ACS Publications. Most Trusted. Most Cited. Most Read
Charge Transfer Stabilization of Late Transition Metal Oxide Nanoparticles on a Layered Niobate Support
My Activity

Figure 1Loading Img
    Article

    Charge Transfer Stabilization of Late Transition Metal Oxide Nanoparticles on a Layered Niobate Support
    Click to copy article linkArticle link copied!

    View Author Information
    Departments of Chemistry, Physics, and Biochemistry and Molecular Biology and Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
    § Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2015, 137, 51, 16216–16224
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.5b11230
    Published December 10, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Interfacial interactions between late transition metal/metal oxide nanoparticles and oxide supports impact catalytic activity and stability. Here, we report the use of isothermal titration calorimetry (ITC), electron microscopy and density functional theory (DFT) to explore periodic trends in the heats of nanoparticle–support interactions for late transition metal and metal oxide nanoparticles on layered niobate and silicate supports. Data for Co(OH)2, hydroxyiridate-capped IrOx·nH2O, Ni(OH)2, CuO, and Ag2O nanoparticles were added to previously reported data for Rh(OH)3 grown on nanosheets of TBA0.24H0.76Ca2Nb3O10 and a layered silicate. ITC measurements showed stronger bonding energies in the order Ag < Cu ≈ Ni ≈ Co < Rh < Ir on the niobate support, as expected from trends in M–O bond energies. Nanoparticles with exothermic heats of interaction were stabilized against sintering. In contrast, ITC measurements showed endothermic interactions of Cu, Ni, and Rh oxide/hydroxide nanoparticles with the silicate and poor resistance to sintering. These trends in interfacial energies were corroborated by DFT calculations using single-atom and four-atom cluster models of metal/metal oxide nanoparticles. Density of states and charge density difference calculations reveal that strongly bonded metals (Rh, Ir) transfer d-electron density from the adsorbed cluster to niobium atoms in the support; this mixing is absent in weakly binding metals, such as Ag and Au, and in all metals on the layered silicate support. The large differences between the behavior of nanoparticles on niobate and silicate supports highlight the importance of d-orbital interactions between the nanoparticle and support in controlling the nanoparticles’ stability.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b11230.

    • Details of obtaining thermochemical data from ITC experiments, XRD of bulk nanoparticles and nanoparticle/support composites, TEM and UV–vis of hydroxyiridate-capped IrOx·nH2O particles, sintering studies of supported metal oxide nanoparticles, surface models used for DFT binding energy calculations, optimized single atom and metal cluster adsorption geometries, charge density difference plots, list of nanoparticles and metal precursors, and heats of formation of oxides and sublimation of metals (17 pp). (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 65 publications.

    1. Nanfang Tang, Dongyuan Liu, Shuai Chen, Zhenyu Wang, Yuxia Ma, Qi Li, Yunshuai Li, Guoliang Xu, Chuntian Wu, Liqun Kang, Wenhao Luo, Botao Qiao, Houyu Zhu, Yu Cong. Pt Atom-Substituted MoC Single-Atom Catalyst for Enhancing H2 Production. ACS Catalysis 2024, 14 (19) , 14297-14307. https://doi.org/10.1021/acscatal.4c01821
