered, layered with hexane, and allowed to stand at ambient temperature. Orange crystals of 3–Pd grew over 5 d and were isolated by decanting, washed with hexane, and dried under vacuum. Yield: 53 mg (35%). 1H NMR (toluene-d8): 5.32 (s, 9H, ArMe), 7.23 (s, 3H, ArH), 9.89 (s, 27H, tBu), 15.44 (s, 3H, ArH). 1H NMR (toluene-d8, 370 K): 3.21 (s, 12H, o-HPhP), 4.63 (s, 9H, ArMe), 5.60 (s, 12H, m-HPhP), 6.11 (s, 6H, p-HPhP), 7.11 (s, 3H, ArH), 7.83 (s, 27H, tBu), 13.69 (s, 3H, ArH). 31P{1H} NMR (C6D6): 68.4. 31P{1H} NMR (toluene-d8): 68.0. Evans’ method (C6D6): 1.8 μB. UV–vis–NIR [λ in nm (ε in M–1 cm–1)]: 300 (3.4 × 104), 527 (103), 576 (27), 661 (22), 686 (29), 722 (11), 891 (9), 948 (13), 1060 (19), 1114 (34), 1151 (23), 1175 (19), 1431 (11), 1455 (12), 1540 (16), 1750 (11), 1776 (12), 2045 (12), 2086 (13). Anal. Calcd for C69H72IO3P3PdU: C 54.75. H 4.79. Found: C 54.82, H 4.88.

IUIVL3Pt0 (3–Pt)

This compound was prepared in an analogous procedure to that of 3–Pd (see the SI) to give orange crystals in 66% yield.

Me3SiOUIVL3Ni0 (4)

A scintillation vial was charged with 3–Ni (147 mg, 0.100 mmol), sodium trimethylsilanolate (11 mg, 0.10 mmol, 1.0 equiv), a stir bar, and THF (3 mL). The red mixture was stirred for 16 h at ambient temperature and then evaporation of volatiles under reduced pressure, affording a dark red residue which was suspended in a minimal amount of benzene, centrifuged, and filtered. Dark red crystals of 4 were isolated from the benzene filtrate by hexane vapor diffusion (83 mg, 58%). 1H NMR (toluene-d8): −15.47 (s, 27H), −7.59 (s, 3H), −7.20 (br s, 3H), −4.74 (t, 3H, J 7.5 Hz), −3.95 (s, 9H), 7.65 (s, 3H), 16.82 (t, 3H, J 7.5 Hz), 19.47 (br s, 3H), 48.83 (s, 9H). 1H NMR (toluene-d8, 370 K): −11.57 (s, 27H), −4.23 (s, 3H), −4.13 (br s, 3H), −3.83 (vbr s, 3H), −2.59 (s, 9H), −2.15 (br s, 3H), 7.29 (s, 3H), 14.56 (t, 3H, J 7.5 Hz), 16.56 (s, 6H), 30.38 (vbr s, 6H), 37.77 (s, 9H). 469.4. 31P{1H} NMR (toluene-d8): 476.4. Evans’ method (C6D6): 2.8 μB. UV–vis–NIR [λ in nm (ε in M–1 cm–1)]: 302 (2.9 × 104), 520 (296), 559 (148), 659 (50), 692 (28), 837 (6), 966 (22), 1098 (31), 1150 (38), 1287 (16), 1410 (10), 1578 (20), 1751 (22), 1781 (31), 1885 (48), 2039 (7), 2075 (4). Anal. Calcd for C72H81O4P3SiU: C 60.55. H 5.72. Found: C 60.43. H 5.81.

FUIVL3Ni0 (5)

A scintillation vial was charged with 3–Ni (58 mg, 0.040 mmol, 1.0 equiv), cesium(I) fluoride (6 mg, 0.040 mmol, 1.0 equiv), a stir bar, and THF (2 mL). The red solution was stirred for 1 d at ambient temperature. Some colorless solids that formed were removed by filtration. Volatiles were removed under reduced pressure, the red residue was suspended in benzene, and the solution was centrifuged and then filtered. Crystallization by hexane vapor diffusion into the filtrate afforded red crystals (32 mg, 59%) of 5. 1H NMR (toluene-d8): −11.88 (s, 27H), −7.35 (s, 3H), −7.25 (s, 4H), −4.74 (s, 3H), −4.25 (s, 9H), 5.73 (br s, 2H), 6.54 (s, 3H), 16.58 (s, 3H), 19.16 (v br s, 6H), 30.00 (v br s, 4H). 1H NMR (toluene-d8, 370 K): −8.60 (s, 27H), −4.06 (br s, 12H), −2.86 (s, 9H), −2.10 (br s, 2H), 5.10 (s, 3H), 6.36 (s, 2H), 14.37 (s, 3H), 16.31 (br s, 4H), 30.00 (v br s, 4H). 31P{1H} NMR (C6D6): 474.5. Evans’ method (C6D6): 2.1 μB. UV–vis–NIR [λ in nm (ε in M–1 cm–1)]: 303 (2.5 × 104), 655 (147), 691 (118), 841 (73), 952 (75), 1042 (64), 1087 (75), 1150 (82), 1202 (48), 1254 (49), 1412 (35), 1447 (29), 1580 (39), 1751 (57), 1777 (77), 1835 (81), 1880 (66), 2035 (15), 2072 (12). Anal. Calcd for C69H72FO3P3U: C 61.03. H 5.34. Found: C 60.89, H 5.23.

Computational Details

Density functional theory calculations were carried out using the PBE functional, as implemented in Gaussian 09, Rev. C.01 and D.01, (89) and ADF 2014 (90-92) quantum chemistry codes. For the Gaussian calculations, the cc-pVDZ basis set was used for all atoms except U, I, and Pd. For these elements, a Stuttgart–Bonn variety relativistic pseudopotential was employed, together with segmented valence basis sets; (14s13p10d8f)/[10s9p5d4f] for U, (93) (16s12p4d1f)/[3s3p2d1f] for I, (94, 95) and (8s7p6d2f)/[6s5p3d1f] for Pd. (95, 96) The ultrafine integration grid was employed. natural bond orbital calculations were performed using the NBO6 code, interfaced with Gaussian revision D.01. (97) QTAIM analyses were performed using the AIMAll program package, (98) with .wfx files generated in Gaussian used as input.
Single-point calculations, at the Gaussian-optimized geometries, were run in the ADF code in order to obtain Mayer (99) and Gopinathan–Jug (100) bond orders. For these calculations, the zeroth-order regular approximation (ZORA) Hamiltonian was used. Slater-type orbital ZORA basis sets of TZP quality were used for U, Ni, Pd, and I, with DZP ZORA basis sets for all other atoms. The frozen core approximation was employed, with U(5d), I(4p), Pd(3d), Ni(2p), P(2p), and 1s for all other atoms, bar H. The default SCF convergence criteria were used, together with an integration grid of 4.5.

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b10698. Crystallographic files were deposited at the Cambridge Crystallographic Data Centre (CCDC): 1430506 (2), 1430507 (3–Ni), 1430511 (3–Pd), 1430512 (3–Pt), 1430513 (4), 1438934 (5), and 1430514 (6). Open data files are available at DOI: 10.7488/ds/1351.

  • Crystallographic data, additional variable-temperature NMR spectra, additional synthetic data, including other reactivity studies, and solid-state structure details of all complexes (PDF).

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Authors
    • Nikolas Kaltsoyannis - Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, U.K.School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K. Email: [email protected]
    • Polly L. Arnold - EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, The King’s Buildings, Edinburgh EH9 3FJ, U.K. Email: [email protected]
  • Authors
    • Johann A. Hlina - EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, The King’s Buildings, Edinburgh EH9 3FJ, U.K.
    • James R. Pankhurst - EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, The King’s Buildings, Edinburgh EH9 3FJ, U.K.
  • Notes
    The authors declare no competing financial interest.

Acknowledgment

Click to copy section linkSection link copied!

We thank EaStCHEM, the University of Edinburgh and the Engineering and Physical Sciences Research Council EPSRC (grants EP/H004823/1 and EP/M010554/1). J.A.H. thanks the Austrian Science Fund (FWF) for funding via Erwin Schrödinger Fellowship project J-3467. N.K. thanks University College London for computing resources via the Research Computing “Legion” cluster Legion@UCL and associated services and The University of Manchester for access to its Computational Shared Facility, and he is also grateful for computational resources from the EPSRC’s National Service for Computational Chemistry Software, http://www.nsccs.ac.uk. P.L.A. also thanks the Technische Universität München—Institute for Advanced Study, funded by the German Excellence Initiative.

References

Click to copy section linkSection link copied!

This article references 100 other publications.

