ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Synthesis and Properties of Endohedral Aza[60]fullerenes: H2O@C59N and H2@C59N as Their Dimers and Monomers

View Author Information
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
Cite this: J. Am. Chem. Soc. 2016, 138, 12, 4096–4104
Publication Date (Web):March 18, 2016
https://doi.org/10.1021/jacs.5b12795
Copyright © 2016 American Chemical Society

    Article Views

    1888

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    The macroscopic-scale syntheses of the first endohedral aza[60]fullerenes X@C59N (X = H2O, H2) were achieved in two different ways: (1) synthesis from endohedral fullerene H2O@C60 as a starting material and (2) molecular surgical synthesis from a C59N precursor having a considerably small opening. In the neutral state of H2O@C59N, we expected the H-bonding interaction or repulsive N–O interaction between entrapped H2O and a nitrogen atom on the C59N cage. However, an attractive electrostatic N–O interaction was suggested from the results of variable temperature NMR, nuclear magnetic relaxation times (T1, T2), and density functional theory (DFT) calculations. Upon the reaction with acetone via cationic intermediate C59N+, we found a difference in reaction rates between H2O@C59N and H2@C59N dimers (observed reaction rates: k′(H2O)/k′(H2) = 1.74 ± 0.16). The DFT calculations showed thermal stabilization of C59N+ by entrapped H2O through the electrostatic interaction.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b12795.

    • Supplementary figures and tables, detailed experimental procedures, characterization data, and computational results (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 62 publications.

    1. Di Chao, Tong-Xin Liu, Pengling Zhang, Shilu Xia, Guisheng Zhang. Copper-Mediated Radical-Induced Ring-Opening Relay Cascade Carboannulation Reaction of [60]Fullerene with Cyclobutanone Oxime Esters: Access to [60]Fullerene-Fused Cyclopentanes. The Journal of Organic Chemistry 2023, 88 (18) , 13076-13088. https://doi.org/10.1021/acs.joc.3c01291
    2. M. E. Bedrina, S. G. Semenov, M. V. Suyasova, V. P. Sedov, A. V. Titov. Highly Hydroxylated Buckminsterfullerene Complexes with an Endohedral Iodide Anion. The Journal of Physical Chemistry A 2023, 127 (30) , 6222-6226. https://doi.org/10.1021/acs.jpca.3c03206
    3. Endong Wang, Yi Gao. H2 + H2O → H4O: Synthesizing Hyperhydrogenated Water in Small-Sized Fullerenes?. The Journal of Physical Chemistry A 2023, 127 (5) , 1190-1195. https://doi.org/10.1021/acs.jpca.2c07279
    4. Yoshifumi Hashikawa, Nana Fujikawa, Yasujiro Murata. π-Extended Fullerenes with a Reactant Inside. Journal of the American Chemical Society 2022, 144 (51) , 23292-23296. https://doi.org/10.1021/jacs.2c12259
    5. Ning Wang, Rui-Peng Yan, Yu-Si Xiong, Yan Mi, Fei-Long Hu, Yu Ge, David James Young, Jian-Ping Lang. Coordination Polymer-Mediated Molecular Surgery for Precise Interconversion of Dicyclobutane Compounds. Inorganic Chemistry 2022, 61 (51) , 21016-21023. https://doi.org/10.1021/acs.inorgchem.2c03521
    6. Yoshifumi Hashikawa, Shu Okamoto, Shumpei Sadai, Yasujiro Murata. Chiral Open-[60]Fullerene Ligands with Giant Dissymmetry Factors. Journal of the American Chemical Society 2022, 144 (41) , 18829-18833. https://doi.org/10.1021/jacs.2c09556
    7. Yoshifumi Hashikawa, Hiroto Kawasaki, Yasujiro Murata. π-Backbonding on Group 9 Metal Complexes Bearing an η2-(H2O@C60) Ligand. Organometallics 2022, 41 (3) , 354-359. https://doi.org/10.1021/acs.organomet.1c00706