    2. Tal Tubul-Sterin, Mark Baranov, Gal Gan-Or, Nitai Leffler, Alevtina Neyman, Ira A. Weinstock. Polyoxometalate-Complexed Indium Hydroxide: Atomically Homogeneous Impregnation via Countercation Exchange. Inorganic Chemistry 2023, 62 (5) , 1804-1812. https://doi.org/10.1021/acs.inorgchem.1c03857
    3. Ritesh Uppuluri, Sooyeon Hwang, Sharad Maheshwari, Pengwei Zhao, Jennifer L. Gray, Alyssa S. Rosas, Hemant P. Yennawar, Xiaobin Fan, Michael J. Janik, Thomas E. Mallouk. Stabilization of Dinuclear Rhodium and Iridium Clusters on Layered Titanate and Niobate Supports. Inorganic Chemistry 2023, 62 (3) , 1113-1121. https://doi.org/10.1021/acs.inorgchem.2c03225
    4. Hongfei Ma, Yalan Wang, Hao Zhang, Guoyan Ma, Wei Zhang, Yanying Qi, Terje Fuglerud, Zheng Jiang, Weiping Ding, De Chen. Facet-Induced Strong Metal Chloride−Support Interaction over CuCl2/γ-Al2O3 Catalyst to Enhance Ethylene Oxychlorination Performance. ACS Catalysis 2022, 12 (13) , 8027-8037. https://doi.org/10.1021/acscatal.2c02019
    5. Yao Yang, Cheyenne R. Peltier, Rui Zeng, Roberto Schimmenti, Qihao Li, Xin Huang, Zhifei Yan, Georgia Potsi, Ryan Selhorst, Xinyao Lu, Weixuan Xu, Mariel Tader, Alexander V. Soudackov, Hanguang Zhang, Mihail Krumov, Ellen Murray, Pengtao Xu, Jeremy Hitt, Linxi Xu, Hsin-Yu Ko, Brian G. Ernst, Colin Bundschu, Aileen Luo, Danielle Markovich, Meixue Hu, Cheng He, Hongsen Wang, Jiye Fang, Robert A. DiStasio, Jr., Lena F. Kourkoutis, Andrej Singer, Kevin J. T. Noonan, Li Xiao, Lin Zhuang, Bryan S. Pivovar, Piotr Zelenay, Enrique Herrero, Juan M. Feliu, Jin Suntivich, Emmanuel P. Giannelis, Sharon Hammes-Schiffer, Tomás Arias, Manos Mavrikakis, Thomas E. Mallouk, Joel D. Brock, David A. Muller, Francis J. DiSalvo, Geoffrey W. Coates, Héctor D. Abruña. Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chemical Reviews 2022, 122 (6) , 6117-6321. https://doi.org/10.1021/acs.chemrev.1c00331
    6. Qingliang Liao, Meng Shi, Qingxiao Zhang, Weihua Cheng, Peiyi Ji, Xueli Fu, Huirong Lai, Runze Fan, Jie Sheng, Hui Li. Gold Catalyst Anchored to Pre-Reduced Co3O4 Nanorods for the Hydrodeoxygenation of Vanillin Using Alcohols as Hydrogen Donors. ACS Applied Materials & Interfaces 2022, 14 (3) , 3939-3948. https://doi.org/10.1021/acsami.1c18197
    7. Zhongtian Mao, Charles T. Campbell. Predicting a Key Catalyst-Performance Descriptor for Supported Metal Nanoparticles: Metal Chemical Potential. ACS Catalysis 2021, 11 (13) , 8284-8291. https://doi.org/10.1021/acscatal.1c01870
    8. F. Platero, A. López-Martín, A. Caballero, T. C. Rojas, M. Nolan, G. Colón. Overcoming Pd–TiO2 Deactivation during H2 Production from Photoreforming Using Cu@Pd Nanoparticles Supported on TiO2. ACS Applied Nano Materials 2021, 4 (3) , 3204-3219. https://doi.org/10.1021/acsanm.1c00345
    9. Ruirui Yang, Fangrui Cheng, Yifei Zhao, Shi Ye. Probing the Dielectric Effects on the Colloidal 2D Perovskite Oxides by Eu3+ Luminescence. ACS Applied Materials & Interfaces 2020, 12 (40) , 44961-44969. https://doi.org/10.1021/acsami.0c12558
    10. Wei Zhang, Ritesh Uppuluri, Thomas E. Mallouk, Charles T. Campbell. Silver Adsorption on Calcium Niobate(001) Nanosheets: Calorimetric Energies That Explain Sinter-Resistant Support. Journal of the American Chemical Society 2020, 142 (37) , 15751-15763. https://doi.org/10.1021/jacs.0c05044
    11. Junjie Li, Qiaoqiao Guan, Hong Wu, Wei Liu, Yue Lin, Zhihu Sun, Xuxu Ye, Xusheng Zheng, Haibin Pan, Junfa Zhu, Si Chen, Wenhua Zhang, Shiqiang Wei, Junling Lu. Highly Active and Stable Metal Single-Atom Catalysts Achieved by Strong Electronic Metal–Support Interactions. Journal of the American Chemical Society 2019, 141 (37) , 14515-14519. https://doi.org/10.1021/jacs.9b06482
    12. Suprita Jharimune, Ajay A. Sathe, Robert M. Rioux. Thermochemical Measurements of Cation Exchange in CdSe Nanocrystals Using Isothermal Titration Calorimetry. Nano Letters 2018, 18 (11) , 6795-6803. https://doi.org/10.1021/acs.nanolett.8b02661
    13. Jinhu Dong, Qiang Fu, Zheng Jiang, Bingbao Mei, Xinhe Bao. Carbide-Supported Au Catalysts for Water–Gas Shift Reactions: A New Territory for the Strong Metal–Support Interaction Effect. Journal of the American Chemical Society 2018, 140 (42) , 13808-13816. https://doi.org/10.1021/jacs.8b08246
    14. Jinghua An, Yehong Wang, Jianmin Lu, Jian Zhang, Zhixin Zhang, Shutao Xu, Xiaoyan Liu, Tao Zhang, Martin Gocyla, Marc Heggen, Rafal E. Dunin-Borkowski, Paolo Fornasiero, Feng Wang. Acid-Promoter-Free Ethylene Methoxycarbonylation over Ru-Clusters/Ceria: The Catalysis of Interfacial Lewis Acid–Base Pair. Journal of the American Chemical Society 2018, 140 (11) , 4172-4181. https://doi.org/10.1021/jacs.8b01742
    15. Daniel V. Esposito . Membrane-Coated Electrocatalysts—An Alternative Approach To Achieving Stable and Tunable Electrocatalysis. ACS Catalysis 2018, 8 (1) , 457-465. https://doi.org/10.1021/acscatal.7b03374
    16. Charles T. Campbell and Zhongtian Mao . Chemical Potential of Metal Atoms in Supported Nanoparticles: Dependence upon Particle Size and Support. ACS Catalysis 2017, 7 (12) , 8460-8466. https://doi.org/10.1021/acscatal.7b03090
    17. Yingchang Jiang, Yun Song, Yanmei Li, Wenchao Tian, Zhichang Pan, Peiyu Yang, Yuesheng Li, Qinfen Gu, and Linfeng Hu . Charge Transfer in Ultrafine LDH Nanosheets/Graphene Interface with Superior Capacitive Energy Storage Performance. ACS Applied Materials & Interfaces 2017, 9 (43) , 37645-37654. https://doi.org/10.1021/acsami.7b09373
    18. Xing-Yang Li, Yao Jiang, Xiao-Qin Liu, Li-Ying Shi, Dong-Yuan Zhang, and Lin-Bing Sun . Direct Synthesis of Zeolites from a Natural Clay, Attapulgite. ACS Sustainable Chemistry & Engineering 2017, 5 (7) , 6124-6130. https://doi.org/10.1021/acssuschemeng.7b01001
    19. Stephanie L. Hemmingson and Charles T. Campbell . Trends in Adhesion Energies of Metal Nanoparticles on Oxide Surfaces: Understanding Support Effects in Catalysis and Nanotechnology. ACS Nano 2017, 11 (2) , 1196-1203. https://doi.org/10.1021/acsnano.6b07502
    20. Matthew G. Kast, Elizabeth A. Cochran, Lisa J. Enman, Gavin Mitchson, Jeffrey Ditto, Chris Siefe, Paul N. Plassmeyer, Ann L. Greenaway, David C. Johnson, Catherine J. Page, and Shannon W. Boettcher . Amorphous Mixed-Metal Oxide Thin Films from Aqueous Solution Precursors with Near-Atomic Smoothness. Journal of the American Chemical Society 2016, 138 (51) , 16800-16808. https://doi.org/10.1021/jacs.6b11084
    21. Carlos A. Campos-Roldán, Guadalupe Ramos-Sánchez, Rosa G. Gonzalez-Huerta, Jorge R. Vargas García, Perla B. Balbuena, and Nicolas Alonso-Vante . Influence of sp3–sp2 Carbon Nanodomains on Metal/Support Interaction, Catalyst Durability, and Catalytic Activity for the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces 2016, 8 (35) , 23260-23269. https://doi.org/10.1021/acsami.6b06886
    22. Pengtao Xu, Tyler J. Milstein, and Thomas E. Mallouk . Flat-Band Potentials of Molecularly Thin Metal Oxide Nanosheets. ACS Applied Materials & Interfaces 2016, 8 (18) , 11539-11547. https://doi.org/10.1021/acsami.6b02901
    23. Wenjing Xu, Mei Liu, Kexin Xu, Baojun Li. Recent advances in improving utilization efficiency of precious metal catalysts for hydrogen generation from hydrolysis of ammonia borane. Coordination Chemistry Reviews 2025, 529 , 216445. https://doi.org/10.1016/j.ccr.2025.216445
    24. Moritz L. Weber, Dylan Jennings, Sarah Fearn, Andrea Cavallaro, Michal Prochazka, Alexander Gutsche, Lisa Heymann, Jia Guo, Liam Yasin, Samuel J. Cooper, Joachim Mayer, Wolfgang Rheinheimer, Regina Dittmann, Rainer Waser, Olivier Guillon, Christian Lenser, Stephen J. Skinner, Ainara Aguadero, Slavomír Nemšák, Felix Gunkel. Thermal stability and coalescence dynamics of exsolved metal nanoparticles at charged perovskite surfaces. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-54008-4
    25. Tairan Wang, Jianyu Hu, Runhai Ouyang, Yutao Wang, Yi Huang, Sulei Hu, Wei-Xue Li. Nature of metal-support interaction for metal catalysts on oxide supports. Science 2024, 386 (6724) , 915-920. https://doi.org/10.1126/science.adp6034
    26. Chunli Song, Tian Xu, Jiuhe Bu, Hongchao Li, Xuan Zhang, Xiaodong Wang, Yuanqing Bu, Ming Hua, Bingcai Pan, Jieshu Qian. Reverse loading of inert Al2O3 onto active iron oxide for improved H2O2 activation and pollutant degradation. Chemical Engineering Journal 2024, 491 , 151753. https://doi.org/10.1016/j.cej.2024.151753
    27. Lei Li, Yaoda Liu, Ya Chen, Wenfang Zhai, Zhengfei Dai. Research progress on layered metal oxide electrocatalysts for an efficient oxygen evolution reaction. Dalton Transactions 2024, 53 (21) , 8872-8886. https://doi.org/10.1039/D4DT00619D
    28. Bin Wang, Yanjie Liang, Kangbo Tong, Hongyuan Ma, Zhaorui Zhang, Wenjie Fan, Yue Xuan, Kaihang Zhang, Yang Yun, Dong Wang, Tao Luan. What is the role of interface in the catalytic elimination of multi-carbon air pollutants?. Chemosphere 2023, 338 , 139547. https://doi.org/10.1016/j.chemosphere.2023.139547
    29. Bin Wang, Hongyuan Ma, Chuan Gao, Yue Xuan, Yanjie Liang, Kangbo Tong, Qiaowan Chang, Yang Yun, Dong Wang, Tao Luan, Kuihua Han, Junhua Li. Abatement of CO and light alkanes on the heterostructured catalysts: Insights into the interfacial effect. Chemical Engineering Journal 2023, 464 , 142527. https://doi.org/10.1016/j.cej.2023.142527
    30. Haitao Xu, Zeyu Jin, Yinghe Zhang, Xi Lin, Guoqiang Xie, Xingjun Liu, Hua-Jun Qiu. Designing strategies and enhancing mechanism for multicomponent high-entropy catalysts. Chemical Science 2023, 14 (4) , 771-790. https://doi.org/10.1039/D2SC06403K
    31. Hongyi Xu, Bei Li, Xinyu Jiang, Yanan Shi, Xiao Zhang, Chunling Zhu, Xitian Zhang, Yujin Chen. Fabrication of N−doped carbon nanotube/carbon fiber dendritic composites with abundant interfaces for electromagnetic wave absorption. Carbon 2023, 201 , 234-243. https://doi.org/10.1016/j.carbon.2022.09.033
    32. Guanyun Zhang, Fei Wang, Tal Tubul, Mark Baranov, Nitai Leffler, Alevtina Neyman, Josep M. Poblet, Ira A. Weinstock. Complexed Semiconductor Cores Activate Hexaniobate Ligands as Nucleophilic Sites for Solar‐Light Reduction of CO 2 by Water. Angewandte Chemie 2022, 134 (49) https://doi.org/10.1002/ange.202213162
    33. Guanyun Zhang, Fei Wang, Tal Tubul, Mark Baranov, Nitai Leffler, Alevtina Neyman, Josep M. Poblet, Ira A. Weinstock. Complexed Semiconductor Cores Activate Hexaniobate Ligands as Nucleophilic Sites for Solar‐Light Reduction of CO 2 by Water. Angewandte Chemie International Edition 2022, 61 (49) https://doi.org/10.1002/anie.202213162
    34. Xue Liu, Wei Ye, Wan Lin, Yinwei Cheng, Liyan Xu, Enmin Li, Hefeng Zhang. Discovery of resonance-enhanced emission effect and its application in the design of fluorescent molecules. Journal of Materials Chemistry C 2022, 10 (46) , 17695-17702. https://doi.org/10.1039/D2TC03629K
    35. Chenyu Zhang, Hou Wang, Hanbo Yu, Kaixin Yi, Wei Zhang, Xingzhong Yuan, Jinhui Huang, Yaocheng Deng, Guangming Zeng. Single‐Atom Catalysts for Hydrogen Generation: Rational Design, Recent Advances, and Perspectives. Advanced Energy Materials 2022, 12 (27) https://doi.org/10.1002/aenm.202200875
    36. Chun-Yen Liu, Shengbin Ye, Meng Li, Thomas P. Senftle. A rapid feature selection method for catalyst design: Iterative Bayesian additive regression trees (iBART). The Journal of Chemical Physics 2022, 156 (16) https://doi.org/10.1063/5.0090055
    37. Fangfang Liao, Xun Zhao, Guiyuan Yang, Qihui Cheng, Lei Mao, Lingyun Chen. Recent advances on two-dimensional NiFe-LDHs and their composites for electrochemical energy conversion and storage. Journal of Alloys and Compounds 2021, 872 , 159649. https://doi.org/10.1016/j.jallcom.2021.159649
    38. Hanna Kierzkowska-Pawlak, Małgorzata Ryba, Maciej Fronczak, Ryszard Kapica, Jan Sielski, Maciej Sitarz, Patryk Zając, Klaudia Łyszczarz, Jacek Tyczkowski. Enhancing CO2 Conversion to CO over Plasma-Deposited Composites Based on Mixed Co and Fe Oxides. Catalysts 2021, 11 (8) , 883. https://doi.org/10.3390/catal11080883
    39. Ling Ma, Ping Chen, Guangji Zhang, Liqiang Wang, Feiying Tang, Xiaojun Zhao, Jin Wang, Jianhan Huang, You‐Nian Liu. Promoting H 2 Activation over Molybdenum Carbide by Modulation of Metal‐Support Interaction for Efficient Catalytic Hydrogenation. ChemCatChem 2021, 13 (14) , 3283-3289. https://doi.org/10.1002/cctc.202100581
    40. Yifan Sun, Sheng Dai. High-entropy materials for catalysis: A new frontier. Science Advances 2021, 7 (20) https://doi.org/10.1126/sciadv.abg1600
    41. Rajkumar Yadav, Vikas Verma, Ankit Mishra, Neeraj Pal, Azeem Khan, Anil Kumar Sinha. Si incorporated Pt nanoparticles on TixSi1-xO2 support: Photo-thermal CO2 reduction. Journal of CO2 Utilization 2021, 47 , 101502. https://doi.org/10.1016/j.jcou.2021.101502
    42. Ali Alamer, Daoud Ali, Saud Alarifi, Abdullah Alkahtane, Mohammed AL-Zharani, Mohamed M. Abdel-Daim, Gadah Albasher, Rafa Almeer, Nouf K. Al-Sultan, Abdulaziz Almalik, Ali H Alhasan, Christos Stournaras, Saquib Hasnain, Saad Alkahtani. Bismuth oxide nanoparticles induce oxidative stress and apoptosis in human breast cancer cells. Environmental Science and Pollution Research 2021, 28 (6) , 7379-7389. https://doi.org/10.1007/s11356-020-10913-x
    43. Chun-Yen Liu, Shijia Zhang, Daniel Martinez, Meng Li, Thomas P. Senftle. Using statistical learning to predict interactions between single metal atoms and modified MgO(100) supports. npj Computational Materials 2020, 6 (1) https://doi.org/10.1038/s41524-020-00371-x
    44. Ryota Ashikaga, Kazumasa Murata, Tetsuya Ito, Yuta Yamamoto, Shigeo Arai, Atsushi Satsuma. Tuning the oxygen release properties of CeO 2 -based catalysts by metal–support interactions for improved gasoline soot combustion. Catalysis Science & Technology 2020, 10 (21) , 7177-7185. https://doi.org/10.1039/D0CY01294G
    45. Zhifei Yan, Jeremy L. Hitt, John A. Turner, Thomas E. Mallouk. Renewable electricity storage using electrolysis. Proceedings of the National Academy of Sciences 2020, 117 (23) , 12558-12563. https://doi.org/10.1073/pnas.1821686116
    46. Astam K. Patra, Vipin Amoli, Anil K. Sinha, Dukjoon Kim. Unusual Photoactive Water Oxidation Activity of Pt/PtO x Cocatalyst Decorated Crystalline α‐Fe 2 O 3 Nanostructures: Exposed Facets Dependent Reactivity. ChemCatChem 2020, 12 (8) , 2315-2323. https://doi.org/10.1002/cctc.201902070
    47. Xuyang Jing, Yifu Zhang, Qiushi Wang, Yan Cheng, Changgong Meng. Rapid Combustion Synthesis of Metal Oxides Species Highly Dispersed on Layered Silicate Magadiite. ChemistrySelect 2020, 5 (2) , 569-574. https://doi.org/10.1002/slct.201902311
    48. Hyung Jun Kim, Myeong Gon Jang, Dongjae Shin, Jeong Woo Han. Design of Ceria Catalysts for Low‐Temperature CO Oxidation. ChemCatChem 2020, 12 (1) , 11-26. https://doi.org/10.1002/cctc.201901787
    49. Siyuan Zhang, Leo Diehl, Sina Wrede, Bettina V. Lotsch, Christina Scheu. Structural Evolution of Ni-Based Co-Catalysts on [Ca2Nb3O10]− Nanosheets during Heating and Their Photocatalytic Properties. Catalysts 2020, 10 (1) , 13. https://doi.org/10.3390/catal10010013
    50. Bingyu Xu, Amir Zada, Guofeng Wang, Yang Qu. Boosting the visible-light photoactivities of BiVO 4 nanoplates by Eu doping and coupling CeO x nanoparticles for CO 2 reduction and organic oxidation. Sustainable Energy & Fuels 2019, 3 (12) , 3363-3369. https://doi.org/10.1039/C9SE00409B
    51. Peter S. Rice, P. Hu. Understanding supported noble metal catalysts using first-principles calculations. The Journal of Chemical Physics 2019, 151 (18) https://doi.org/10.1063/1.5126090
    52. . Oxygen Reduction/Evolution Reaction. 2019, 143-186. https://doi.org/10.1002/9781119460510.ch4
    53. Fiona S. Oberbeck-Oxsher, Brett D. Altschul, Thomas M. Crawford, Scott R. Crittenden. Ligand-induced magnetic changes in metal thin films. Physical Review B 2018, 98 (13) https://doi.org/10.1103/PhysRevB.98.134408
    54. Erick J. Braham, Justin L. Andrews, Theodore E. G. Alivio, Nathan A. Fleer, Sarbajit Banerjee. Stabilization of a Metastable Tunnel‐Structured Orthorhombic Phase of VO 2 upon Iridium Doping. physica status solidi (a) 2018, 215 (16) https://doi.org/10.1002/pssa.201700884
    55. Nolan J. O’Connor, A. S. M. Jonayat, Michael J. Janik, Thomas P. Senftle. Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning. Nature Catalysis 2018, 1 (7) , 531-539. https://doi.org/10.1038/s41929-018-0094-5