  1. 1
    Cooper, B. G.; Napoline, J. W.; Thomas, C. M. Catal. Rev.: Sci. Eng. 2012, 54, 1 40 DOI: 10.1080/01614940.2012.619931
  2. 2
    Liddle, S. T.; Mills, D. P. Dalton Trans. 2009, 5592 5605 DOI: 10.1039/b904318g
  3. 3
    Patel, D.; Liddle, S. T. Rev. Inorg. Chem. 2012, 32, 1 22 DOI: 10.1515/revic.2012.0001
  4. 4
    Oelkers, B.; Butovskii, M. V.; Kempe, R. Chem. - Eur. J. 2012, 18, 13566 13579 DOI: 10.1002/chem.201200783
  5. 5
    Sternal, R. S.; Marks, T. J. Organometallics 1987, 6, 2621 2623 DOI: 10.1021/om00155a036
  6. 6
    Bucaille, A.; Le Borgne, T.; Ephritikhine, M.; Daran, J.-C. Organometallics 2000, 19, 4912 4914 DOI: 10.1021/om000483f
  7. 7
    Monreal, M. J.; Khan, S. I.; Kiplinger, J. L.; Diaconescu, P. L. Chem. Commun. 2011, 47, 9119 DOI: 10.1039/c1cc12367j
  8. 8
    Gardner, B. M.; Patel, D.; Cornish, A. D.; McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T. Chem. - Eur. J. 2011, 17, 11266 11273 DOI: 10.1002/chem.201101394
  9. 9
    Patel, D.; Moro, F.; McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T. Angew. Chem., Int. Ed. 2011, 50, 10388 10392 DOI: 10.1002/anie.201104110
  10. 10
    Napoline, J. W.; Kraft, S. J.; Matson, E. M.; Fanwick, P. E.; Bart, S. C.; Thomas, C. M. Inorg. Chem. 2013, 52, 12170 12177 DOI: 10.1021/ic402343q
  11. 11
    Ward, A. L.; Lukens, W. W.; Lu, C. C.; Arnold, J. J. Am. Chem. Soc. 2014, 136, 3647 3654 DOI: 10.1021/ja413192m
  12. 12
    Gardner, B. M.; McMaster, J.; Lewis, W.; Liddle, S. T. Chem. Commun. 2009, 2851 2853 DOI: 10.1039/b906554g
  13. 13
    Gardner, B. M.; McMaster, J.; Moro, F.; Lewis, W.; Blake, A. J.; Liddle, S. T. Chem. - Eur. J. 2011, 17, 6909 6912 DOI: 10.1002/chem.201100682
  14. 14
    Patel, D.; King, D. M.; Gardner, B. M.; McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T. Chem. Commun. 2011, 47, 295 297 DOI: 10.1039/C0CC01387K
  15. 15
    Fortier, S.; Walensky, J. R.; Wu, G.; Hayton, T. W. J. Am. Chem. Soc. 2011, 133, 11732 11743 DOI: 10.1021/ja204151v
  16. 16
    Arnold, P. L.; McMaster, J.; Liddle, S. T. Chem. Commun. 2009, 818 820 DOI: 10.1039/B819072K
  17. 17
    Roussel, P.; Scott, P. J. Am. Chem. Soc. 1998, 120, 1070 1071 DOI: 10.1021/ja972933+
  18. 18
    Ritchey, J. M.; Zozulin, A. J.; Wrobleski, D. A.; Ryan, R. R.; Wasserman, H. J.; Moody, D. C.; Paine, R. T. J. Am. Chem. Soc. 1985, 107, 501 503 DOI: 10.1021/ja00288a039
  19. 19
    Hay, P. J.; Ryan, R. R.; Salazar, K. V.; Wrobleski, D. A.; Sattelberger, A. P. J. Am. Chem. Soc. 1986, 108, 313 315 DOI: 10.1021/ja00262a031
  20. 20
    Nakajima, Y.; Hou, Z. Organometallics 2009, 28, 6861 6870 DOI: 10.1021/om900702y
  21. 21
    Völcker, F.; Mück, F. M.; Vogiatzis, K. D.; Fink, K.; Roesky, P. W. Chem. Commun. 2015, 51, 11761 11764 DOI: 10.1039/C5CC03944D
  22. 22
    Van der Sluys, W. G.; Burns, C. J.; Huffman, J. C.; Sattelberger, A. P. J. Am. Chem. Soc. 1988, 110, 5924 5925 DOI: 10.1021/ja00225a067
  23. 23
    Van der Sluys, W. G.; Sattelberger, A. P. Inorg. Chem. 1989, 28 (12) 2496 2498 DOI: 10.1021/ic00311a053
  24. 24
    Avens, L. R.; Barnhart, D. M.; Burns, C. J.; McKee, S. D.; Smith, W. H. Inorg. Chem. 1994, 33, 4245 4254 DOI: 10.1021/ic00097a010
  25. 25
    McKee, S. D.; Burns, C. J.; Avens, L. R. Inorg. Chem. 1998, 37, 4040 4045 DOI: 10.1021/ic9803309
  26. 26
    Mansell, S. M.; Kaltsoyannis, N.; Arnold, P. L. J. Am. Chem. Soc. 2011, 133, 9036 9051 DOI: 10.1021/ja2019492
  27. 27
    Arnold, P. L.; Mansell, S. M.; Maron, L.; McKay, D. Nat. Chem. 2012, 4, 668 674 DOI: 10.1038/nchem.1392
  28. 28
    O’Grady, E.; Kaltsoyannis, N. Dalton Trans. 2002, 1233 1239 DOI: 10.1039/b109696f
  29. 29
    Kosog, B.; La Pierre, H. S.; Heinemann, F. W.; Liddle, S. T.; Meyer, K. J. Am. Chem. Soc. 2012, 134, 5284 5289 DOI: 10.1021/ja211618v
  30. 30
    Lewis, A. J.; Mullane, K. C.; Nakamaru-Ogiso, E.; Carroll, P. J.; Schelter, E. J. Inorg. Chem. 2014, 53, 6944 6953 DOI: 10.1021/ic500833s
  31. 31
    La Pierre, H. S.; Rosenzweig, M.; Kosog, B.; Hauser, C.; Heinemann, F. W.; Liddle, S. T.; Meyer, K. Chem. Commun. 2015, 51, 16671 16674 DOI: 10.1039/C5CC07211E
  32. 32
    Klein, H.-F.; Brand, A.; Cordier, G. Z. Naturforsch., B: J. Chem. Sci. 1998, 53, 307 314 DOI: 10.1515/znb-1998-0309
  33. 33
    Edwards, P. G.; Andersen, R. A.; Zalkin, A. J. Am. Chem. Soc. 1981, 103, 7792 7794 DOI: 10.1021/ja00416a019
  34. 34
    Newell, B. S.; Schwaab, T. C.; Shores, M. P. Inorg. Chem. 2011, 50, 12108 12115 DOI: 10.1021/ic201670z
  35. 35
    Shannon, R. D. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1976, 32, 751 767 DOI: 10.1107/S0567739476001551
  36. 36
    Tolman, C. A.; Seidel, W. C.; Gerlach, D. H. J. Am. Chem. Soc. 1972, 94, 2669 2676 DOI: 10.1021/ja00763a019
  37. 37
    Sen, A.; Halpern, J. Inorg. Chem. 1980, 19, 1073 1075 DOI: 10.1021/ic50206a061
  38. 38
    Garrou, P. E. Chem. Rev. 1981, 81, 229 266 DOI: 10.1021/cr00043a002
  39. 39

    It proved impossible to converge both the electronic and geometric structures of 3–Pt; hence, data are available only for the 3d and 4d systems.