    8. Yoshifumi Hashikawa, Shumpei Sadai, Yasujiro Murata. Reductive Decarbonylation of a Cage-Opened C60 Derivative. Organic Letters 2021, 23 (24) , 9495-9499. https://doi.org/10.1021/acs.orglett.1c03694
    9. Sheng Zhang, Yoshifumi Hashikawa, Yasujiro Murata. Cage-Expansion of Fullerenes. Journal of the American Chemical Society 2021, 143 (32) , 12450-12454. https://doi.org/10.1021/jacs.1c05778
    10. Yoshifumi Hashikawa, Shota Hasegawa, Yasujiro Murata. Photochemical Orifice Expansion of a Cage-Opened C60 Derivative. Organic Letters 2021, 23 (10) , 3854-3858. https://doi.org/10.1021/acs.orglett.1c00990
    11. Yoshifumi Hashikawa, Yuma Shimizu, Yasujiro Murata. Synthesis of a Dihydroxylated Open-Cage [70]Fullerene by a Reductive Ring-Closure Reaction. Organic Letters 2020, 22 (21) , 8624-8628. https://doi.org/10.1021/acs.orglett.0c03216
    12. Yumi Yakiyama, Takumi Hasegawa, Hidehiro Sakurai. Formation of a Large Confined Spherical Space with a Small Aperture Using Flexible Hexasubstituted Sumanene. Journal of the American Chemical Society 2019, 141 (45) , 18099-18103. https://doi.org/10.1021/jacs.9b07902
    13. Yoshifumi Hashikawa, Yasujiro Murata. H2O/Olefinic-π Interaction inside a Carbon Nanocage. Journal of the American Chemical Society 2019, 141 (32) , 12928-12938. https://doi.org/10.1021/jacs.9b06759
    14. Yoshifumi Hashikawa and Yasujiro Murata . Facile Access to Azafullerenyl Cation C59N+ and Specific Interaction with Entrapped Molecules. Journal of the American Chemical Society 2017, 139 (51) , 18468-18471. https://doi.org/10.1021/jacs.7b11322
    15. Guo-Zhu Zhu, Yoshifumi Hashikawa, Yuan Liu, Qian-Fan Zhang, Ling Fung Cheung, Yasujiro Murata, and Lai-Sheng Wang . High-Resolution Photoelectron Imaging of Cryogenically-Cooled C59N– and (C59N)22– Azafullerene Anions. The Journal of Physical Chemistry Letters 2017, 8 (24) , 6220-6225. https://doi.org/10.1021/acs.jpclett.7b03091
    16. Yoshifumi Hashikawa, Michihisa Murata, Atsushi Wakamiya, and Yasujiro Murata . Palladium-Catalyzed Cyclization: Regioselectivity and Structure of Arene-Fused C60 Derivatives. Journal of the American Chemical Society 2017, 139 (45) , 16350-16358. https://doi.org/10.1021/jacs.7b09459
    17. Yoshifumi Hashikawa, Michihisa Murata, Atsushi Wakamiya, and Yasujiro Murata . Orientation of a Water Molecule: Effects on Electronic Nature of the C59N Cage. The Journal of Organic Chemistry 2017, 82 (8) , 4465-4469. https://doi.org/10.1021/acs.joc.7b00453
    18. Yago García-Rodeja, Miquel Solà, and Israel Fernández . Predicting and Understanding the Reactivity of Aza[60]fullerenes. The Journal of Organic Chemistry 2017, 82 (1) , 754-758. https://doi.org/10.1021/acs.joc.6b02424
    19. Yoshifumi Hashikawa, Michihisa Murata, Atsushi Wakamiya, and Yasujiro Murata . Co(I)-Mediated Removal of Addends on the C60 Cage and Formation of the Monovalent Cobalt Complex CpCo(CO)(η2-C60). Organic Letters 2016, 18 (24) , 6348-6351. https://doi.org/10.1021/acs.orglett.6b03238
    20. Ning Lou, Yanbang Li, Chengxing Cui, Yajun Liu, and Liangbing Gan . Preparation of Azafullerene C59NR5 and Fullerene Derivative C60NAr5 with a Pyridine Moiety on the Cage Skeleton. Organic Letters 2016, 18 (9) , 2236-2239. https://doi.org/10.1021/acs.orglett.6b00872