    56. Qinggang Liu, Xinkui Wang, Yujing Ren, Xiaofeng Yang, Zhilian Wu, Xiaoyan Liu, Lin Li, Shu Miao, Yang Su, Yanqin Li, Changhai Liang, Yanqiang Huang. Synthesis of Subnanometer‐Sized Gold Clusters by a Simple Milling‐Mediated Solid Reduction Method. Chinese Journal of Chemistry 2018, 36 (4) , 329-332. https://doi.org/10.1002/cjoc.201700750
    57. Ritesh Uppuluri, Arnab Sen Gupta, Alyssa S. Rosas, Thomas E. Mallouk. Soft chemistry of ion-exchangeable layered metal oxides. Chemical Society Reviews 2018, 47 (7) , 2401-2430. https://doi.org/10.1039/C7CS00290D
    58. Yue Liu, Yansong Zhou, Chade Lv, Congmin Zhang, Xiaoli Jin, Qingqiang Meng, Gang Chen. Construction of 2D-composite HCa 2 Nb 3 O 10 /CaNb 2 O 6 heterostructured photocatalysts with enhanced hydrogen production performance. New Journal of Chemistry 2018, 42 (1) , 681-687. https://doi.org/10.1039/C7NJ03707D
    59. Jia Jia, Hong Wang, Zhuole Lu, Paul G. O'Brien, Mireille Ghoussoub, Paul Duchesne, Ziqi Zheng, Peicheng Li, Qiao Qiao, Lu Wang, Alan Gu, Feysal M. Ali, Yuchan Dong, Qiang Wang, Kulbir Kaur Ghuman, Thomas Wood, Chenxi Qian, Yue Shao, Chenyue Qiu, Miaomiao Ye, Yimei Zhu, Zheng‐Hong Lu, Peng Zhang, Amr S. Helmy, Chandra Veer Singh, Nazir P. Kherani, Doug D. Perovic, Geoffrey A. Ozin. Photothermal Catalyst Engineering: Hydrogenation of Gaseous CO 2 with High Activity and Tailored Selectivity. Advanced Science 2017, 4 (10) https://doi.org/10.1002/advs.201700252
    60. Jia Jia, Chenxi Qian, Yuchan Dong, Young Feng Li, Hong Wang, Mireille Ghoussoub, Keith T. Butler, Aron Walsh, Geoffrey A. Ozin. Heterogeneous catalytic hydrogenation of CO 2 by metal oxides: defect engineering – perfecting imperfection. Chemical Society Reviews 2017, 46 (15) , 4631-4644. https://doi.org/10.1039/C7CS00026J
    61. Qiushi Wang, Yifu Zhang, Jiqi Zheng, Yu Wang, Tao Hu, Changgong Meng. Metal oxide decorated layered silicate magadiite for enhanced properties: insight from ZnO and CuO decoration. Dalton Transactions 2017, 46 (13) , 4303-4316. https://doi.org/10.1039/C7DT00228A
    62. Hongli Wen, Bing-Ming Cheng, Peter A. Tanner. Optical properties of selected 4d and 5d transition metal ion-doped glasses. RSC Advances 2017, 7 (42) , 26411-26419. https://doi.org/10.1039/C7RA04062H
    63. Mingwei Zhang, Guozhu Li, Xiaoqing Sun, Yujiao Jiang, Xiangwen Zhang. General promoting effect of polydopamine on supported noble metal catalysts. J. Mater. Chem. A 2017, 5 (39) , 20789-20796. https://doi.org/10.1039/C7TA06204D
    64. Kiyoshi Kanie, Yusuke Tsujikawa, Atsushi Muramatsu. Direct Hydrothermal Synthesis of Size-Controlled Co3O4 Nanocubes under Highly Condensed Conditions. MATERIALS TRANSACTIONS 2017, 58 (7) , 1014-1019. https://doi.org/10.2320/matertrans.M2017090
    65. Jiyoon Seo, Xiaoyan Jin, Minho Kim, In Young Kim, Yun Kyung Jo, Sandipan Bera, Nam‐Suk Lee, Wan In Lee, Hyungjun Kim, Seong‐Ju Hwang. Exfoliated Metal Oxide Nanosheets as Effective and Applicable Substrates for Atomically Dispersed Metal Nanoparticles with Tailorable Functionalities. Advanced Materials Interfaces 2016, 3 (20) https://doi.org/10.1002/admi.201600661

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2015, 137, 51, 16216–16224
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.5b11230
    Published December 10, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    3127

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.