  40. 40
    Gaunt, A. J.; Reilly, S. D.; Enriquez, A. E.; Scott, B. L.; Ibers, J. A.; Sekar, P.; Ingram, K. I. M.; Kaltsoyannis, N.; Neu, M. P. Inorg. Chem. 2008, 47, 29 41 DOI: 10.1021/ic701618a
  41. 41
    Tassell, M. J.; Kaltsoyannis, N. Dalton Trans. 2010, 39, 6719 DOI: 10.1039/c000704h
  42. 42
    Kirker, I.; Kaltsoyannis, N. Dalton Trans. 2011, 40, 124 131 DOI: 10.1039/C0DT01018A
  43. 43
    Arnold, P. L.; Prescimone, A.; Farnaby, J. H.; Mansell, S. M.; Parsons, S.; Kaltsoyannis, N. Angew. Chem., Int. Ed. 2015, 54, 6735 6739 DOI: 10.1002/anie.201411250
  44. 44
    Bianchi, R.; Gervasio, G.; Marabello, D. Chem. Commun. 1998, 1535 1536 DOI: 10.1039/a802386g
  45. 45
    Bianchi, R.; Gervasio, G.; Marabello, D. Inorg. Chem. 2000, 39, 2360 2366 DOI: 10.1021/ic991316e
  46. 46
    Bianchi, R.; Gervasio, G.; Marabello, D. C. R. Chim. 2005, 8, 1392 1399 DOI: 10.1016/j.crci.2004.12.015
  47. 47
    Farrugia, L. J.; Mallinson, P. R.; Stewart, B. Acta Crystallogr., Sect. B: Struct. Sci. 2003, 59, 234 247 DOI: 10.1107/S0108768103000892
  48. 48
    Gervasio, G.; Bianchi, R.; Marabello, D. Chem. Phys. Lett. 2004, 387, 481 484 DOI: 10.1016/j.cplett.2004.02.043
  49. 49
    Gervasio, G.; Bianchi, R.; Marabello, D. Chem. Phys. Lett. 2005, 407, 18 22 DOI: 10.1016/j.cplett.2005.03.047
  50. 50
    Macchi, P.; Garlaschelli, L.; Martinengo, S.; Sironi, A. J. Am. Chem. Soc. 1999, 121, 10428 10429 DOI: 10.1021/ja9918977
  51. 51
    Macchi, P.; Proserpio, D. M.; Sironi, A. J. Am. Chem. Soc. 1998, 120, 13429 13435 DOI: 10.1021/ja982903m
  52. 52
    Niskanen, M.; Hirva, P.; Haukka, M. J. Chem. Theory Comput. 2009, 5, 1084 1090 DOI: 10.1021/ct800407h
  53. 53
    Niskanen, M.; Hirva, P.; Haukka, M. J. Mol. Model. 2012, 18, 1961 1968 DOI: 10.1007/s00894-011-1225-y
  54. 54
    Ponec, R.; Yuzhakov, G.; Sundberg, M. R. J. Comput. Chem. 2005, 26, 447 454 DOI: 10.1002/jcc.20182
  55. 55
    Sadjadi, S.; Matta, C. F.; Lemke, K. H.; Hamilton, I. P. J. Phys. Chem. A 2011, 115, 13024 13035 DOI: 10.1021/jp204993r
  56. 56
    Blake, M. P.; Kaltsoyannis, N.; Mountford, P. J. Am. Chem. Soc. 2011, 133, 15358 15361 DOI: 10.1021/ja207487j
  57. 57
    Mountain, A. R. E.; Kaltsoyannis, N. Dalton Trans. 2013, 42, 13477 DOI: 10.1039/c3dt51337h
  58. 58
    Matta, C. F.; Boyd, R. J. In The Quantum Theory of Atoms in Molecules; Matta, C. F.; Boyd, R. J., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007; pp 1 34.
  59. 59
    Cavigliasso, G.; Kaltsoyannis, N. Inorg. Chem. 2006, 45, 6828 6839 DOI: 10.1021/ic060777e
  60. 60
    Emsley, J. The Elements, 2nd ed.; Clarendon Press, Oxford University Press: Oxford, 1991.
  61. 61
    Denninger, U.; Schneider, J. J.; Wilke, G.; Goddard, R.; Krüger, C. Inorg. Chim. Acta 1993, 213, 129 140 DOI: 10.1016/S0020-1693(00)83823-2
  62. 62
    Heinicke, J.; Dal, A.; Klein, H.-F.; Hetche, O.; Flörke, U.; Haupt, H.-J. Z. Naturforsch., B: J. Chem. Sci. 1999, 54, 1235 1243 DOI: 10.1515/znb-1999-1004
  63. 63
    Zi, G.; Jia, L.; Werkema, E. L.; Walter, M. D.; Gottfriedsen, J. P.; Andersen, R. A. Organometallics 2005, 24, 4251 4264 DOI: 10.1021/om050406q
  64. 64
    Fortier, S.; Kaltsoyannis, N.; Wu, G.; Hayton, T. W. J. Am. Chem. Soc. 2011, 133, 14224 14227 DOI: 10.1021/ja206083p
  65. 65
    Brown, J. L.; Mokhtarzadeh, C. C.; Lever, J. M.; Wu, G.; Hayton, T. W. Inorg. Chem. 2011, 50, 5105 5112 DOI: 10.1021/ic200387n
  66. 66
    Arnold, P. L.; Jones, G. M.; Odoh, S. O.; Schreckenbach, G.; Magnani, N.; Love, J. B. Nat. Chem. 2012, 4, 221 227 DOI: 10.1038/nchem.1270
  67. 67
    Siffredi, G.; Berthet, J. C.; Thuery, P. Private communication to the Cambridge Structural Database, deposition number CCDC 958346, 2013.
  68. 68
    Jones, G. M.; Arnold, P. L.; Love, J. B. Chem. - Eur. J. 2013, 19, 10287 10294 DOI: 10.1002/chem.201301067
  69. 69
    Crabtree, R. H. The Organometallic Chemistry of the Transition Metals, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2005.
  70. 70
    Hildenbrand, D. L.; Lau, K. H. Pure Appl. Chem. 1992, 64, 87 92 DOI: 10.1351/pac199264010087
  71. 71
    Kindra, D. R.; Evans, W. J. Chem. Rev. 2014, 114, 8865 8882 DOI: 10.1021/cr500242w
  72. 72
    Kosog, B.; La Pierre, H. S.; Denecke, M. A.; Heinemann, F. W.; Meyer, K. Inorg. Chem. 2012, 51, 7940 7944 DOI: 10.1021/ic3011234
  73. 73
    King, D. M.; Tuna, F.; McInnes, E. J. L.; McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T. Nat. Chem. 2013, 5, 482 488 DOI: 10.1038/nchem.1642
  74. 74
    Edelstein, N. M.; Lander, G. H. In The Chemistry of Actinides and Transactinide Elements; Morss, L. R.; Edelstein, N. M.; Fuger, J., Eds.; Springer: The Netherlands, 2010; Vols. 1–6, p 2225.
  75. 75
    Natrajan, L. S. Coord. Chem. Rev. 2012, 256, 1583 1603 DOI: 10.1016/j.ccr.2012.03.029
  76. 76
    Schmidt, A.-C.; Heinemann, F. W.; Lukens, W. W.; Meyer, K. J. Am. Chem. Soc. 2014, 136, 11980 11993 DOI: 10.1021/ja504528n
  77. 77
    Franke, S. M.; Rosenzweig, M. W.; Heinemann, F. W.; Meyer, K. Chem. Sci. 2015, 6, 275 282 DOI: 10.1039/C4SC02602K
  78. 78
    Arnold, P. L. Chem. Commun. 2011, 47, 9005 DOI: 10.1039/c1cc10834d
  79. 79
    Vallat, A.; Laviron, E.; Dormond, A. J. Chem. Soc., Dalton Trans. 1990, 921 924 DOI: 10.1039/dt9900000921
  80. 80
    Morris, D. E.; Da Re, R. E.; Jantunen, K. C.; Castro-Rodriguez, I.; Kiplinger, J. L. Organometallics 2004, 23, 5142 5153 DOI: 10.1021/om049634v
  81. 81
    Dessy, R. E.; Weissman, P. M.; Pohl, R. L. J. Am. Chem. Soc. 1966, 88, 5117 5121 DOI: 10.1021/ja00974a014
  82. 82
    Evans, D. F. J. Chem. Soc. 1959, 2003 2005 DOI: 10.1039/jr9590002003
  83. 83
    Sur, S. K. J. Magn. Reson. 1989, 82, 169 173
  84. 84
    Schubert, E. M. J. Chem. Educ. 1992, 69, 62 DOI: 10.1021/ed069p62.1
  85. 85
    Piguet, C. J. Chem. Educ. 1997, 74, 815 816 DOI: 10.1021/ed074p815
  86. 86
    Ruiz, J.; Astruc, D. C. R. Acad. Sci., Ser. IIc: Chim. 1998, 1, 21 27 DOI: 10.1016/S1251-8069(97)86255-0
  87. 87
    Monreal, M. J.; Thomson, R. K.; Cantat, T.; Travia, N. E.; Scott, B. L.; Kiplinger, J. L. Organometallics 2011, 30, 2031 2038 DOI: 10.1021/om200093q
  88. 88
    Bochmann, M.; Jaggar, A. J.; Wilson, L. M.; Hursthouse, M. B.; Motevalli, M. Polyhedron 1989, 8, 1838 1843 DOI: 10.1016/S0277-5387(00)80665-8
  89. 89
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Olgairo, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.
  90. 90
    ADF2014; SCM: Amsterdam, The Netherlands; http://www.scm.com.
  91. 91
    te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. J. Comput. Chem. 2001, 22, 931 967 DOI: 10.1002/jcc.1056
  92. 92
    Fonseca Guerra, C.; Snijders, J. G.; te Velde, G.; Baerends, E. J. Theor. Chem. Acc. 1998, 99, 391 403 DOI: 10.1007/s002140050353
  93. 93
    Cao, X.; Dolg, M. J. Mol. Struct.: THEOCHEM 2004, 673, 203 209 DOI: 10.1016/j.theochem.2003.12.015
  94. 94
    Bergner, A.; Dolg, M.; Küchle, W.; Stoll, H.; Preuß, H. Mol. Phys. 1993, 80, 1431 1441 DOI: 10.1080/00268979300103121
  95. 95
    Martin, J. M. L.; Sundermann, A. J. Chem. Phys. 2001, 114, 3408 DOI: 10.1063/1.1337864
  96. 96
    Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Theor. Chim. Acta 1990, 77, 123 141 DOI: 10.1007/BF01114537
  97. 97
    Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Landis, C. R.; Weinhold, F.NBO 6.0; Theoretical Chemistry Institute, University of Wisconsin: Madison,WI, 2013.
  98. 98
    Keith, T. A.AIMAll, version 14.11.23; http://aim.tkgristmill.com.
  99. 99
    Mayer, I. Chem. Phys. Lett. 1983, 97, 270 274 DOI: 10.1016/0009-2614(83)80005-0
  100. 100
    Gopinathan, M. S.; Jug, K. Theor. Chim. Acta 1983, 63, 497 509 DOI: 10.1007/BF02394809

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 91 publications.