    21. Guanglin Huang, Yuki Ide, Yoshifumi Hashikawa, Takashi Hirose, Yasujiro Murata. CH 3 CN@open‐C 60 : An Effective Inner‐Space Modification and Isotope Effect Inside a Nano‐Sized Flask. Chemistry – A European Journal 2023, 29 (47) https://doi.org/10.1002/chem.202301161
    22. Yoshifumi Hashikawa, Yasujiro Murata. C2-insertion into a fullerene orifice. Chemical Communications 2023, 113 https://doi.org/10.1039/D2CC06531B
    23. Yoshifumi Hashikawa, Nana Fujikawa, Shu Okamoto, Yasujiro Murata. Phosphorus ylides of cage-opened sulphide [60]fullerene derivatives. Dalton Transactions 2022, 51 (46) , 17804-17808. https://doi.org/10.1039/D2DT03214G
    24. Mehdi D. Esrafili, Parisasadat Mousavian. Sc-functionalized porphyrin-like porous fullerene for CO2 storage and separation: A first-principles evaluation. Journal of Molecular Graphics and Modelling 2022, 111 , 108112. https://doi.org/10.1016/j.jmgm.2021.108112
    25. Sheng Zhang, Yoshifumi Hashikawa, Yasujiro Murata. Cage‐Opened C 60 Isomers with Different Reactivities. Asian Journal of Organic Chemistry 2022, 11 (3) https://doi.org/10.1002/ajoc.202100676
    26. A. L. Buchachenko. Compressed Molecules and Enzymes. Russian Journal of Physical Chemistry B 2022, 16 (1) , 9-17. https://doi.org/10.1134/S1990793122010031
    27. Grygoriy A. Dolgonos. Exploring the Properties of H 2 O@C 60 with the Local Second‐Order Møller‐Plesset Perturbation Theory: Blue or Red Shift in C 60 and H 2 O Fundamentals to Expect?. ChemistrySelect 2021, 6 (42) , 11583-11590. https://doi.org/10.1002/slct.202103004
    28. İskender Muz, Mustafa Kurban. A first-principles evaluation on the interaction of 1,3,4-oxadiazole with pristine and B-, Al-, Ga-doped C60 fullerenes. Journal of Molecular Liquids 2021, 335 , 116181. https://doi.org/10.1016/j.molliq.2021.116181
    29. Tsutomu Ohtsuki, Aaditya Manjanath, Kaoru Ohno, Makoto Inagaki, Shun Sekimoto, Yoshiyuki Kawazoe. Creation of Mo/Tc@C 60 and Au@C 60 and molecular-dynamics simulations. RSC Advances 2021, 11 (32) , 19666-19672. https://doi.org/10.1039/D0RA10196F
    30. Yoshifumi Hashikawa, Kazuro Kizaki, Yasujiro Murata. Pressure-induced annulative orifice closure of a cage-opened C 60 derivative. Chemical Communications 2021, 57 (43) , 5322-5325. https://doi.org/10.1039/D1CC01662H
    31. S. G. Semenov, M. E. Bedrina, V. A. Klemeshev, A. V. Titov. Quantum Chemical Study of X@BikPbm, BikPbm∙X, X@SbkSnm, and SbkSnm∙X Clusters. Russian Journal of General Chemistry 2021, 91 (2) , 241-250. https://doi.org/10.1134/S1070363221020134
    32. Yoshifumi Hashikawa, Yasujiro Murata. Cation recognition on a fullerene-based macrocycle. Chemical Science 2020, 11 (46) , 12428-12435. https://doi.org/10.1039/D0SC05280A
    33. Yoshifumi Hashikawa, Kazuro Kizaki, Takashi Hirose, Yasujiro Murata. An orifice design: water insertion into C 60. RSC Advances 2020, 10 (66) , 40406-40410. https://doi.org/10.1039/D0RA09067K
    34. Maryam Koohi, Hajieh Bastami. Structure, stability, MEP, NICS, reactivity, and NBO of Si–Ge nanocages evolved from C20 fullerene at DFT. Monatshefte für Chemie - Chemical Monthly 2020, 151 (5) , 693-710. https://doi.org/10.1007/s00706-020-02596-4
    35. Mehdi D. Esrafili, Hossein Janebi. B-, N-doped and BN codoped C 60 heterofullerenes for environmental monitoring of NO and NO 2 : a DFT study. Molecular Physics 2020, 118 (5) , e1631495. https://doi.org/10.1080/00268976.2019.1631495
    36. Mukesh Kumar Singh, Pratima Shukla, Munmun Khatua, Gopalan Rajaraman. A Design Criteria to Achieve Giant Ising‐Type Anisotropy in Co II ‐Encapsulated Metallofullerenes. Chemistry – A European Journal 2020, 26 (2) , 464-477. https://doi.org/10.1002/chem.201903618
    37. Shintaro Fujii, Haruna Cho, Yoshifumi Hashikawa, Tomoaki Nishino, Yasujiro Murata, Manabu Kiguchi. Tuneable single-molecule electronic conductance of C 60 by encapsulation. Physical Chemistry Chemical Physics 2019, 21 (23) , 12606-12610. https://doi.org/10.1039/C9CP02469G
    38. Mehdi D. Esrafili, Safa Heidari. C 59 N Heterofullerene: A Promising Catalyst for NO Conversion into N 2 O. ChemistrySelect 2019, 4 (14) , 4308-4315. https://doi.org/10.1002/slct.201900277
    39. Vinit Vinit, C. N. Ramachandran. Spin density transfer from guest to host in endohedral heterofullerene dimers. Physical Chemistry Chemical Physics 2019, 21 (14) , 7605-7612. https://doi.org/10.1039/C9CP00442D
    40. Hongcun Bai, Hongfeng Gao, Wei Feng, Yaping Zhao, Yuhua Wu. Interaction in Li@Fullerenes and Li+@Fullerenes: First Principle Insights to Li-Based Endohedral Fullerenes. Nanomaterials 2019, 9 (4) , 630. https://doi.org/10.3390/nano9040630
    41. Mehdi D. Esrafili, Safa Heydari. C 59 X Heterofullerenes (X=N, B, Si, P and S) as Catalysts for Reduction of N 2 O: A Comparative DFT Study. ChemistrySelect 2019, 4 (8) , 2267-2274. https://doi.org/10.1002/slct.201803541
    42. Yoshifumi Hashikawa, Yasujiro Murata. Probing the Regioselectivity with Encapsulated H 2 : Diels–Alder Reaction of an Open‐Cage C 60 Derivative with Anthracene. Chemistry – A European Journal 2019, 25 (10) , 2482-2485. https://doi.org/10.1002/chem.201806030
    43. Yoshifumi Hashikawa, Shota Hasegawa, Yasujiro Murata. A single but hydrogen-bonded water molecule confined in an anisotropic subnanospace. Chemical Communications 2018, 54 (97) , 13686-13689. https://doi.org/10.1039/C8CC07339B
    44. Yoshifumi Hashikawa, Yasujiro Murata. Wavelength‐Dependent Efficiency of Sequential Photooxygenation: C=C Bond Cleavage on Open‐Cage C 60 Derivatives. ChemPlusChem 2018, 83 (12) , 1179-1183. https://doi.org/10.1002/cplu.201800464
    45. Somayeh Soleimani‐Amiri, Maryam Koohi, Zahra Azizi. Characterization of nonsegregated C 17 Si 3 heterofullerenic isomers using density functional theory method. Journal of the Chinese Chemical Society 2018, 65 (12) , 1453-1464. https://doi.org/10.1002/jccs.201800163
    46. Yago García-Rodeja, Miquel Solà, Israel Fernández. Influence of the charge on the reactivity of azafullerenes. Physical Chemistry Chemical Physics 2018, 20 (44) , 28011-28018. https://doi.org/10.1039/C8CP06031B
    47. Albert Artigas, Anna Pla‐Quintana, Agustí Lledó, Anna Roglans, Miquel Solà. Expeditious Preparation of Open‐Cage Fullerenes by Rhodium(I)‐Catalyzed [2+2+2] Cycloaddition of Diynes and C 60 : An Experimental and Theoretical Study. Chemistry – A European Journal 2018, 24 (42) , 10653-10661. https://doi.org/10.1002/chem.201802298
    48. Ryo Mizunuma, Teruhiko Tanaka, Yoshihiro Nakamura, Yuki Kamijima, Yoshio Kabe. Direct benzyne-C60 addition does not generate a [5,6] open fulleroid. Tetrahedron 2018, 74 (5) , 544-548. https://doi.org/10.1016/j.tet.2017.12.023
    49. Yoshifumi Hashikawa, Hidefumi Yasui, Kei Kurotobi, Yasujiro Murata. Synthesis and properties of open-cage fullerene C 60 derivatives: impact of the extended π-conjugation. Materials Chemistry Frontiers 2018, 2 (2) , 206-213. https://doi.org/10.1039/C7QM00449D