  1. Dylan M. T. Eralie, John Ducilon, Anne E. V. Gorden. Uranium Chemistry: Identifying the Next Frontiers. Inorganic Chemistry 2025, 64 (2) , 767-784. https://doi.org/10.1021/acs.inorgchem.4c02173
  2. Weiming Sheng, Thayalan Rajeshkumar, Laurent Maron, Congqing Zhu. Heterometallic Clusters with Thorium–Rhodium Bonds Supported by Double-Layer Nitrogen–Phosphorus Ligands. Organometallics 2025, 44 (1) , 354-362. https://doi.org/10.1021/acs.organomet.4c00488
  3. Weiming Sheng, Thayalan Rajeshkumar, Yue Zhao, Laurent Maron, Congqing Zhu. Electronic Delocalization and σ-Aromaticity in Heterometallic Cluster with Multiple Thorium–Palladium Bonds. Journal of the American Chemical Society 2024, 146 (18) , 12790-12798. https://doi.org/10.1021/jacs.4c03058
  4. Cory J. Windorff, Conrad A. P. Goodwin, Joseph M. Sperling, Thomas E. Albrecht-Schönzart, Zhuanling Bai, William J. Evans, Zachary K. Huffman, Renaud Jeannin, Brian N. Long, David P. Mills, Todd N. Poe, Joseph W. Ziller. Stabilization of Pu(IV) in PuBr4(OPCy3)2 and Comparisons with Structurally Similar ThX4(OPR3)2 (R = Cy, Ph) Molecules. Inorganic Chemistry 2023, 62 (44) , 18136-18149. https://doi.org/10.1021/acs.inorgchem.3c02575
  5. Alexandra Haidinger, Christina I. Dilly, Roland C. Fischer, Dennis Svatunek, Johanna M. Uher, Johann A. Hlina. To Bond or Not to Bond: Metal–Metal Interaction in Heterobimetallic Rare-Earth Metal–Silver Complexes. Inorganic Chemistry 2023, 62 (43) , 17713-17720. https://doi.org/10.1021/acs.inorgchem.3c02377
  6. Xiong Sun, Jinghang Shen, Thayalan Rajeshkumar, Laurent Maron, Congqing Zhu. Heterometallic Clusters with Cerium–Transition-Metal Bonding Supported by Nitrogen–Phosphorus Ligands. Inorganic Chemistry 2023, 62 (39) , 16077-16083. https://doi.org/10.1021/acs.inorgchem.3c02259
  7. Ayaki Sunaga, Chihiro Tabata, Tomoo Yamamura. Linearity and Chemical Bond of UO22+ Revisited: A Comparison Study with UN2 and UE22+ (E = S, Se, and Te) Based on Relativistic Calculations. The Journal of Physical Chemistry A 2022, 126 (46) , 8606-8617. https://doi.org/10.1021/acs.jpca.2c05216
  8. Qin Zhu, Wei Fang, Laurent Maron, Congqing Zhu. Heterometallic Clusters with Uranium–Metal Bonds Supported by Double-Layer Nitrogen–Phosphorus Ligands. Accounts of Chemical Research 2022, 55 (12) , 1718-1730. https://doi.org/10.1021/acs.accounts.2c00180
  9. Xiao-Wang Chi, Qun-Yan Wu, Cong-Zhi Wang, Ji-Pan Yu, Kang Liu, Ru-An Chi, Zhi-Fang Chai, Wei-Qun Shi. A Theoretical Study of Unsupported Uranium–Ruthenium Bonds Based on Tripodal Ligands. Organometallics 2022, 41 (11) , 1304-1313. https://doi.org/10.1021/acs.organomet.2c00024
  10. Zi-Rong Ye, Qun-Yan Wu, Cong-Zhi Wang, Jian-Hui Lan, Zhi-Fang Chai, Hong-Qing Wang, Wei-Qun Shi. Theoretical Insights into the Selective Separation of Am(III)/Eu(III) Using Hydrophilic Triazolyl-Based Ligands. Inorganic Chemistry 2022, 61 (16) , 6110-6119. https://doi.org/10.1021/acs.inorgchem.2c00232
  11. Alon Chapovetsky, Prajay Patel, Cong Liu, Alfred P. Sattelberger, David M. Kaphan, Massimiliano Delferro. Electrochemical Investigation of Low-Valent Multiply M≡M Bonded Group VI Dimers: A Standard Chemical Reduction Leads to an Unexpected Product. Organometallics 2020, 39 (24) , 4430-4436. https://doi.org/10.1021/acs.organomet.0c00533
  12. Xiaoqing Xin, Iskander Douair, Yue Zhao, Shuao Wang, Laurent Maron, Congqing Zhu. Dinitrogen Cleavage by a Heterometallic Cluster Featuring Multiple Uranium–Rhodium Bonds. Journal of the American Chemical Society 2020, 142 (35) , 15004-15011. https://doi.org/10.1021/jacs.0c05788
  13. Alexander J. Ayres, Ashley J. Wooles, Markus Zegke, Floriana Tuna, Stephen T. Liddle. Preparation of Heterobimetallic Ketimido-Actinide-Molybdenum Complexes. Inorganic Chemistry 2019, 58 (19) , 13077-13089. https://doi.org/10.1021/acs.inorgchem.9b01993
  14. Raza ullah shah Bacha, Yan-Ting Bi, Li-Chun Xuan, Qing-Jiang Pan. Inverse Trans Influence in Low-Valence Actinide–Group 10 Metal Complexes of Phosphinoaryl Oxides: A Theoretical Study via Tuning Metals and Donor Ligands. Inorganic Chemistry 2019, 58 (15) , 10028-10037. https://doi.org/10.1021/acs.inorgchem.9b01193
  15. Prachi Sharma, Dale R. Pahls, Bianca L. Ramirez, Connie C. Lu, Laura Gagliardi. Multiple Bonds in Uranium–Transition Metal Complexes. Inorganic Chemistry 2019, 58 (15) , 10139-10147. https://doi.org/10.1021/acs.inorgchem.9b01264
  16. Jun-Bo Lu, Xue-Lu Ma, Jia-Qi Wang, Ya-Fei Jiang, Yong Li, Han-Shi Hu, Hai Xiao, Jun Li. The df–d Dative Bonding in a Uranium–Cobalt Heterobimetallic Complex for Efficient Nitrogen Fixation. Inorganic Chemistry 2019, 58 (11) , 7433-7439. https://doi.org/10.1021/acs.inorgchem.9b00598
  17. Xiao-Wang Chi, Qun-Yan Wu, Jian-Hui Lan, Cong-Zhi Wang, Qin Zhang, Zhi-Fang Chai, Wei-Qun Shi. A Theoretical Study on Divalent Heavier Group 14 Complexes as Promising Donor Ligands for Building Uranium–Metal Bonds. Organometallics 2019, 38 (9) , 1963-1972. https://doi.org/10.1021/acs.organomet.9b00059
  18. Yan-Ting Bi, Li Li, Yuan-Ru Guo, Qing-Jiang Pan. Heterobimetallic Uranium–Nickel/Palladium/Platinum Complexes of Phosphinoaryl Oxide Ligands: A Theoretical Probe for Metal–Metal Bonding and Electronic Spectroscopy. Inorganic Chemistry 2019, 58 (2) , 1290-1300. https://doi.org/10.1021/acs.inorgchem.8b02787
  19. Marissa Ringgold, David Rehe, Peter Hrobárik, Anna Y. Kornienko, Thomas J. Emge, John G. Brennan. Thorium Cubanes–Synthesis, Solid-State and Solution Structures, Thermolysis, and Chalcogen Exchange Reactions. Inorganic Chemistry 2018, 57 (12) , 7129-7141. https://doi.org/10.1021/acs.inorgchem.8b00836
  20. Jun-Bo Lu, Xue-Lu Ma, Jia-Qi Wang, Jin-Cheng Liu, Hai Xiao, Jun Li. Efficient Nitrogen Fixation via a Redox-Flexible Single-Iron Site with Reverse-Dative Iron → Boron σ Bonding. The Journal of Physical Chemistry A 2018, 122 (18) , 4530-4537. https://doi.org/10.1021/acs.jpca.8b02089
  21. Skye Fortier, J. Rolando Aguilar-Calderón, Bess Vlaisavljevich, Alejandro J. Metta-Magaña, Alan G. Goos, and Cristian E. Botez . An N-Tethered Uranium(III) Arene Complex and the Synthesis of an Unsupported U–Fe Bond. Organometallics 2017, 36 (23) , 4591-4599. https://doi.org/10.1021/acs.organomet.7b00429
  22. Tingting Liu, Huining Chai, Liandi Wang, and Zhengkun Yu . Exceptionally Active Assembled Dinuclear Ruthenium(II)-NNN Complex Catalysts for Transfer Hydrogenation of Ketones. Organometallics 2017, 36 (15) , 2914-2921. https://doi.org/10.1021/acs.organomet.7b00356
  23. John F. Berry and Connie C. Lu . Metal–Metal Bonds: From Fundamentals to Applications. Inorganic Chemistry 2017, 56 (14) , 7577-7581. https://doi.org/10.1021/acs.inorgchem.7b01330
  24. Justin N. Cross, Jing Su, Enrique R. Batista, Samantha K. Cary, William J. Evans, Stosh A. Kozimor, Veronika Mocko, Brian L. Scott, Benjamin W. Stein, Cory J. Windorff, and Ping Yang . Covalency in Americium(III) Hexachloride. Journal of the American Chemical Society 2017, 139 (25) , 8667-8677. https://doi.org/10.1021/jacs.7b03755
  25. Aditya L. Shinde, Priyanka Velmurugan, Akash K. Sahoo, Shanmugam Revathi, M. Meena, Preethi Raja, Moris S. Eisen, Tapas Ghatak. Chemistry of uranium and thorium complexes towards challenging transformation: A recent trends. Polyhedron 2025, 37 , 117428. https://doi.org/10.1016/j.poly.2025.117428
  26. Peng-Bo Jin, Qian-Cheng Luo, Gemma K. Gransbury, Richard E. P. Winpenny, David P. Mills, Yan-Zhen Zheng. Rare earth benzene tetraanion-bridged amidinate complexes. Chemical Science 2025, 16 (4) , 1907-1924. https://doi.org/10.1039/D4SC05982D
  27. Lisa Vondung. Insights Into the Uranium Phosphine Bonds in [UCp 3 (PR 3 )]: A Combined Molecular Orbital, QTAIM and EDA‐NOCV Study. European Journal of Inorganic Chemistry 2024, 27 (36) https://doi.org/10.1002/ejic.202400546
  28. Harsha S. Karnamkkott, Kartik Chandra Mondal. Nature of Metal–Metal Bond in Group‐V Dinuclear Metallaborane Compounds: Open‐Shell–Open‐Shell Vs Closed‐Shell–Closed‐Shell Interaction. European Journal of Inorganic Chemistry 2024, 27 (33) https://doi.org/10.1002/ejic.202400252
  29. Thomas E. Shaw, Zachary R. Jones, Sara L. Adelman, Nickolas H. Anderson, Eric G. Bowes, Eric D. Bauer, David Dan, Jan Klouda, Karah E. Knope, Stosh A. Kozimor, Molly M. MacInnes, Veronika Mocko, Francisca R. Rocha, Harrison D. Root, Benjamin W. Stein, Joe D. Thompson, Jennifer N. Wacker. PuCl 3 {CoCp[OP(OEt) 2 ] 3 }: transuranic elements entering the field of heterometallic molecular chemistry. Chemical Science 2024, 15 (32) , 12754-12764. https://doi.org/10.1039/D4SC01767F
  30. Wei Fang, Yafei Li, Tianze Zhang, Thayalan Rajeshkumar, Iker del Rosal, Yue Zhao, Tianwei Wang, Shuao Wang, Laurent Maron, Congqing Zhu. Oxidative Addition of E−H (E=C, N) Bonds to Transient Uranium(II) Centers. Angewandte Chemie International Edition 2024, 63 (32) https://doi.org/10.1002/anie.202407339
  31. Wei Fang, Yafei Li, Tianze Zhang, Thayalan Rajeshkumar, Iker del Rosal, Yue Zhao, Tianwei Wang, Shuao Wang, Laurent Maron, Congqing Zhu. Oxidative Addition of E−H (E=C, N) Bonds to Transient Uranium(II) Centers. Angewandte Chemie 2024, 136 (32) https://doi.org/10.1002/ange.202407339
  32. Matthias R. Steiner, Viatcheslav V. Jouikov, Roland C. Fischer, Johanna M. Uher, Isabel‐Maria Ramirez y Medina, Johann A. Hlina. Alkyne Cyclotrimerisation, Acyclic Oligomerisation, and Transfer Hydrogenation Catalysed by a Titanium(IV) Phosphinoaryloxide Complex and its Redox Chemistry. European Journal of Inorganic Chemistry 2024, 27 (19) https://doi.org/10.1002/ejic.202300791
  33. Christopher Z. Ye, Iker Del Rosal, Sheridon N. Kelly, I. Joseph Brackbill, Laurent Maron, Clément Camp, John Arnold. Photolysis-driven bond activation by thorium and uranium tetraosmate polyhydride complexes. Chemical Science 2024, 15 (25) , 9784-9792. https://doi.org/10.1039/D4SC02380C
  34. Jingzhen Du, Kevin Dollberg, John A. Seed, Ashley J. Wooles, Carsten von Hänisch, Stephen T. Liddle. Thorium(iv)–antimony complexes exhibiting single, double, and triple polar covalent metal–metal bonds. Nature Chemistry 2024, 16 (5) , 780-790. https://doi.org/10.1038/s41557-024-01448-6
  35. Matthias R Steiner, Max Schmallegger, Larissa Donner, Johann A Hlina, Christoph Marschner, Judith Baumgartner, Christian Slugovc. Using the phospha-Michael reaction for making phosphonium phenolate zwitterions. Beilstein Journal of Organic Chemistry 2024, 20 , 41-51. https://doi.org/10.3762/bjoc.20.6
  36. Kang Liu, Xiaowang Chi, Yan Guo, Kongqiu Hu, Lei Mei, Jipan Yu, Weiqun Shi. Advancing the understanding of M–O covalency in isostructural M–OSiMe 3 (M = Ce, Th, U) complexes. New Journal of Chemistry 2024, 489 https://doi.org/10.1039/D4NJ03128H
  37. Robert J. Ward, Pokpong Rungthanaphatsophon, Patrick Huang, Steven P. Kelley, Justin R. Walensky. Cooperative dihydrogen activation with unsupported uranium–metal bonds and characterization of a terminal U( iv ) hydride. Chemical Science 2023, 14 (43) , 12255-12263. https://doi.org/10.1039/D3SC04857H
  38. Kai Li, Genfeng Feng, Stella Christodolou, Yue Zhao, Laurent Maron, Congqing Zhu. Heterotrimetallic clusters with U-Ni-Ge and U-Ni-Sn units. Polyhedron 2023, 243 , 116548. https://doi.org/10.1016/j.poly.2023.116548
  39. Kai Li, Jialu He, Yue Zhao, Congqing Zhu. Synthesis and reactivity of a uranium( iv ) complex supported by a monoanionic nitrogen–phosphorus ligand. Inorganic Chemistry Frontiers 2023, 10 (19) , 5622-5633. https://doi.org/10.1039/D3QI01447A
  40. Lihao Zheng, Yannick Roselló, Yingjing Yan, Yang‐Rong Yao, Xiaolin Fan, Josep M. Poblet, Antonio Rodríguez‐Fortea, Ning Chen. ScY @ C 3 v (8)‐ C 82 : Metal‐Metal σ 2 Bond in Mixed Rare‐Earth Di‐metallofullerenes †. Chinese Journal of Chemistry 2023, 41 (15) , 1809-1814. https://doi.org/10.1002/cjoc.202300045
  41. Jinghang Shen, Thayalan Rajeshkumar, Genfeng Feng, Yue Zhao, Shuao Wang, Laurent Maron, Congqing Zhu. Complexes Featuring a cis ‐[MUM] Core (M=Rh, Ir): A New Route to Uranium‐Metal Multiple Bonds. Angewandte Chemie 2023, 135 (21) https://doi.org/10.1002/ange.202303379
  42. Jinghang Shen, Thayalan Rajeshkumar, Genfeng Feng, Yue Zhao, Shuao Wang, Laurent Maron, Congqing Zhu. Complexes Featuring a cis ‐[MUM] Core (M=Rh, Ir): A New Route to Uranium‐Metal Multiple Bonds. Angewandte Chemie International Edition 2023, 62 (21) https://doi.org/10.1002/anie.202303379
  43. Valeriu Cemortan, Thomas Simler, Jules Moutet, Arnaud Jaoul, Carine Clavaguéra, Grégory Nocton. Structure and bonding patterns in heterometallic organometallics with linear Ln–Pd–Ln motifs. Chemical Science 2023, 14 (10) , 2676-2685. https://doi.org/10.1039/D2SC06933D
  44. Christopher Z. Ye, Iker Del Rosal, Michael A. Boreen, Erik T. Ouellette, Dominic R. Russo, Laurent Maron, John Arnold, Clément Camp. A versatile strategy for the formation of hydride-bridged actinide–iridium multimetallics. Chemical Science 2023, 14 (4) , 861-868. https://doi.org/10.1039/D2SC04903A
  45. Wei Fang, Laurent Maron, Congqing Zhu. Recent advances in f-block metal-metal bonds. 2023, 1-54. https://doi.org/10.1016/bs.hpcre.2023.01.001
  46. Wei Su, Thayalan Rajeshkumar, Libo Xiang, Laurent Maron, Qing Ye. Facile Synthesis of Uranium Complexes with a Pendant Borane Lewis Acid and 1,2‐Insertion of CO into a U−N Bond. Angewandte Chemie 2022, 134 (51) https://doi.org/10.1002/ange.202212823
  47. Wei Su, Thayalan Rajeshkumar, Libo Xiang, Laurent Maron, Qing Ye. Facile Synthesis of Uranium Complexes with a Pendant Borane Lewis Acid and 1,2‐Insertion of CO into a U−N Bond. Angewandte Chemie International Edition 2022, 61 (51) https://doi.org/10.1002/anie.202212823
  48. Zhenhua Zhu, Jinkui Tang. Metal–metal bond in lanthanide single-molecule magnets. Chemical Society Reviews 2022, 51 (23) , 9469-9481. https://doi.org/10.1039/D2CS00516F
  49. Wei Fang, Qin Zhu, Congqing Zhu. Recent advances in heterometallic clusters with f-block metal–metal bonds: synthesis, reactivity and applications. Chemical Society Reviews 2022, 51 (20) , 8434-8449. https://doi.org/10.1039/D2CS00424K
  50. Qian-Cheng Luo, Ning Ge, Yuan-Qi Zhai, Teng-Bo Wang, Lin Sun, Qi Sun, Fanni Li, Zhongwen Ouyang, Zhen-Xing Wang, Yan-Zhen Zheng. A C,S bonded quasi-two-coordinate chromium( ii ) complex showing field-induced slow magnetic relaxation behaviour. Dalton Transactions 2022, 51 (24) , 9218-9222. https://doi.org/10.1039/D2DT01131J
  51. Raza ullah shah Bacha, Dong-Mei Su, Qing-Jiang Pan. Nitrogen reduction to ammonia triggered by heterobimetallic uranium-group 10 metal complexes of phosphinoaryl oxides: A relativistic DFT study. Molecular Catalysis 2022, 525 , 112345. https://doi.org/10.1016/j.mcat.2022.112345
  52. Penglong Wang, Iskander Douair, Yue Zhao, Rile Ge, Junhu Wang, Shuao Wang, Laurent Maron, Congqing Zhu. Selective hydroboration of terminal alkynes catalyzed by heterometallic clusters with uranium–metal triple bonds. Chem 2022, 8 (5) , 1361-1375. https://doi.org/10.1016/j.chempr.2022.03.005
  53. Jiaxin Zhuang, Roser Morales-Martínez, Jiangwei Zhang, Yaofeng Wang, Yang-Rong Yao, Cuiying Pei, Antonio Rodríguez-Fortea, Shuao Wang, Luis Echegoyen, Coen de Graaf, Josep M. Poblet, Ning Chen. Characterization of a strong covalent Th3+–Th3+ bond inside an Ih(7)-C80 fullerene cage. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-22659-2
  54. Michael T. Trinh, Justin C. Wedal, William J. Evans. Evaluating electrochemical accessibility of 4f n 5d 1 and 4f n +1 Ln( ii ) ions in (C 5 H 4 SiMe 3 ) 3 Ln and (C 5 Me 4 H) 3 Ln complexes. Dalton Transactions 2021, 50 (40) , 14384-14389. https://doi.org/10.1039/D1DT02427B
  55. Justin C. Wedal, Jeffrey M. Barlow, Joseph W. Ziller, Jenny Y. Yang, William J. Evans. Electrochemical studies of tris(cyclopentadienyl)thorium and uranium complexes in the +2, +3, and +4 oxidation states. Chemical Science 2021, 12 (24) , 8501-8511. https://doi.org/10.1039/D1SC01906F
  56. Joseph P. A. Ostrowski, Ashley J. Wooles, Stephen T. Liddle. Synthesis and Characterisation of Molecular Polarised-Covalent Thorium-Rhenium and -Ruthenium Bonds. Inorganics 2021, 9 (5) , 30. https://doi.org/10.3390/inorganics9050030
  57. Kortney Melancon, Thomas Cundari. Computational Studies of the Photophysical, Structural, and Catalytic Properties of Complex Chemical Systems. 2021https://doi.org/10.12794/metadc1808355
  58. R. Malcolm Charles, Timothy P. Brewster. H2 and carbon-heteroatom bond activation mediated by polarized heterobimetallic complexes. Coordination Chemistry Reviews 2021, 433 , 213765. https://doi.org/10.1016/j.ccr.2020.213765
  59. Qiuran Wang, Sam H. Brooks, Tianchang Liu, Neil C. Tomson. Tuning metal–metal interactions for cooperative small molecule activation. Chemical Communications 2021, 57 (23) , 2839-2853. https://doi.org/10.1039/D0CC07721F
  60. Sascha T. Löffler, Karsten Meyer. Actinides. 2021, 471-521. https://doi.org/10.1016/B978-0-12-409547-2.14754-7
  61. Genfeng Feng, Karl N. McCabe, Shuao Wang, Laurent Maron, Congqing Zhu. Construction of heterometallic clusters with multiple uranium–metal bonds by using dianionic nitrogen–phosphorus ligands. Chemical Science 2020, 11 (29) , 7585-7592. https://doi.org/10.1039/D0SC00389A
  62. Takefumi Yoshida, Habib Md. Ahsan, Hai-Tao Zhang, David Chukwuma Izuogu, Hitoshi Abe, Hiroyoshi Ohtsu, Tadashi Yamaguchi, Brian K. Breedlove, Alex J. W. Thom, Masahiro Yamashita. Ionic-caged heterometallic bismuth–platinum complex exhibiting electrocatalytic CO 2 reduction. Dalton Transactions 2020, 49 (8) , 2652-2660. https://doi.org/10.1039/C9DT04817K
  63. Xiaoqing Xin, Congqing Zhu. Isolation of heterometallic cerium( iii ) complexes with a multidentate nitrogen–phosphorus ligand. Dalton Transactions 2020, 49 (3) , 603-607. https://doi.org/10.1039/C9DT04555D
  64. Peng Cui, Chunyan Xiong, Jun Du, Zeming Huang, Sijun Xie, Hua Wang, Shuangliu Zhou, Huayi Fang, Shaowu Wang. Heterobimetallic scandium–group 10 metal complexes with LM → Sc (LM = Ni, Pd, Pt) dative bonds. Dalton Transactions 2020, 49 (1) , 124-130. https://doi.org/10.1039/C9DT04369A
  65. Genfeng Feng, Mingxing Zhang, Penglong Wang, Shuao Wang, Laurent Maron, Congqing Zhu. Identification of a uranium–rhodium triple bond in a heterometallic cluster. Proceedings of the National Academy of Sciences 2019, 116 (36) , 17654-17658. https://doi.org/10.1073/pnas.1904895116
  66. Shu-Xian Hu, Erli Lu, Stephen T. Liddle. Prediction of high bond-order metal–metal multiple-bonds in heterobimetallic 3d–4f/5f complexes [TM–M{N( o -[NCH 2 P(CH 3 ) 2 ]C 6 H 4 ) 3 }] (TM = Cr, Mn, Fe; M = U, Np, Pu, and Nd). Dalton Transactions 2019, 48 (34) , 12867-12879. https://doi.org/10.1039/C9DT03086G
  67. Jun Du, Zeming Huang, Yanan Zhang, Shaowu Wang, Shuangliu Zhou, Huayi Fang, Peng Cui. A Scandium Metalloligand‐Based Heterobimetallic Pd−Sc Complex: Electronic Tuning Through a Very Short Pd→Sc Dative Bond. Chemistry – A European Journal 2019, 25 (43) , 10149-10155. https://doi.org/10.1002/chem.201901424
  68. Christopher J. Inman, F. Geoffrey N. Cloke. The experimental determination of Th( iv )/Th( iii ) redox potentials in organometallic thorium complexes. Dalton Transactions 2019, 48 (29) , 10782-10784. https://doi.org/10.1039/C9DT01553A
  69. Bianca L. Ramirez, Prachi Sharma, Reed J. Eisenhart, Laura Gagliardi, Connie C. Lu. Bimetallic nickel-lutetium complexes: tuning the properties and catalytic hydrogenation activity of the Ni site by varying the Lu coordination environment. Chemical Science 2019, 10 (11) , 3375-3384. https://doi.org/10.1039/C8SC04712J
  70. Genfeng Feng, Mingxing Zhang, Dong Shao, Xinyi Wang, Shuao Wang, Laurent Maron, Congqing Zhu. Transition-metal-bridged bimetallic clusters with multiple uranium–metal bonds. Nature Chemistry 2019, 11 (3) , 248-253. https://doi.org/10.1038/s41557-018-0195-4
  71. Stefan Knecht, Hans Jørgen Aa. Jensen, Trond Saue. Relativistic quantum chemical calculations show that the uranium molecule U2 has a quadruple bond. Nature Chemistry 2019, 11 (1) , 40-44. https://doi.org/10.1038/s41557-018-0158-9
  72. Alexander J. Ayres, Markus Zegke, Joseph P. A. Ostrowski, Floriana Tuna, Eric J. L. McInnes, Ashley J. Wooles, Stephen T. Liddle. Actinide-transition metal bonding in heterobimetallic uranium– and thorium–molybdenum paddlewheel complexes. Chemical Communications 2018, 54 (96) , 13515-13518. https://doi.org/10.1039/C8CC05268A
  73. David C. Izuogu, Takefumi Yoshida, Haitao Zhang, Goulven Cosquer, Keiichi Katoh, Shuhei Ogata, Miki Hasegawa, Hiroyuki Nojiri, Marko Damjanović, Wolfgang Wernsdorfer, Tomoya Uruga, Toshiaki Ina, Brian K. Breedlove, Masahiro Yamashita. Slow Magnetic Relaxation in a Palladium–Gadolinium Complex Induced by Electron Density Donation from the Palladium Ion. Chemistry – A European Journal 2018, 24 (37) , 9285-9294. https://doi.org/10.1002/chem.201800699
  74. Chun-Shuai Cao, Ying Shi, Hang Xu, Bin Zhao. Metal–metal bonded compounds with uncommon low oxidation state. Coordination Chemistry Reviews 2018, 365 , 122-144. https://doi.org/10.1016/j.ccr.2018.03.017
  75. Erli Lu, Ashley J. Wooles, Matthew Gregson, Philip J. Cobb, Stephen T. Liddle. A Very Short Uranium(IV)–Rhodium(I) Bond with Net Double‐Dative Bonding Character. Angewandte Chemie 2018, 130 (22) , 6697-6701. https://doi.org/10.1002/ange.201803493
  76. Erli Lu, Ashley J. Wooles, Matthew Gregson, Philip J. Cobb, Stephen T. Liddle. A Very Short Uranium(IV)–Rhodium(I) Bond with Net Double‐Dative Bonding Character. Angewandte Chemie International Edition 2018, 57 (22) , 6587-6591. https://doi.org/10.1002/anie.201803493
  77. Ravi Srivastava, Raphaël Moneuse, Julien Petit, Paul‐Alexis Pavard, Vincent Dardun, Madleen Rivat, Pauline Schiltz, Marius Solari, Erwann Jeanneau, Laurent Veyre, Chloé Thieuleux, Elsje Alessandra Quadrelli, Clément Camp. Early/Late Heterobimetallic Tantalum/Rhodium Species Assembled Through a Novel Bifunctional NHC‐OH Ligand. Chemistry – A European Journal 2018, 24 (17) , 4361-4370. https://doi.org/10.1002/chem.201705507
  78. Brooke M. Otten, Kortney M. Melançon, Mohammad A. Omary. All That Glitters Is Not Gold: A Computational Study of Covalent vs Metallophilic Bonding in Bimetallic Complexes of d 10 Metal Centers—A Tribute to Al Cotton on the Tenth Anniversary of His Passing. Comments on Inorganic Chemistry 2018, 38 (1) , 1-35. https://doi.org/10.1080/02603594.2018.1467315
  79. M. D. Straub, S. Hohloch, S. G. Minasian, J. Arnold. Homoleptic U( iii ) and U( iv ) amidate complexes. Dalton Transactions 2018, 47 (6) , 1772-1776. https://doi.org/10.1039/C7DT04813K
  80. Patrick Steinhoff, Ralf Steinbock, Anna Friedrich, Benjamin G. Schieweck, Christopher Cremer, Khai-Nghi Truong, Michael E. Tauchert. Synthesis and properties of heterobimetallic rhodium complexes featuring Li I , Cu I or Zn II as a Lewis acidic metalloligand. Dalton Transactions 2018, 47 (31) , 10439-10442. https://doi.org/10.1039/C8DT01267A
  81. Takefumi Yoshida, David Chukwuma Izougu, Daichi Iwasawa, Shuhei Ogata, Miki Hasegawa, Brian K. Breedlove, Goulven Cosquer, Wolfgang Wernsdorfer, Masahiro Yamashita. Multiple Magnetic Relaxation Pathways and Dual‐Emission Modulated by a Heterometallic Tb‐Pt Bonding Environment. Chemistry – A European Journal 2017, 23 (44) , 10527-10531. https://doi.org/10.1002/chem.201702989
  82. Athanassios C. Tsipis. RETRACTED: DFT challenge of intermetallic interactions: From metallophilicity and metallaromaticity to sextuple bonding. Coordination Chemistry Reviews 2017, 345 , 229-262. https://doi.org/10.1016/j.ccr.2016.08.005
  83. Chaoxian Chi, Jia‐Qi Wang, Hui Qu, Wan‐Lu Li, Luyan Meng, Mingbiao Luo, Jun Li, Mingfei Zhou. Preparation and Characterization of Uranium–Iron Triple‐Bonded UFe(CO) 3 − and OUFe(CO) 3 − Complexes. Angewandte Chemie 2017, 129 (24) , 7036-7040. https://doi.org/10.1002/ange.201703525
  84. Chaoxian Chi, Jia‐Qi Wang, Hui Qu, Wan‐Lu Li, Luyan Meng, Mingbiao Luo, Jun Li, Mingfei Zhou. Preparation and Characterization of Uranium–Iron Triple‐Bonded UFe(CO) 3 − and OUFe(CO) 3 − Complexes. Angewandte Chemie International Edition 2017, 56 (24) , 6932-6936. https://doi.org/10.1002/anie.201703525
  85. Ning Qu, Dong-Mei Su, Qun-Yan Wu, Wei-Qun Shi, Qing-Jiang Pan. Metal-metal multiple bond in low-valent diuranium porphyrazines and its correlation with metal oxidation state: A relativistic DFT study. Computational and Theoretical Chemistry 2017, 1108 , 29-39. https://doi.org/10.1016/j.comptc.2017.03.011
  86. J. A. Hlina, J. A. L. Wells, J. R. Pankhurst, Jason B. Love, P. L. Arnold. Uranium rhodium bonding in heterometallic complexes. Dalton Transactions 2017, 46 (17) , 5540-5545. https://doi.org/10.1039/C6DT04570G
  87. Han-Shi Hu, Nikolas Kaltsoyannis. The shortest Th–Th distance from a new type of quadruple bond. Physical Chemistry Chemical Physics 2017, 19 (7) , 5070-5076. https://doi.org/10.1039/C7CP00113D
  88. Clément Camp, Davide Toniolo, Julie Andrez, Jacques Pécaut, Marinella Mazzanti. A versatile route to homo- and hetero-bimetallic 5f–5f and 3d–5f complexes supported by a redox active ligand framework. Dalton Transactions 2017, 46 (34) , 11145-11148. https://doi.org/10.1039/C7DT01993A
  89. Fern Sinclair, Johann A. Hlina, Jordann A. L. Wells, Michael P. Shaver, Polly L. Arnold. Ring opening polymerisation of lactide with uranium( iv ) and cerium( iv ) phosphinoaryloxide complexes. Dalton Transactions 2017, 46 (33) , 10786-10790. https://doi.org/10.1039/C7DT02167D
  90. Pikun Yang, Enwei Zhou, Guohua Hou, Guofu Zi, Wanjian Ding, Marc D. Walter. Experimental and Computational Studies on the Formation of Thorium–Copper Heterobimetallics. Chemistry – A European Journal 2016, 22 (39) , 13845-13849. https://doi.org/10.1002/chem.201603519
  91. Zhong-Ping Cheng, Qun-Yan Wu, Yun-Hai Liu, Jian-Hui Lan, Cong-Zhi Wang, Zhi-Fang Chai, Wei-Qun Shi. The redox mechanism of Np VI with hydrazine: a DFT study. RSC Advances 2016, 6 (110) , 109045-109053. https://doi.org/10.1039/C6RA13339H

Journal of the American Chemical Society

Cite this: J. Am. Chem. Soc. 2016, 138, 10, 3333–3345
Click to copy citationCitation copied!
https://doi.org/10.1021/jacs.5b10698
Published March 4, 2016

Copyright © 2016 American Chemical Society. This publication is licensed under CC-BY.

Article Views

8951

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Scheme 1

    Scheme 1. Synthesis of Uranium(IV) Tris(aryloxide) Iodide 2

    Figure 1

    Figure 1. Molecular structure of 2. Solvent molecules and hydrogen atoms are omitted, and peripheral carbon atoms are depicted as a wireframe, for clarity. Thermal ellipsoids are drawn at 50% probability. Selected distances (Å) and angles (deg): U–I, 3.0414(6); U–O, 2.150(3)–2.162(3); U–P, 3.041(1)–3.056(1); O–U–P, 62.93(8)–63.14(8); O–U–I, 79.98(2)–82.43(2), 119.43(8)–124.53(8).

    Scheme 2

    Scheme 2. Preparation of the Bimetallic Uranium(IV) Complex 3–Ni, 3–Pd, and 3–Pt

    Figure 2

    Figure 2. Thermal ellipsoid plot for 3–Ni, 3–Pd, and 3–Pt. Solvent molecules and hydrogen atoms are omitted, and selected carbon atoms are depicted as a wireframe, for clarity. Thermal ellipsoids are drawn at 50% probability, and only one independent molecule out of nine in the asymmetric unit is shown. Selected bond distances (Å) and angles (deg) are shown in Table 1.

    Figure 3

    Figure 3. Stacked variable-temperature 1H NMR spectra of 3–Ni in toluene-d8 from 3.2 to 6.6 ppm over a temperature range of 300–370 K. Asterisks indicate resonances of phenyl hydrogen atoms observable at 300 and 370 K.

    Figure 4

    Figure 4. Simplified Newman projection illustrating the helicity of the bimetallic complexes.

    Figure 5

    Figure 5. Selected valence NLMOs of 3–Ni. Isosurface value = 0.04. Atom colors: iodine = purple, uranium = lighter blue, oxygen = red, nickel = darker blue, phosphorus = yellow, and carbon = gray. Hydrogen atoms are omitted for clarity.

    Scheme 3

    Scheme 3. Preparation of Bimetallic Trimethylsiloxide (4) and Fluoride Derivatives (5)

    Figure 6

    Figure 6. Thermal ellipsoid plots for 4 and 5. Solvent molecules and hydrogen atoms are omitted, and selected carbon atoms are depicted as a wireframe, for clarity. Thermal ellipsoids drawn at 50% probability. Selected bond distances (Å) and angles (deg) for 4: U1–Ni1, 2.556(1); U1–O1, 2.210(6); U1–O2, 2.188(6); U1–O3, 2.160(6); U1–O4, 2.093(6); Ni1–P1, 2.208(2); Ni1–P2, 2.213(3); Ni1–P3, 2.221(2); O4–U1–Ni1, 178.6(2); U1–Ni1–P1, 87.85(7); U1–Ni1–P2, 97.84(7); U1–Ni1–P3, 94.95(7); O1–U1–Ni1–P1, 37.4(2); O2–U1–Ni1–P2, 18.4(2); O3–U1–Ni1–P3, 28.1(2). For 5: U1–Ni1, 2.520(1); U1–F1, 2.091(5); U1–O1, 2.159(8); U1–O2, 2.174(6); U1–O3, 2.199(5); Ni1–P1, 2.225(3); Ni1–P2, 2.215(3); Ni1–P3, 2.212(2); F1–U1–Ni1, 178.8(2); U1–Ni1–P1, 96.16(7); U1–Ni1–P2, 91.56(7); U1–Ni1–P3, 91.82(7); O1–U1–Ni1–P1, 22.2(2); O2–U1–Ni1–P2, 30.1(2); O3–U1–Ni1–P3, 29.1(2).

    Figure 7

    Figure 7. Thermal ellipsoid plot for 3–Ni (left) and 4 (right) viewed along the U–Ni bond axes. Solvent molecules and hydrogen atoms are omitted and selected carbon atoms are depicted as a wireframe for clarity. Thermal ellipsoids are drawn at 50% probability.

    Figure 8

    Figure 8. Cyclic voltammograms for 3–Pt, 3–Pd, 3–Ni, 4, and 5. All measured in THF using 0.1 M [nBu4N][BPh4] as the supporting electrolyte, at a scan rate of 100 mV s–1. The currents are normalized against the peak height of reduction process I for 3–Pt.

  • References


    This article references 100 other publications.

    1. 1
      Cooper, B. G.; Napoline, J. W.; Thomas, C. M. Catal. Rev.: Sci. Eng. 2012, 54, 1 40 DOI: 10.1080/01614940.2012.619931
    2. 2
      Liddle, S. T.; Mills, D. P. Dalton Trans. 2009, 5592 5605 DOI: 10.1039/b904318g
    3. 3
      Patel, D.; Liddle, S. T. Rev. Inorg. Chem. 2012, 32, 1 22 DOI: 10.1515/revic.2012.0001
    4. 4
      Oelkers, B.; Butovskii, M. V.; Kempe, R. Chem. - Eur. J. 2012, 18, 13566 13579 DOI: 10.1002/chem.201200783
    5. 5
      Sternal, R. S.; Marks, T. J. Organometallics 1987, 6, 2621 2623 DOI: 10.1021/om00155a036
    6. 6
      Bucaille, A.; Le Borgne, T.; Ephritikhine, M.; Daran, J.-C. Organometallics 2000, 19, 4912 4914 DOI: 10.1021/om000483f
    7. 7
      Monreal, M. J.; Khan, S. I.; Kiplinger, J. L.; Diaconescu, P. L. Chem. Commun. 2011, 47, 9119 DOI: 10.1039/c1cc12367j
    8. 8
      Gardner, B. M.; Patel, D.; Cornish, A. D.; McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T. Chem. - Eur. J. 2011, 17, 11266 11273 DOI: 10.1002/chem.201101394
    9. 9
      Patel, D.; Moro, F.; McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T. Angew. Chem., Int. Ed. 2011, 50, 10388 10392 DOI: 10.1002/anie.201104110
    10. 10
      Napoline, J. W.; Kraft, S. J.; Matson, E. M.; Fanwick, P. E.; Bart, S. C.; Thomas, C. M. Inorg. Chem. 2013, 52, 12170 12177 DOI: 10.1021/ic402343q
    11. 11
      Ward, A. L.; Lukens, W. W.; Lu, C. C.; Arnold, J. J. Am. Chem. Soc. 2014, 136, 3647 3654 DOI: 10.1021/ja413192m
    12. 12
      Gardner, B. M.; McMaster, J.; Lewis, W.; Liddle, S. T. Chem. Commun. 2009, 2851 2853 DOI: 10.1039/b906554g
    13. 13
      Gardner, B. M.; McMaster, J.; Moro, F.; Lewis, W.; Blake, A. J.; Liddle, S. T. Chem. - Eur. J. 2011, 17, 6909 6912 DOI: 10.1002/chem.201100682
    14. 14
      Patel, D.; King, D. M.; Gardner, B. M.; McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T. Chem. Commun. 2011, 47, 295 297 DOI: 10.1039/C0CC01387K
    15. 15
      Fortier, S.; Walensky, J. R.; Wu, G.; Hayton, T. W. J. Am. Chem. Soc. 2011, 133, 11732 11743 DOI: 10.1021/ja204151v
    16. 16
      Arnold, P. L.; McMaster, J.; Liddle, S. T. Chem. Commun. 2009, 818 820 DOI: 10.1039/B819072K
    17. 17
      Roussel, P.; Scott, P. J. Am. Chem. Soc. 1998, 120, 1070 1071 DOI: 10.1021/ja972933+
    18. 18
      Ritchey, J. M.; Zozulin, A. J.; Wrobleski, D. A.; Ryan, R. R.; Wasserman, H. J.; Moody, D. C.; Paine, R. T. J. Am. Chem. Soc. 1985, 107, 501 503 DOI: 10.1021/ja00288a039
    19. 19
      Hay, P. J.; Ryan, R. R.; Salazar, K. V.; Wrobleski, D. A.; Sattelberger, A. P. J. Am. Chem. Soc. 1986, 108, 313 315 DOI: 10.1021/ja00262a031
    20. 20
      Nakajima, Y.; Hou, Z. Organometallics 2009, 28, 6861 6870 DOI: 10.1021/om900702y
    21. 21
      Völcker, F.; Mück, F. M.; Vogiatzis, K. D.; Fink, K.; Roesky, P. W. Chem. Commun. 2015, 51, 11761 11764 DOI: 10.1039/C5CC03944D
    22. 22
      Van der Sluys, W. G.; Burns, C. J.; Huffman, J. C.; Sattelberger, A. P. J. Am. Chem. Soc. 1988, 110, 5924 5925 DOI: 10.1021/ja00225a067
    23. 23
      Van der Sluys, W. G.; Sattelberger, A. P. Inorg. Chem. 1989, 28 (12) 2496 2498 DOI: 10.1021/ic00311a053
    24. 24
      Avens, L. R.; Barnhart, D. M.; Burns, C. J.; McKee, S. D.; Smith, W. H. Inorg. Chem. 1994, 33, 4245 4254 DOI: 10.1021/ic00097a010
    25. 25
      McKee, S. D.; Burns, C. J.; Avens, L. R. Inorg. Chem. 1998, 37, 4040 4045 DOI: 10.1021/ic9803309
    26. 26
      Mansell, S. M.; Kaltsoyannis, N.; Arnold, P. L. J. Am. Chem. Soc. 2011, 133, 9036 9051 DOI: 10.1021/ja2019492
    27. 27
      Arnold, P. L.; Mansell, S. M.; Maron, L.; McKay, D. Nat. Chem. 2012, 4, 668 674 DOI: 10.1038/nchem.1392
    28. 28
      O’Grady, E.; Kaltsoyannis, N. Dalton Trans. 2002, 1233 1239 DOI: 10.1039/b109696f
    29. 29
      Kosog, B.; La Pierre, H. S.; Heinemann, F. W.; Liddle, S. T.; Meyer, K. J. Am. Chem. Soc. 2012, 134, 5284 5289 DOI: 10.1021/ja211618v
    30. 30
      Lewis, A. J.; Mullane, K. C.; Nakamaru-Ogiso, E.; Carroll, P. J.; Schelter, E. J. Inorg. Chem. 2014, 53, 6944 6953 DOI: 10.1021/ic500833s
    31. 31
      La Pierre, H. S.; Rosenzweig, M.; Kosog, B.; Hauser, C.; Heinemann, F. W.; Liddle, S. T.; Meyer, K. Chem. Commun. 2015, 51, 16671 16674 DOI: 10.1039/C5CC07211E
    32. 32
      Klein, H.-F.; Brand, A.; Cordier, G. Z. Naturforsch., B: J. Chem. Sci. 1998, 53, 307 314 DOI: 10.1515/znb-1998-0309
    33. 33
      Edwards, P. G.; Andersen, R. A.; Zalkin, A. J. Am. Chem. Soc. 1981, 103, 7792 7794 DOI: 10.1021/ja00416a019
    34. 34
      Newell, B. S.; Schwaab, T. C.; Shores, M. P. Inorg. Chem. 2011, 50, 12108 12115 DOI: 10.1021/ic201670z
    35. 35
      Shannon, R. D. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1976, 32, 751 767 DOI: 10.1107/S0567739476001551
    36. 36
      Tolman, C. A.; Seidel, W. C.; Gerlach, D. H. J. Am. Chem. Soc. 1972, 94, 2669 2676 DOI: 10.1021/ja00763a019
    37. 37
      Sen, A.; Halpern, J. Inorg. Chem. 1980, 19, 1073 1075 DOI: 10.1021/ic50206a061
    38. 38
      Garrou, P. E. Chem. Rev. 1981, 81, 229 266 DOI: 10.1021/cr00043a002
    39. 39

      It proved impossible to converge both the electronic and geometric structures of 3–Pt; hence, data are available only for the 3d and 4d systems.

    40. 40
      Gaunt, A. J.; Reilly, S. D.; Enriquez, A. E.; Scott, B. L.; Ibers, J. A.; Sekar, P.; Ingram, K. I. M.; Kaltsoyannis, N.; Neu, M. P. Inorg. Chem. 2008, 47, 29 41 DOI: 10.1021/ic701618a
    41. 41
      Tassell, M. J.; Kaltsoyannis, N. Dalton Trans. 2010, 39, 6719 DOI: 10.1039/c000704h
    42. 42
      Kirker, I.; Kaltsoyannis, N. Dalton Trans. 2011, 40, 124 131 DOI: 10.1039/C0DT01018A
    43. 43
      Arnold, P. L.; Prescimone, A.; Farnaby, J. H.; Mansell, S. M.; Parsons, S.; Kaltsoyannis, N. Angew. Chem., Int. Ed. 2015, 54, 6735 6739 DOI: 10.1002/anie.201411250
    44. 44
      Bianchi, R.; Gervasio, G.; Marabello, D. Chem. Commun. 1998, 1535 1536 DOI: 10.1039/a802386g
    45. 45
      Bianchi, R.; Gervasio, G.; Marabello, D. Inorg. Chem. 2000, 39, 2360 2366 DOI: 10.1021/ic991316e
    46. 46
      Bianchi, R.; Gervasio, G.; Marabello, D. C. R. Chim. 2005, 8, 1392 1399 DOI: 10.1016/j.crci.2004.12.015
    47. 47
      Farrugia, L. J.; Mallinson, P. R.; Stewart, B. Acta Crystallogr., Sect. B: Struct. Sci. 2003, 59, 234 247 DOI: 10.1107/S0108768103000892
    48. 48
      Gervasio, G.; Bianchi, R.; Marabello, D. Chem. Phys. Lett. 2004, 387, 481 484 DOI: 10.1016/j.cplett.2004.02.043
    49. 49
      Gervasio, G.; Bianchi, R.; Marabello, D. Chem. Phys. Lett. 2005, 407, 18 22 DOI: 10.1016/j.cplett.2005.03.047
    50. 50
      Macchi, P.; Garlaschelli, L.; Martinengo, S.; Sironi, A. J. Am. Chem. Soc. 1999, 121, 10428 10429 DOI: 10.1021/ja9918977
    51. 51
      Macchi, P.; Proserpio, D. M.; Sironi, A. J. Am. Chem. Soc. 1998, 120, 13429 13435 DOI: 10.1021/ja982903m
    52. 52
      Niskanen, M.; Hirva, P.; Haukka, M. J. Chem. Theory Comput. 2009, 5, 1084 1090 DOI: 10.1021/ct800407h
    53. 53
      Niskanen, M.; Hirva, P.; Haukka, M. J. Mol. Model. 2012, 18, 1961 1968 DOI: 10.1007/s00894-011-1225-y
    54. 54
      Ponec, R.; Yuzhakov, G.; Sundberg, M. R. J. Comput. Chem. 2005, 26, 447 454 DOI: 10.1002/jcc.20182
    55. 55
      Sadjadi, S.; Matta, C. F.; Lemke, K. H.; Hamilton, I. P. J. Phys. Chem. A 2011, 115, 13024 13035 DOI: 10.1021/jp204993r
    56. 56
      Blake, M. P.; Kaltsoyannis, N.; Mountford, P. J. Am. Chem. Soc. 2011, 133, 15358 15361 DOI: 10.1021/ja207487j
    57. 57
      Mountain, A. R. E.; Kaltsoyannis, N. Dalton Trans. 2013, 42, 13477 DOI: 10.1039/c3dt51337h
    58. 58
      Matta, C. F.; Boyd, R. J. In The Quantum Theory of Atoms in Molecules; Matta, C. F.; Boyd, R. J., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007; pp 1 34.
    59. 59
      Cavigliasso, G.; Kaltsoyannis, N. Inorg. Chem. 2006, 45, 6828 6839 DOI: 10.1021/ic060777e
    60. 60
      Emsley, J. The Elements, 2nd ed.; Clarendon Press, Oxford University Press: Oxford, 1991.
    61. 61
      Denninger, U.; Schneider, J. J.; Wilke, G.; Goddard, R.; Krüger, C. Inorg. Chim. Acta 1993, 213, 129 140 DOI: 10.1016/S0020-1693(00)83823-2
    62. 62
      Heinicke, J.; Dal, A.; Klein, H.-F.; Hetche, O.; Flörke, U.; Haupt, H.-J. Z. Naturforsch., B: J. Chem. Sci. 1999, 54, 1235 1243 DOI: 10.1515/znb-1999-1004
    63. 63
      Zi, G.; Jia, L.; Werkema, E. L.; Walter, M. D.; Gottfriedsen, J. P.; Andersen, R. A. Organometallics 2005, 24, 4251 4264 DOI: 10.1021/om050406q
    64. 64
      Fortier, S.; Kaltsoyannis, N.; Wu, G.; Hayton, T. W. J. Am. Chem. Soc. 2011, 133, 14224 14227 DOI: 10.1021/ja206083p
    65. 65
      Brown, J. L.; Mokhtarzadeh, C. C.; Lever, J. M.; Wu, G.; Hayton, T. W. Inorg. Chem. 2011, 50, 5105 5112 DOI: 10.1021/ic200387n
    66. 66
      Arnold, P. L.; Jones, G. M.; Odoh, S. O.; Schreckenbach, G.; Magnani, N.; Love, J. B. Nat. Chem. 2012, 4, 221 227 DOI: 10.1038/nchem.1270
    67. 67
      Siffredi, G.; Berthet, J. C.; Thuery, P. Private communication to the Cambridge Structural Database, deposition number CCDC 958346, 2013.
    68. 68
      Jones, G. M.; Arnold, P. L.; Love, J. B. Chem. - Eur. J. 2013, 19, 10287 10294 DOI: 10.1002/chem.201301067
    69. 69
      Crabtree, R. H. The Organometallic Chemistry of the Transition Metals, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2005.
    70. 70
      Hildenbrand, D. L.; Lau, K. H. Pure Appl. Chem. 1992, 64, 87 92 DOI: 10.1351/pac199264010087
    71. 71
      Kindra, D. R.; Evans, W. J. Chem. Rev. 2014, 114, 8865 8882 DOI: 10.1021/cr500242w
    72. 72
      Kosog, B.; La Pierre, H. S.; Denecke, M. A.; Heinemann, F. W.; Meyer, K. Inorg. Chem. 2012, 51, 7940 7944 DOI: 10.1021/ic3011234
    73. 73
      King, D. M.; Tuna, F.; McInnes, E. J. L.; McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T. Nat. Chem. 2013, 5, 482 488 DOI: 10.1038/nchem.1642
    74. 74
      Edelstein, N. M.; Lander, G. H. In The Chemistry of Actinides and Transactinide Elements; Morss, L. R.; Edelstein, N. M.; Fuger, J., Eds.; Springer: The Netherlands, 2010; Vols. 1–6, p 2225.
    75. 75
      Natrajan, L. S. Coord. Chem. Rev. 2012, 256, 1583 1603 DOI: 10.1016/j.ccr.2012.03.029
    76. 76
      Schmidt, A.-C.; Heinemann, F. W.; Lukens, W. W.; Meyer, K. J. Am. Chem. Soc. 2014, 136, 11980 11993 DOI: 10.1021/ja504528n
    77. 77
      Franke, S. M.; Rosenzweig, M. W.; Heinemann, F. W.; Meyer, K. Chem. Sci. 2015, 6, 275 282 DOI: 10.1039/C4SC02602K
    78. 78
      Arnold, P. L. Chem. Commun. 2011, 47, 9005 DOI: 10.1039/c1cc10834d
    79. 79
      Vallat, A.; Laviron, E.; Dormond, A. J. Chem. Soc., Dalton Trans. 1990, 921 924 DOI: 10.1039/dt9900000921
    80. 80
      Morris, D. E.; Da Re, R. E.; Jantunen, K. C.; Castro-Rodriguez, I.; Kiplinger, J. L. Organometallics 2004, 23, 5142 5153 DOI: 10.1021/om049634v
    81. 81
      Dessy, R. E.; Weissman, P. M.; Pohl, R. L. J. Am. Chem. Soc. 1966, 88, 5117 5121 DOI: 10.1021/ja00974a014
    82. 82
      Evans, D. F. J. Chem. Soc. 1959, 2003 2005 DOI: 10.1039/jr9590002003
    83. 83
      Sur, S. K. J. Magn. Reson. 1989, 82, 169 173
    84. 84
      Schubert, E. M. J. Chem. Educ. 1992, 69, 62 DOI: 10.1021/ed069p62.1
    85. 85
      Piguet, C. J. Chem. Educ. 1997, 74, 815 816 DOI: 10.1021/ed074p815
    86. 86
      Ruiz, J.; Astruc, D. C. R. Acad. Sci., Ser. IIc: Chim. 1998, 1, 21 27 DOI: 10.1016/S1251-8069(97)86255-0
    87. 87
      Monreal, M. J.; Thomson, R. K.; Cantat, T.; Travia, N. E.; Scott, B. L.; Kiplinger, J. L. Organometallics 2011, 30, 2031 2038 DOI: 10.1021/om200093q
    88. 88
      Bochmann, M.; Jaggar, A. J.; Wilson, L. M.; Hursthouse, M. B.; Motevalli, M. Polyhedron 1989, 8, 1838 1843 DOI: 10.1016/S0277-5387(00)80665-8
    89. 89
      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Olgairo, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.
    90. 90
      ADF2014; SCM: Amsterdam, The Netherlands; http://www.scm.com.
    91. 91
      te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. J. Comput. Chem. 2001, 22, 931 967 DOI: 10.1002/jcc.1056
    92. 92
      Fonseca Guerra, C.; Snijders, J. G.; te Velde, G.; Baerends, E. J. Theor. Chem. Acc. 1998, 99, 391 403 DOI: 10.1007/s002140050353
    93. 93
      Cao, X.; Dolg, M. J. Mol. Struct.: THEOCHEM 2004, 673, 203 209 DOI: 10.1016/j.theochem.2003.12.015
    94. 94
      Bergner, A.; Dolg, M.; Küchle, W.; Stoll, H.; Preuß, H. Mol. Phys. 1993, 80, 1431 1441 DOI: 10.1080/00268979300103121
    95. 95
      Martin, J. M. L.; Sundermann, A. J. Chem. Phys. 2001, 114, 3408 DOI: 10.1063/1.1337864
    96. 96
      Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Theor. Chim. Acta 1990, 77, 123 141 DOI: 10.1007/BF01114537
    97. 97
      Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Landis, C. R.; Weinhold, F.NBO 6.0; Theoretical Chemistry Institute, University of Wisconsin: Madison,WI, 2013.
    98. 98
      Keith, T. A.AIMAll, version 14.11.23; http://aim.tkgristmill.com.
    99. 99
      Mayer, I. Chem. Phys. Lett. 1983, 97, 270 274 DOI: 10.1016/0009-2614(83)80005-0
    100. 100
      Gopinathan, M. S.; Jug, K. Theor. Chim. Acta 1983, 63, 497 509 DOI: 10.1007/BF02394809
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b10698. Crystallographic files were deposited at the Cambridge Crystallographic Data Centre (CCDC): 1430506 (2), 1430507 (3–Ni), 1430511 (3–Pd), 1430512 (3–Pt), 1430513 (4), 1438934 (5), and 1430514 (6). Open data files are available at DOI: 10.7488/ds/1351.

    • Crystallographic data, additional variable-temperature NMR spectra, additional synthetic data, including other reactivity studies, and solid-state structure details of all complexes (PDF).


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.