    50. Guo-Zhu Zhu, Yuan Liu, Yoshifumi Hashikawa, Qian-Fan Zhang, Yasujiro Murata, Lai-Sheng Wang. Probing the interaction between the encapsulated water molecule and the fullerene cages in H 2 O@C 60 − and H 2 O@C 59 N −. Chemical Science 2018, 9 (25) , 5666-5671. https://doi.org/10.1039/C8SC01031E
    51. Satoshi Kaneko, Yoshifumi Hashikawa, Shintaro Fujii, Yasujiro Murata, Manabu Kiguchi. Single Molecular Junction Study on H 2 O@C 60 : H 2 O is “Electrostatically Isolated”. ChemPhysChem 2017, 18 (10) , 1229-1233. https://doi.org/10.1002/cphc.201700173
    52. Rui Zhang, Michihisa Murata, Atsushi Wakamiya, Yasujiro Murata. Synthesis and Structure of an Open-cage C 69 O Derivative. Chemistry Letters 2017, 46 (4) , 543-546. https://doi.org/10.1246/cl.161178
    53. Yoshifumi Hashikawa, Michihisa Murata, Atsushi Wakamiya, Yasujiro Murata. Structural modification of open-cage fullerene C 60 derivatives having a small molecule inside their cavities. Canadian Journal of Chemistry 2017, 95 (3) , 320-328. https://doi.org/10.1139/cjc-2016-0465
    54. Alexey A. Popov. Synthesis and Molecular Structures of Endohedral Fullerenes. 2017, 1-34. https://doi.org/10.1007/978-3-319-47049-8_1
    55. Satoshi Kaneko. Design of the Interface Structure of a Single-Molecule Junction Utilizing Spherical Endohedral Ce@C82 Metallofullerenes. 2017, 39-49. https://doi.org/10.1007/978-981-10-4412-0_5
    56. Tsukasa Futagoishi, Michihisa Murata, Atsushi Wakamiya, Yasujiro Murata. Unprecedented photochemical rearrangement of an open-cage C 60 derivative. Chemical Communications 2017, 53 (10) , 1712-1714. https://doi.org/10.1039/C6CC10103H
    57. Teruhiko Tanaka, Ryuichi Nojiri, Yoshiki Sugiyama, Ryouhei Sawai, Toshikazu Takahashi, Norihisa Fukaya, Jun-Chul Choi, Yoshio Kabe. Regioselective Diels–Alder reaction to open-cage ketolactam derivatives of C 60. Organic & Biomolecular Chemistry 2017, 15 (29) , 6136-6146. https://doi.org/10.1039/C7OB01347G
    58. Yanbang Li, Gaihong Zhang, Dian Wang, Beidi Xu, Dan Xu, Ning Lou, Liangbing Gan. Fullerene-Based Macro-Heterocycle Prepared through Selective Incorporation of Three N and Two O Atoms into C 60. Angewandte Chemie 2016, 128 (47) , 14810-14814. https://doi.org/10.1002/ange.201606856
    59. Yanbang Li, Gaihong Zhang, Dian Wang, Beidi Xu, Dan Xu, Ning Lou, Liangbing Gan. Fullerene‐Based Macro‐Heterocycle Prepared through Selective Incorporation of Three N and Two O Atoms into C 60. Angewandte Chemie International Edition 2016, 55 (47) , 14590-14594. https://doi.org/10.1002/anie.201606856
    60. Yoshifumi Hashikawa, Michihisa Murata, Atsushi Wakamiya, Yasujiro Murata. Water Entrapped inside Fullerene Cages: A Potential Probe for Evaluation of Bond Polarization. Angewandte Chemie International Edition 2016, 55 (42) , 13109-13113. https://doi.org/10.1002/anie.201607040
    61. Yoshifumi Hashikawa, Michihisa Murata, Atsushi Wakamiya, Yasujiro Murata. Water Entrapped inside Fullerene Cages: A Potential Probe for Evaluation of Bond Polarization. Angewandte Chemie 2016, 128 (42) , 13303-13307. https://doi.org/10.1002/ange.201607040
    62. Andrea Krachmalnicoff, Richard Bounds, Salvatore Mamone, Shamim Alom, Maria Concistrè, Benno Meier, Karel Kouřil, Mark E. Light, Mark R. Johnson, Stéphane Rols, Anthony J. Horsewill, Anna Shugai, Urmas Nagel, Toomas Rõõm, Marina Carravetta, Malcolm H. Levitt, Richard J. Whitby. The dipolar endofullerene HF@C60. Nature Chemistry 2016, 8 (10) , 953-957. https://doi.org/10.1038/nchem.2563

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect