Oxazines: A New Class of Second-Order Nonlinear Optical Switches
- Pierre Beaujean
- ,
- Flavie Bondu
- ,
- Aurélie Plaquet
- ,
- Jaume Garcia-Amorós
- ,
- Janet Cusido
- ,
- Françisco M. Raymo
- ,
- Frédéric Castet
- ,
- Vincent Rodriguez
- , and
- Benoît Champagne
Abstract

A combined experimental–theoretical investigation has revealed that oxazine-based compounds are multiaddressable, multistate, and multifunctional molecular switches exhibiting contrasts of both linear and second-order nonlinear optical properties. The switching properties are particularly large when the substituent is a donor group. In this study, the cleavage of the C–O bond at the junction of the indole and oxazine cycles (of the closed a forms) is acido-triggered, leading to an open form (b+) characterized by larger first hyperpolarizabilities (βHRS) and smaller excitation energies than in the closed form. These results are confirmed and interpreted utilizing ab initio calculations that have been carried out on a broad set of compounds to unravel the role of the substituent. With respect to acceptor groups, oxazines bearing donor groups are characterized not only by larger βHRS and βHRS contrast ratios but also by smaller excitation energies, larger opening-induced charge transfer, and reduction of the bond length alternation, as well as smaller Gibbs energies of the opening reaction. Compared to protonated open forms (b+), calculations on the zwitterionic open forms (b) have pointed out similarities in the long-wavelength UV/vis absorption spectra, whereas their βHRS values might differ strongly as a function of the substituent. Indeed, the open forms present two NLOphores, the indoleninium-substituent entity and the nitrophenol (present in the protonated open form, b+) or nitrophenolate (present in the zwitterionic open form, b) moiety. Then, nitrophenolate displays a larger first hyperpolarizability than nitrophenol and the β tensor of the two entities might reinforce or cancel each other.
1 Introduction
Scheme 1

Scheme 2

2 Methods
2.1 Synthesis and Preparation of the Solutions
2.2 Linear and Nonlinear Optical Property Characterizations












2.3 Quantum Chemical Calculations

3 Results and Discussion
3.1 Experimental and Theoretical Studies of Compounds 3–4 and 11–12
expt λmax, ΔEmax (ε) | calcd λvert, ΔEvert (f) | |
---|---|---|
3a | 292, 4.25 (7.8) | 273, 4.54 (0.680) |
3b+ | 446, 2.78 (23.4) | 418, 2.96 (1.064) |
4a | 318, 3.90 (11.6) | 280, 4.42 (0.480) |
4b+ | 421, 2.94 (26.0) | 393, 3.15 (1.000) |
11a | 408, 3.04 (11.5) | 359, 3.46 (1.317) |
11b+ | 610, 2.03 (21.5) | 493, 2.52 (1.990) |
12a | 289, 4.29 (21.6) | 266, 4.66 (0.990) |
12b+ | 545, 2.27 (31.2) | 456, 2.72 (1.453) |
closed (a) | open (b+) | ||||
---|---|---|---|---|---|
βHRS | DR | βHRS | DR | open/closed βHRS ratio | |
3 | 1910 | 4.33 | 4820 | 4.76 | 2.45 |
4 | 2050 | 5.12 | 4480 | 5.17 | 2.18 |
11 | 5210 | 6.75 | 52 820 | 4.94 | 10.1 |
12 | 1970 | 4.06 | 54 530 | 5.03 | 27.7 |
Experiment | Calculations | |||||
---|---|---|---|---|---|---|
Closed (a) | Open (b+) | βHRS(b+)/βHRS(a) | Closed (a) | Open (b+) | βHRS(b+)/βHRS(a) | |
3 | 1410 | 2330 | 1.65 | 1308 | 4734 | 3.62 |
4 | 1520 | 2240 | 1.47 | 1283 | 3939 | 3.07 |
11 | 2600 | 26 400 | 10.1 | 6416 | 31 588 | 4.92 |
12 | 1460 | 17 880 | 12.2 | 2092 | 17 257 | 8.25 |
All values correspond to a 1907 nm wavelength, far from resonance, which enables estimation of the intrinsic molecular responses and comparison of calculations with experiments.
Figure 1

Figure 1. Experimental versus ab initio βHRS values (λ = 1907 nm).
3.2 Theoretical Study of Oxazines 3–12 in Comparison to Reference Systems 1–2

3 | 4 | 5 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|
closed (a) | 0.136 | 0.140 | 0.142 | 0.139 | 0.146 | 0.145 | 0.136 | 0.143 |
open (b) | 0.052 | 0.063 | 0.048 | 0.040 | 0.085 | 0.081 | 0.053 | 0.055 |
open (b+) | 0.044 | 0.061 | 0.030 | 0.025 | 0.083 | 0.075 | 0.034 | 0.042 |
a ⇌ b | a + CF3COOH ⇌b+ + CF3COO– | |
---|---|---|
1 | 152.5 (11.5) | 63.8 (13.9) |
2 | 32.9 (46.9) | 106.8 (11.0) |
3 | 38.0 (18.0) | 126.4 (14.4) |
4 | 26.9 (31.6) | 104.5 (19.8) |
5 | 22.0 (23.7) | 97.5 (30.1) |
6 | 60.1 (42.8) | 125.2 (35.0) |
7 | 76.7 (25.3) | 150.3 (10.3) |
8 | 13.1 (16.5) | 89.7 (24.5) |
9 | 41.6 (24.6) | 123.4 (23.6) |
10 | 44.2 (12.1) | 137.2 (13.2) |
11 | 44.4 (19.0) | 98.8 (18.4) |
12 | 37.0 (25.3) | 83.4 (23.3) |
Solvent (chloroform) effects were accounted for using the IEF-PCM model.
Figure 2

Figure 2. Spatial distribution on the S1–S5 and R1 molecular moieties of the variations of the Mulliken charges when opening the oxazine, as determined at the IEF-PCM/M06/6-311G(d) level (in chloroform). (Top) Phototriggered opening, Δq = q(b) – q(a); (Bottom) acido-triggered opening, Δq = q(b+) – q(a).
closed (a) | open (b) | open (b+) | ||||
---|---|---|---|---|---|---|
ΔEvert (f) | character | ΔEvert (f) | character | ΔEvert (f) | character | |
1 | 4.20 (0.75) | Intra nBz | 2.40 (0.49) | Deloc. Ind/nBz | 2.70 (1.65) | Deloc. Ind/nBz |
2 | 4.04 (0.17) | Bzt to nBz + Intra nBz | 2.46 (0.92) | nBz to Bzt | 3.78 (0.76) | nBz to Bzt |
4.11 (0.11) | Intra nBz | |||||
3 | 4.38 (0.55) | Intra nPhol | 3.03 (1.06) | Deloc. R1/Ind | 2.96 (1.06) | Deloc. R1/Ind |
4.54 (0.68) | Intra R1 | |||||
4 | 4.42 (0.48) | Intra nPhol | 3.19 (0.94) | Intra nPhol | 3.15 (1.00) | Deloc. R1/Ind |
5 | 3.78 (0.91) | Intra R1 | 2.59 (1.15) | nPhol to Br + Ind | 2.53 (1.71) | Deloc. R1/Ind |
2.70 (0.50) | R1 to Br + Ind | |||||
6 | 4.43 (0.49) | Intra nPhol | 3.61 (0.46) | Intra nPhol | 4.29 (0.32) | Intra nPhol + nPhol to Ind |
7 | 4.40 (0.49) | Intra nPhol | 3.65 (0.50) | Intra nPhol | 4.80 (0.22) | Intra nPhol |
8 | 4.16 (0.83) | Intra R1 | 2.69 (1.15) | Deloc. R1/Ind + Ph to Deloc. R1/Ind | 2.65 (1.52) | Deloc. R1/Ind |
2.81 (0.34) | Deloc. R1/Ind + Ph to Deloc. R1/Ind | |||||
9 | 4.30 (0.74) | Intra nPhol + Ind. to nPhol | 3.30 (1.16) | Deloc. R1/Ind | 3.26 (1.13) | Deloc. R1/Ind |
10 | 4.37 (0.63) | Ind to R1 + intra R1 | 3.27 (1.23) | Deloc. R1/Ind | 3.19 (1.20) | Deloc. R1/Ind |
11 | 3.46 (1.32) | Intra R1 | 2.61 (1.95) | Deloc. R1/Ind | 2.50 (2.06) | Deloc. R1/Ind |
12 | 4.41 (0.51) | Intra nPhol + Intra R1 | 2.81 (1.39) | Deloc. R1/Ind | 2.72 (1.45) | Deloc. R1/Ind |
4.66 (0.99) | Intra R1 |
Deloc: delocalized. nBz: substituted nitro-benzene. Bzt: benzothiazole/benzothiazolium. nPhol: nitro-phenol or nitro-phenolate. Ind: indoleninium. Br: CH2═CH2 bridge of R1.
closed (a) | open (b) | open (b+) | ||||||
---|---|---|---|---|---|---|---|---|
βHRS | DR | βHRS | DR | βHRS | DR | βHRS(b)/βHRS(a) | βHRS(b+)/βHRS(a) | |
1 | 1442 | 4.79 | 13 375 | 4.57 | 15 044 | 4.69 | 9.28 | 10.43 |
2 | 661 | 3.19 | 9330 | 3.65 | 972 | 2.69 | 14.12 | 1.47 |
3 | 902 | 3.91 | 4770 | 5.93 | 3522 | 4.83 | 5.29 | 3.91 |
4 | 862 | 3.86 | 3681 | 6.01 | 2405 | 4.75 | 4.27 | 2.79 |
5 | 1764 | 3.78 | 20 298 | 5.17 | 22 927 | 4.84 | 11.51 | 13.00 |
6 | 790 | 3.30 | 1802 | 3.64 | 408 | 3.87 | 2.28 | 0.52 |
7 | 796 | 3.23 | 1959 | 3.68 | 425 | 3.79 | 2.46 | 0.53 |
8 | 1947 | 5.07 | 15 215 | 5.28 | 14 285 | 4.76 | 7.81 | 7.34 |
9 | 1310 | 2.92 | 1830 | 2.70 | 814 | 2.93 | 1.40 | 0.62 |
10 | 1015 | 2.81 | 2340 | 4.74 | 1239 | 4.60 | 2.31 | 1.22 |
11 | 3929 | 4.62 | 21 392 | 4.67 | 24 891 | 4.55 | 5.44 | 6.33 |
12 | 1437 | 4.58 | 11 652 | 4.89 | 13 499 | 4.71 | 8.11 | 9.39 |
Figure 3

Figure 3. IEF-PCM/TDHF/6-311+G(d) dynamic (1064 nm) ΔβHRS(X) = βHRSX– βHRS7 for the closed (a), protonated (b+), and zwitterionic (b) open forms of 3–6 and 8–12 (in chloroform).
4 Conclusions and Outlook
Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b13243.
Experimental UV/vis absorption spectra of the closed and protonated open forms of 3, 4, 11, and 12 recorded in chloroform together with characteristics of their main low-energy bands and frequency dispersion factors; Simulated UV/vis absorption spectra of the closed and open forms of compounds 1–12 together with the excitation energies, oscillator strengths, and molecular orbitals involved in the major singly excited determinants for the dominant low-energy transitions; Parameters of the linear regression relationships between the experimental and simulated UV/vis absorption spectra of compounds 3, 4, 11, and 12 in their closed and protonated open forms; HRS power and polarization scans of the closed and protonated open forms of 3, 4, 11, and 12; first hyperpolarizabilities of the protonated open and closed forms of compounds 1–12 as calculated at different levels of approximation and their contrast ratios; Spatial distribution on the S1–S5 and R1 molecular moieties of the Mulliken, Hirshfeld, and NPA charge distributions and their variations for the closed, zwitterionic, and protonated open forms of compounds 1–12; Cartesian coordinates and absolute energies of all compounds (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
Acknowledgment
This work was supported by funds from the Belgian Government (IUAP No P7/5 “Functional Supramolecular Systems”), the Francqui Foundation, by grants from the ANR (PHOEBUS) and the National Science Foundation (CHE-1049860). It has also been done in the frame of the Centre of Excellence LAPHIA (Investments for the future: Programme IdEx Bordeaux − LAPHIA (ANR-10-IDEX-03-02)). V.R. is grateful to F. Adamietz for HRS experimental support and technical developments as well as to the CNRS and the Région Aquitaine for funding supports. We thank V. Liégeois for the use of DrawMol, employed to make the TOC. The calculations were performed on the computers of the Consortium des Équipements de Calcul Intensif, including those of the Technological Platform of High-Performance Computing, for which we gratefully acknowledge the financial support of the FNRS-FRFC (Convention Nos. 2.4.617.07.F and 2.5020.11) and of the University of Namur, as well as on zenobe, the Tier-1 facility of the Walloon Region (Convention 1117545).
References
This article references 38 other publications.
- 1(a) Berkovic, G.; Krongauz, V.; Weiss, V. Chem. Rev. 2000, 100, 1741– 1754 DOI: 10.1021/cr9800715Google Scholar1ahttps://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD3cXhsFyhtr8%253D&md5=df7d04dd8625ccf4280c8ff834a0dc7aSpiropyrans and spirooxazines for memories and switchesBerkovic, Garry; Krongauz, Valeri; Weiss, VictorChemical Reviews (Washington, D. C.) (2000), 100 (5), 1741-1753CODEN: CHREAY; ISSN:0009-2665. (American Chemical Society)A review with 94 refs. on applications of spiropyran-merocyanine systems in memories and switches. The formation of organized structures whose optical properties can be affected by an elec. field was discussed along with the nonlinear optical properties of photochromic systems. Employing photochromic spiropyran and spirooxazine systems in real-time holog. is also considered.(b) Bouas-Laurent, H.; Dürr, H. Pure Appl. Chem. 2001, 73, 639– 665 DOI: 10.1351/pac200173040639Google ScholarThere is no corresponding record for this reference.(c) Cusido, J.; Deniz, E.; Raymo, F. M. Eur. J. Org. Chem. 2009, 2009, 2031– 2045 DOI: 10.1002/ejoc.200801244Google ScholarThere is no corresponding record for this reference.(d) Feringa, B. L.; Browne, W. R., Eds. Molecular Switches, 2nd ed.; Wiley-VCH: Weinheim, 2011.Google ScholarThere is no corresponding record for this reference.(e) Zhang, J.; Zou, Q.; Tian, H. Adv. Mater. 2013, 25, 378– 399 DOI: 10.1002/adma.201201521Google Scholar1ehttps://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC38Xht1aqt7bK&md5=00b8bea6c1561d58964c35fe87f51149Photochromic Materials: More Than Meets The EyeZhang, Junji; Zou, Qi; Tian, HeAdvanced Materials (Weinheim, Germany) (2013), 25 (3), 378-399CODEN: ADVMEW; ISSN:0935-9648. (Wiley-VCH Verlag GmbH & Co. KGaA)A review. Photochromic materials are a family of compds. which can undergo reversible photoswitching between two different states or isomers with remarkably different properties. Inspired by their smart photoswitchable characteristics, a variety of light-driven functional materials have been exploited, such as ultrahigh-d. optical data storage, mol. switches, logic gates, mol. wires, optic/electronic devices, sensors, bio-imaging and so on. This review commences with a brief description of exciting progress in this field, from systems in soln. to modified functional surfaces. Further development of these photoswitchable systems into practical applications as well as existing challenges are also discussed and put in prospect.
- 2(a) Coe, B. J. Chem. - Eur. J. 1999, 5, 2464– 2471 DOI: 10.1002/(SICI)1521-3765(19990903)5:9<2464::AID-CHEM2464>3.0.CO;2-LGoogle Scholar2ahttps://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaK1MXmtVKlsb0%253D&md5=301fd687199dcc926f0bc647aa0f4d42Molecular materials possessing switchable quadratic nonlinear optical propertiesCoe, Benjamin J.Chemistry - A European Journal (1999), 5 (9), 2464-2471CODEN: CEUJED; ISSN:0947-6539. (Wiley-VCH Verlag GmbH)A review with 34 refs. A diverse range of org. and metalorg. mol. materials exhibit quadratic nonlinear optical (NLO) properties, for example, frequency doubling. The incorporation of switchability into the NLO behavior of such materials will further increase their potential for novel applications in emerging optoelectronic and photonic technologies. Strategies for the mol. engineering of switchable NLO materials are outlined, and recent practical demonstrations of the switching of NLO responses, which use stimuli such as photoexcitation or redox reactions, are discussed.(b) Delaire, J. A.; Nakatani, K. Chem. Rev. 2000, 100, 1817– 1845 DOI: 10.1021/cr980078mGoogle ScholarThere is no corresponding record for this reference.(c) Castet, F.; Rodriguez, V.; Pozzo, J.-L.; Ducasse, L.; Plaquet, A.; Champagne, B. Acc. Chem. Res. 2013, 46, 2656– 2665 DOI: 10.1021/ar4000955Google ScholarThere is no corresponding record for this reference.
- 3Okuno, K.; Shigeta, Y.; Kishi, R.; Nakano, M. J. Phys. Chem. Lett. 2013, 4, 2418– 2422 DOI: 10.1021/jz401228cGoogle Scholar3https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3sXhtV2msbbK&md5=12d67ae9b0c33b21845e7a26a31eb7b8Photochromic Switching of Diradical Character: Design of Efficient Nonlinear Optical SwitchesOkuno, Katsuki; Shigeta, Yasuteru; Kishi, Ryohei; Nakano, MasayoshiJournal of Physical Chemistry Letters (2013), 4 (15), 2418-2422CODEN: JPCLCD; ISSN:1948-7185. (American Chemical Society)Open-shell singlet diradical mols. were widely studied because they are key to understanding the nature of chem. bonds. A new concept is proposed for reversible switching of diradical character - an index of the instability of chem. bonds - of a mol. by photochromic reaction. Photochromic diarylethene derivs. with various open-shell singlet diradical characters are theor. designed, and their photochromic diradical character switching behaviors are clarified. These results contribute to designing highly efficient 3rd-order nonlinear optical switching substances based on the correlation between the diradical character and 2nd hyperpolarizability.
- 4(a) Kanis, D. R.; Ratner, M. A.; Marks, T. J. Chem. Rev. 1994, 94, 195– 242 DOI: 10.1021/cr00025a007Google ScholarThere is no corresponding record for this reference.(b) Brédas, J. L.; Adant, C.; Tackx, P.; Persoons, A.; Pierce, B. M. Chem. Rev. 1994, 94, 243– 278 DOI: 10.1021/cr00025a008Google ScholarThere is no corresponding record for this reference.(c) Verbiest, T.; Houbrechts, S.; Kauranen, M.; Clays, C.; Persoons, A. J. Mater. Chem. 1997, 7, 2175– 2189 DOI: 10.1039/a703434bGoogle ScholarThere is no corresponding record for this reference.(d) Nonlinear Optical Properties of Matter: From Molecules to Condensed Phases; Papadopoulos, M. G.; Leszczynski, J.; Sadlej, A. J., Eds.; Springer: Dordrecht, 2006.Google ScholarThere is no corresponding record for this reference.(e) Murugan, N. A.; Kongsted, J.; Rinkevicius, Z.; Ågren, H. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 16453– 16458 DOI: 10.1073/pnas.1006572107Google ScholarThere is no corresponding record for this reference.(f) Johnson, L. E.; Dalton, L. R.; Robinson, B. H. Acc. Chem. Res. 2014, 47, 3258– 3265 DOI: 10.1021/ar5000727Google ScholarThere is no corresponding record for this reference.
- 5Loucif-Saïbi, R.; Nakatani, K.; Delaire, J.; Dumont, M.; Sekkat, Z. Chem. Mater. 1993, 5, 229– 236 DOI: 10.1021/cm00026a014Google ScholarThere is no corresponding record for this reference.
- 6(a) Gilat, S. L.; Kawaï, S. H.; Lehn, J. M. Chem. - Eur. J. 1995, 1, 275– 284 DOI: 10.1002/chem.19950010504Google Scholar6ahttps://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaK2MXns1aktb4%253D&md5=017767ab5030f4f8927d9a5154088a5dLight-triggered molecular devices: photochemical switching of optical and electrochemical properties in molecular wire type diarylethene speciesGilat, Sylvain L.; Kawai, Stephen H.; Lehn, Jean-MarieChemistry - A European Journal (1995), 1 (5), 275-84CODEN: CEUJED; ISSN:0947-6539. (VCH)Bispyridine I (R = 4-pyridyl) and the corresponding bispyridinium were synthesized as the uncyclized isomers from 3,5-dibromo-2-methylthiophene in overall yields of 43 and 44%, resp. The diarylethene photochromes I [R = 1,3-benzodithiol-2-yl, CHO, CH:C(CN)2, etc.], substituted with electron donors and acceptors, were prepd. from 5-methylthiophene-2-carboxyaldehyde in 21-32% overall yield. All of the compds. were found to exhibit pronounced photochromic properties. Irradn. with UV light resulted in essentially complete photocyclization of the open forms to the intensely colored closed isomers which could, in turn, be reconverted back to the open state with visible light of λ > 600 nm. The absorption maxima of the described compds. in their closed forms are shifted far towards, and even into, the near-IR region. Whereas no thermochromic properties were obsd. for the open isomers, the rates of thermal decoloration of the cyclized forms was found to be highly dependent on the nature of the substituents on the thiophene rings. It was demonstrated that reversible photochem. interconversion between the two photochromic states could be used to effectively switch a no. of phys. properties. Thus, the bispyridinium formed from I (R = 4-pyridyl) and I (R = 1,3-benzodithiol-2-yl) represent two kinds of redox switches, the former in redn. and the latter in oxidn., in which electron conduction is switched on in the closed state and off in the open state. I (R = 1,3-benzodithiol-2-yl) may also be considered to be a photoswitchable analog of tetrathiafulvalene type substances. On the other hand, I (R = 2-benzodithiolyl) displays a marked increase in nonlinear optical activity on conversion from the open to the closed form. Such systems are prototypes of photoswitchable mol. wires where electron conduction and push-pull interaction can be reversibly modulated by an external stimulus, namely, irradn. by light.(b) Aubert, V.; Guerchais, V.; Ishow, E.; Hoang-Thi, K.; Ledoux, I.; Nakatani, K.; Le Bozec, H. Angew. Chem., Int. Ed. 2008, 47, 577– 580 DOI: 10.1002/anie.200704138Google Scholar6bhttps://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD1cXptVyrtQ%253D%253D&md5=1ffedbfc7c30e17729cbe0e166b83064Efficient photoswitching of the nonlinear optical properties of dipolar photochromic zinc(II) complexesAubert, Vincent; Guerchais, Veronique; Ishow, Elena; Hoang-Thi, Khuyen; Ledoux, Isabelle; Nakatani, Keitaro; Le Bozec, HubertAngewandte Chemie, International Edition (2008), 47 (3), 577-580CODEN: ACIEF5; ISSN:1433-7851. (Wiley-VCH Verlag GmbH & Co. KGaA)Flipping the switch: A new type of bipyridine-based ligand functionalized by phenyl- and dimethylaminophenyldithienylethene groups allows the prepn. of photochromic dipolar zinc(II) complexes. For the first time, efficient on/off photoswitching of the NLO response of metallochromophores is obsd.
- 7Houbrechts, S.; Clays, K.; Persoons, A.; Pikramenou, Z.; Lehn, J.-M. Chem. Phys. Lett. 1996, 258, 485– 489 DOI: 10.1016/0009-2614(96)00676-8Google ScholarThere is no corresponding record for this reference.
- 8(a) Nakatani, K.; Delaire, J. A. Chem. Mater. 1997, 9, 2682– 2684 DOI: 10.1021/cm970369wGoogle ScholarThere is no corresponding record for this reference.(b)Sliwa, M.; Létard, S.; Malfant, I.; Nierlich, M.; Lacroix, P. G.; Asahi, T.; Masuhara, H.; Yu, P.; Nakatani, K. Chem. Mater. 2005, 17, 4727– 4735 DOI: 10.1021/cm050929o
(a)
Google ScholarThere is no corresponding record for this reference.(c) Bogdan, E.; Plaquet, A.; Antonov, L.; Rodriguez, V.; Ducasse, L.; Champagne, B.; Castet, F. J. Phys. Chem. C 2010, 114, 12760– 12768 DOI: 10.1021/jp103556cGoogle ScholarThere is no corresponding record for this reference. - 9(a) Coe, B. J.; Houbrechts, S.; Asselberghs, I.; Persoons, A. Angew. Chem., Int. Ed. 1999, 38, 366– 369 DOI: 10.1002/(SICI)1521-3773(19990201)38:3<366::AID-ANIE366>3.0.CO;2-DGoogle ScholarThere is no corresponding record for this reference.(b) Averseng, F.; Lepetit, C.; Lacroix, P. G.; Tuchagues, J. P. Chem. Mater. 2000, 12, 2225– 2229 DOI: 10.1021/cm001015zGoogle ScholarThere is no corresponding record for this reference.(c) Asselberghs, I.; Clays, K.; Persoons, A.; McDonagh, A. M.; Ward, M. D.; McCleverty, J. A. Chem. Phys. Lett. 2003, 368, 408– 411 DOI: 10.1016/S0009-2614(02)01890-0Google ScholarThere is no corresponding record for this reference.(d) Aubert, V.; Guerchais, V.; Ishow, E.; Hoang-Thi, K.; Ledoux, I.; Nakatani, K.; Le Bozec, H. Angew. Chem., Int. Ed. 2008, 47, 577– 580 DOI: 10.1002/anie.200704138Google Scholar9dhttps://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD1cXptVyrtQ%253D%253D&md5=1ffedbfc7c30e17729cbe0e166b83064Efficient photoswitching of the nonlinear optical properties of dipolar photochromic zinc(II) complexesAubert, Vincent; Guerchais, Veronique; Ishow, Elena; Hoang-Thi, Khuyen; Ledoux, Isabelle; Nakatani, Keitaro; Le Bozec, HubertAngewandte Chemie, International Edition (2008), 47 (3), 577-580CODEN: ACIEF5; ISSN:1433-7851. (Wiley-VCH Verlag GmbH & Co. KGaA)Flipping the switch: A new type of bipyridine-based ligand functionalized by phenyl- and dimethylaminophenyldithienylethene groups allows the prepn. of photochromic dipolar zinc(II) complexes. For the first time, efficient on/off photoswitching of the NLO response of metallochromophores is obsd.(e) Boubekeur–Lecaque, L.; Coe, B. J.; Harris, J. A.; Helliwell, M.; Asselberghs, I.; Clays, K.; Foerier, S.; Verbiest, T. Inorg. Chem. 2011, 50, 12886– 12899 DOI: 10.1021/ic202145bGoogle ScholarThere is no corresponding record for this reference.(f) Green, K. A.; Cifuentes, M. P.; Samoc, M.; Humphrey, M. G. Coord. Chem. Rev. 2011, 255, 2530– 2544 DOI: 10.1016/j.ccr.2011.02.021Google ScholarThere is no corresponding record for this reference.(g) Di Bella, S.; Oliveri, I. P.; Colombo, A.; Dragonetti, C.; Righetto, S.; Roberto, D. Dalton Trans. 2012, 41, 7013– 7016 DOI: 10.1039/c2dt30702bGoogle ScholarThere is no corresponding record for this reference.(h) Zhang, Y. R.; Castet, F.; Champagne, B. Chem. Phys. Lett. 2013, 574, 42– 46 DOI: 10.1016/j.cplett.2013.04.071Google ScholarThere is no corresponding record for this reference.(i) Boixel, J.; Guerchais, V.; LeBozec, H.; Jacquemin, D.; Amar, A.; Boucekkine, A.; Colombo, A.; Dragonetti, C.; Marinotto, D.; Roberto, D.; Righetto, S.; De Angelis, R. J. Am. Chem. Soc. 2014, 136, 5367– 5375 DOI: 10.1021/ja4131615Google ScholarThere is no corresponding record for this reference.(j) Wang, W. Y.; Ma, N. N.; Sun, S. L.; Qiu, Y. Q. Organometallics 2014, 33, 3341– 3352 DOI: 10.1021/om500224gGoogle ScholarThere is no corresponding record for this reference.(k) Boixel, J.; Guerchais, V.; Le Bozec, H.; Chantzis, A.; Jacquemin, D.; Colombo, A.; Dragonetti, C.; Marinotto, D.; Roberto, D. Chem. Commun. 2015, 51, 7805– 7808 DOI: 10.1039/C5CC01893EGoogle ScholarThere is no corresponding record for this reference.
- 10Asselberghs, I.; Zhao, Y.; Clays, K.; Persoons, A.; Comito, A.; Rubin, Y. Chem. Phys. Lett. 2002, 364, 279– 283 DOI: 10.1016/S0009-2614(02)01346-5Google ScholarThere is no corresponding record for this reference.
- 11(a) Sanguinet, L.; Pozzo, J.-L.; Rodriguez, V.; Adamietz, F.; Castet, F.; Ducasse, L.; Champagne, B. J. Phys. Chem. B 2005, 109, 11139– 11150 DOI: 10.1021/jp0442450Google ScholarThere is no corresponding record for this reference.(b) Mançois, F.; Pozzo, J.-L.; Adamietz, F.; Rodriguez, V.; Ducasse, L.; Castet, F.; Plaquet, A.; Champagne, B. Chem. - Eur. J. 2009, 15, 2560– 2571 DOI: 10.1002/chem.200801967Google Scholar11bhttps://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD1MXjsVOqsL8%253D&md5=e05a3af520ccdff89c9bbc62c369d717Two-way molecular switches with large nonlinear optical contrastMancois, Fabien; Pozzo, Jean-Luc; Pan, Jianfeng; Adamietz, Frederic; Rodriguez, Vincent; Ducasse, Laurent; Castet, Frederic; Plaquet, Aurelie; Champagne, BenoitChemistry - A European Journal (2009), 15 (11), 2560-2571CODEN: CEUJED; ISSN:0947-6539. (Wiley-VCH Verlag GmbH & Co. KGaA)To optimize the nonlinear optical (NLO) contrast, a series of indolinooxazolidine derivs. with electron-withdrawing substituents in the para position on the indolinic residue have been synthesized. Their linear and nonlinear optical properties have been characterized by UV-visible absorption and hyper-Rayleigh scattering measurements, as well as by ab initio calcns. The two-way photo- or pH-triggered switching mechanism has been demonstrated by comparing the absorption spectra of the zwitterionic and protonated open forms (POF). Hyper-Rayleigh measurements have revealed that the second-order NLO contrast between the closed indolinooxazolidine and the open π-conjugated colored forms remain very large upon substitution. Theory and measurements show that for the POFs the amplitude of the first hyperpolarizability follows the Hammett parameters of the withdrawing groups. However, because the measurements are performed in resonance, to recover this behavior, elaborate procedures including homogeneous and inhomogeneous broadenings, as well as single-mode vibronic structures are necessary to extrapolate to the static limit.(c) Szaloki, G.; Alévêque, O.; Pozzo, J. L.; Hadji, R.; Levillain, E.; Sanguinet, L. J. Phys. Chem. B 2015, 119, 307– 315 DOI: 10.1021/jp511825fGoogle ScholarThere is no corresponding record for this reference.(d) Bondu, F.; Hadji, R.; Szalóki, G.; Alévêque, O.; Sanguinet, L.; Pozzo, J. L.; Cavagnat, D.; Buffeteau, T.; Rodriguez, V. J. Phys. Chem. B 2015, 119, 6758– 6765 DOI: 10.1021/acs.jpcb.5b03070Google ScholarThere is no corresponding record for this reference.
- 12Giraud, M.; Léaustic, A.; Guillot, R.; Yu, P.; Lacroix, P. G.; Nakatani, K.; Pansu, R.; Maurel, F. J. Mater. Chem. 2007, 17, 4414– 4425 DOI: 10.1039/b704806hGoogle ScholarThere is no corresponding record for this reference.
- 13Plaquet, A.; Guillaume, M.; Champagne, B.; Castet, F.; Ducasse, L.; Pozzo, J. L.; Rodriguez, V. Phys. Chem. Chem. Phys. 2008, 10, 6223– 6232 DOI: 10.1039/b806561fGoogle Scholar13https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD1cXht1KrsbvK&md5=c339e74d7050a65c36a648cecb88787bIn silico optimization of merocyanine-spiropyran compounds as second-order nonlinear optical molecular switchesPlaquet, Aurelie; Guillaume, Maxime; Champagne, Benoit; Castet, Frederic; Ducasse, Laurent; Pozzo, Jean-Luc; Rodriguez, VincentPhysical Chemistry Chemical Physics (2008), 10 (41), 6223-6232CODEN: PPCPFQ; ISSN:1463-9076. (Royal Society of Chemistry)Time-dependent Hartree-Fock and Moller-Plesset 2nd-order calcns. were used to unravel the relations between structure and 1st hyperpolarizability in spiropyran/merocyanine couples and therefore to design efficient 2nd-order nonlinear optical switching compds. Large 1st hyperpolarizabilities for the merocyanine form as well as large contrasts of 1st hyperpolarizability were obtained when, on the same species, (i) substituents at R1 and R2 positions on the phenolate ring of the merocyanine form are strong acceptor and donor substituents, resp., (ii) the ethylenic bridge is substituted by donor groups, (iii) the other arom. part of the system is benzimidazolo rather than indolino or benzothiazolo, and (iv) strong donor substituents are placed on the benzimidazolo moiety.
- 14(a) Plaquet, A.; Champagne, B.; Castet, F.; Ducasse, L.; Bogdan, E.; Rodriguez, V.; Pozzo, J.-L. New J. Chem. 2009, 33, 1349– 1356 DOI: 10.1039/b900432gGoogle ScholarThere is no corresponding record for this reference.(b) Broman, S. L.; Jevric, M.; Bond, A. D.; Nielsen, M. B. J. Org. Chem. 2014, 79, 41– 64 DOI: 10.1021/jo4020326Google ScholarThere is no corresponding record for this reference.
- 15(a) Plaquet, A.; Champagne, B.; Kulhánek, J.; Bures, F.; Bogdan, E.; Castet, F.; Ducasse, L.; Rodriguez, V. ChemPhysChem 2011, 12, 3245– 3252 DOI: 10.1002/cphc.201100299Google ScholarThere is no corresponding record for this reference.(b) Bures, F.; Cermakova, A.; Kulhánek, J.; Ludwig, M.; Kuznik, W.; Kityk, I. V.; Mikysek, T.; Ruzicka, A. Eur. J. Org. Chem. 2012, 2012, 529– 538 DOI: 10.1002/ejoc.201101226Google ScholarThere is no corresponding record for this reference.
- 16Cariati, E.; Dragonetti, C.; Lucenti, E.; Nisic, F.; Righetto, S.; Roberto, D.; Tordin, E. Chem. Commun. 2014, 50, 1608– 1610 DOI: 10.1039/c3cc48149bGoogle ScholarThere is no corresponding record for this reference.
- 17Castet, F.; Champagne, B.; Pina, F.; Rodriguez, V. ChemPhysChem 2014, 15, 2221– 2224 DOI: 10.1002/cphc.201402190Google ScholarThere is no corresponding record for this reference.
- 18van Bezouw, S.; Campo, J.; Lee, S. H.; Kwon, O. P.; Wenseleers, W. J. Phys. Chem. C 2015, 119, 21658– 21663 DOI: 10.1021/acs.jpcc.5b06968Google ScholarThere is no corresponding record for this reference.
- 19Asselberghs, I.; Flors, C.; Ferrighi, L.; Botek, E.; Champagne, B.; Mizuno, H.; Ando, R.; Miyawaki, A.; Hofkens, J.; Van der Auweraer, M.; Clays, K. J. Am. Chem. Soc. 2008, 130, 15713– 15719 DOI: 10.1021/ja805171qGoogle ScholarThere is no corresponding record for this reference.
- 20(a) Tomasulo, M.; Sortino, S.; White, A. J. P.; Raymo, F. M. J. Org. Chem. 2005, 70, 8180– 8189 DOI: 10.1021/jo051417wGoogle ScholarThere is no corresponding record for this reference.(b) Deniz, E.; Tomasulo, M.; Cusido, J.; Sortino, S.; Raymo, F. M. Langmuir 2011, 27, 11773– 11783 DOI: 10.1021/la201062hGoogle ScholarThere is no corresponding record for this reference.(c) Deniz, E.; Cusido, J.; Swaminathan, S.; Battal, M.; Impellizzeri, S.; Sortino, S.; Raymo, F. M. J. Photochem. Photobiol., A 2012, 229, 20– 28 DOI: 10.1016/j.jphotochem.2011.11.008Google Scholar20chttps://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC38XhtlKnsLo%253D&md5=7afcdb2fcb1e7f98fce9128f6cbcbf27Synthesis and properties of molecular switches based on the opening and closing of oxazine ringsDeniz, Erhan; Cusido, Janet; Swaminathan, Subramani; Battal, Mutlu; Impellizzeri, Stefania; Sortino, Salvatore; Raymo, Francisco M.Journal of Photochemistry and Photobiology, A: Chemistry (2012), 229 (1), 20-28CODEN: JPPCEJ; ISSN:1010-6030. (Elsevier B.V.)The authors designed and synthesized a family of mol. switches each pairing an oxazine ring to a chromophoric fragment. Under the influence of either chem. or optical stimulations, the oxazine ring opens to bring the chromophoric appendage in conjugation with either a 3H-indolium cation or a phenolate anion. These structural transformations alter the electronic structure of the chromophore and, as a result, its electrochem. and spectroscopic signatures. Specifically, the authors demonstrated that the absorption of triphenylamine and thiophene fragments, the fluorescence of a coumarin appendage and the oxidn. potential of a ferrocene center can all be switched with acid, base or UV inputs. Thus, these operating principles and structural designs for switching properties at the mol. level with the aid of external stimulations might eventually lead to a general strategy for the realization of chemo- and photoresponsive materials.(d) Deniz, E.; Tomasulo, M.; Cusido, J.; Yildiz, I.; Petriella, M.; Bossi, M. L.; Sortino, S.; Raymo, F. M. J. Phys. Chem. C 2012, 116, 6058– 6068 DOI: 10.1021/jp211796pGoogle ScholarThere is no corresponding record for this reference.(e) Garcia-Amorós, J.; Swami-Nathan, S.; Raymo, F. M. Dyes Pigm. 2014, 106, 71– 73 DOI: 10.1016/j.dyepig.2014.02.019Google Scholar20ehttps://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2cXmslakurc%253D&md5=c0dacfd696c5693a9ddd65bbd56fe7fcSaving paper with switchable inkGarcia-Amoros, Jaume; Swaminathan, Subramani; Raymo, Francisco M.Dyes and Pigments (2014), 106 (), 71-73CODEN: DYPIDX; ISSN:0143-7208. (Elsevier Ltd.)An oxazine auxochrome and a carbazole chromophore can be integrated within the same covalent skeleton to generate a halochromic mol. switch. Upon addn. of acid, the oxazine ring opens to bring the carbazole fragment in conjugation with a 3H-indolium cation. This structural transformation shifts the main absorption of the carbazole chromophore from the UV to the visible region and, as a result, is accompanied by the appearance of an intense red color. This species can be formulated into an ink to print colored patterns on conventional paper. Upon treatment with base, however, the oxazine ring closes to restore the initial colorless state and erase the printed pattern. In fact, the very same sheet of paper can be recycled for multiple printing and erasing steps. Thus, this structural design for switchable inks can evolve into viable operating principles to enable innovative printing technologies and reduce drastically paper consumption.
- 21Zhu, S.; Li, M.; Tang, S.; Zhang, Y.-M.; Yang, B.; Zhang, S. X.-A. Eur. J. Org. Chem. 2014, 2014, 1227– 1235 DOI: 10.1002/ejoc.201301182Google ScholarThere is no corresponding record for this reference.
- 22(a) Raymo, F. M. J. Phys. Chem. A 2012, 116, 11888– 95 DOI: 10.1021/jp3095787Google ScholarThere is no corresponding record for this reference.(b) Toliautas, S.; Sulskus, J.; Valkunas, L.; Vengris, M. Chem. Phys. 2012, 404, 64– 73 DOI: 10.1016/j.chemphys.2012.03.006Google ScholarThere is no corresponding record for this reference.(c) Redeckas, K.; Martynaitis, V.; Šačkus, A.; Vengris, M. J. Photochem. Photobiol., A 2014, 285, 7– 15 DOI: 10.1016/j.jphotochem.2014.04.010Google Scholar22chttps://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2cXotFGqsLs%253D&md5=8fe92d3389dab134ffec0e45846bbcceUltrafast spectral dynamics of structurally modified photochromic indolo[2,1-b][1,3]benzoxazinesRedeckas, Kipras; Voiciuk, Vladislava; Steponaviciute, Rasa; Martynaitis, Vytas; Sackus, Algirdas; Vengris, MikasJournal of Photochemistry and Photobiology, A: Chemistry (2014), 285 (), 7-15CODEN: JPPCEJ; ISSN:1010-6030. (Elsevier B.V.)Excited state dynamics of structurally modified photochromic compds. of the indolo[2,1-b][1,3]benzoxazine family were studied using femtosecond transient absorption spectroscopy. Four new compds. presented in this paper are classified into two groups according to the attachment site of the phenylic substituents. The excited state evolution was analyzed using global anal. techniques. The proposed nonlinear photoevolution model involves the formation of a short-lived photoproduct in addn. to the main photoreaction pathway. The final ring-opened photoproduct is formed from the mol. excited state S1 via non-radiative transition in ca. 100 ps, and the full thermal ring closure is completed in a sub-microsecond timescale.(d) Redeckas, K.; Voiciuk, V.; Steponavičiute, R.; Martynaitis, V.; Šačkus, A.; Vengris, M. J. Phys. Chem. A 2014, 118, 5642– 51 DOI: 10.1021/jp505723qGoogle ScholarThere is no corresponding record for this reference.
- 23Verbiest, T.; Clays, K.; Rodriguez, V. Second-Order Nonlinear Optical Characterization Techniques: An Introduction; Taylor & Francis: Boca Raton, FL, 2009.Google ScholarThere is no corresponding record for this reference.
- 24(a) Castet, F.; Bogdan, E.; Plaquet, A.; Ducasse, L.; Champagne, B.; Rodriguez, V. J. Chem. Phys. 2012, 136, 024506 DOI: 10.1063/1.3675848Google Scholar24ahttps://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC38XnvVeltw%253D%253D&md5=c1a34fae5a264b360aa9c710cb95ac8aReference molecules for nonlinear optics: a joint experimental and theoretical investigationCastet, Frederic; Bogdan, Elena; Plaquet, Aurelie; Ducasse, Laurent; Champagne, Benoit; Rodriguez, VincentJournal of Chemical Physics (2012), 136 (2), 024506/1-024506/15CODEN: JCPSA6; ISSN:0021-9606. (American Institute of Physics)Hyper-Rayleigh scattering (HRS) expts. and quantum chem. calcns. are combined to study the 2nd-order nonlinear optical responses of ref. mols., namely, CCl4, CHCl3, trichloroacetonitrile, MeCN, and CH2Cl2. The multipolar decompn. of the 1st hyperpolarizability tensor through the use of the spherical harmonics formalism is employed to highlight the impact of the symmetry of the mol. scatterers on their nonlinear optical responses. HRS is a technique of choice to probe the mol. symmetry of the compds. Coupled-cluster calcns. performed at the coupled-cluster level with singles, doubles, and perturbative triples in combination with highly extended basis sets and including environment effects by using the polarizable continuum model qual. reproduce the mol. 1st hyperpolarizabilities and depolarization ratios of the mol. scatterers. (c) 2012 American Institute of Physics.(b) Castet, F.; Blanchard-Desce, M.; Adamietz, F.; Poronik, Y. M.; Gryko, D. T.; Rodriguez, V. ChemPhysChem 2014, 15, 2575– 81 DOI: 10.1002/cphc.201402083Google ScholarThere is no corresponding record for this reference.
- 25Bersohn, R. J. Chem. Phys. 1966, 45, 3184– 3198 DOI: 10.1063/1.1728092Google ScholarThere is no corresponding record for this reference.
- 26(a) Oudar, J. L.; Chemla, D. S. J. Chem. Phys. 1977, 66, 2664– 2668 DOI: 10.1063/1.434213Google ScholarThere is no corresponding record for this reference.(b) Campo, J.; Wenseleers, W.; Goovaerts, E.; Szablewski, M.; Cross, G. H. J. Phys. Chem. C 2008, 112, 287– 296 DOI: 10.1021/jp0758824Google ScholarThere is no corresponding record for this reference.
- 27(a) Orr, B.; Ward, J. Mol. Phys. 1971, 20, 513– 526 DOI: 10.1080/00268977100100481Google ScholarThere is no corresponding record for this reference.(b) Bishop, D. M. J. Chem. Phys. 1994, 100, 6535– 6542 DOI: 10.1063/1.467062Google ScholarThere is no corresponding record for this reference.
- 28Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215– 241 DOI: 10.1007/s00214-007-0310-xGoogle Scholar28https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD1cXltFyltbY%253D&md5=c31d6f319d7c7a45aa9b716220e4a422The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionalsZhao, Yan; Truhlar, Donald G.Theoretical Chemistry Accounts (2008), 120 (1-3), 215-241CODEN: TCACFW; ISSN:1432-881X. (Springer GmbH)We present two new hybrid meta exchange-correlation functionals, called M06 and M06-2X. The M06 functional is parametrized including both transition metals and nonmetals, whereas the M06-2X functional is a high-nonlocality functional with double the amt. of nonlocal exchange (2X), and it is parametrized only for nonmetals. The functionals, along with the previously published M06-L local functional and the M06-HF full-Hartree-Fock functionals, constitute the M06 suite of complementary functionals. We assess these four functionals by comparing their performance to that of 12 other functionals and Hartree-Fock theory for 403 energetic data in 29 diverse databases, including ten databases for thermochem., four databases for kinetics, eight databases for noncovalent interactions, three databases for transition metal bonding, one database for metal atom excitation energies, and three databases for mol. excitation energies. We also illustrate the performance of these 17 methods for three databases contg. 40 bond lengths and for databases contg. 38 vibrational frequencies and 15 vibrational zero point energies. We recommend the M06-2X functional for applications involving main-group thermochem., kinetics, noncovalent interactions, and electronic excitation energies to valence and Rydberg states. We recommend the M06 functional for application in organometallic and inorganometallic chem. and for noncovalent interactions.
- 29Li, R.; Zheng, J.; Truhlar, D. G. Phys. Chem. Chem. Phys. 2010, 12, 12697– 12701 DOI: 10.1039/c0cp00549eGoogle ScholarThere is no corresponding record for this reference.
- 30(a) Sekino, H.; Bartlett, R. J. J. Chem. Phys. 1986, 85, 976– 989 DOI: 10.1063/1.451255Google ScholarThere is no corresponding record for this reference.(b) Karna, S. P.; Dupuis, M. J. Comput. Chem. 1991, 12, 487– 504 DOI: 10.1002/jcc.540120409Google ScholarThere is no corresponding record for this reference.
- 31(a) Champagne, B.; Kirtman, B. J. Chem. Phys. 2006, 125, 024101 DOI: 10.1063/1.2206181Google ScholarThere is no corresponding record for this reference.(b) de Wergifosse, M.; Champagne, B. J. Chem. Phys. 2011, 134, 074113 DOI: 10.1063/1.3549814Google ScholarThere is no corresponding record for this reference.(c) Hidalgo Cardenuto, M.; Champagne, B. Phys. Chem. Chem. Phys. 2015, 17, 23634– 23642 DOI: 10.1039/C5CP03455HGoogle ScholarThere is no corresponding record for this reference.
- 32Cohen, H. D.; Roothaan, C. C. J. J. Chem. Phys. 1965, 43, S34 DOI: 10.1063/1.1701512Google ScholarThere is no corresponding record for this reference.
- 33(a) Mohammed, A. A. K.; Limacher, P. A.; Champagne, B. J. Comput. Chem. 2013, 34, 1497– 1503 DOI: 10.1002/jcc.23285Google ScholarThere is no corresponding record for this reference.(b) de Wergifosse, M.; Liégeois, V.; Champagne, B. Int. J. Quantum Chem. 2014, 114, 900– 910 DOI: 10.1002/qua.24685Google ScholarThere is no corresponding record for this reference.
- 34(a) Sekino, H.; Bartlett, R. J. J. Chem. Phys. 1986, 84, 2726– 2733 DOI: 10.1063/1.450348Google ScholarThere is no corresponding record for this reference.(b) Rice, J. E.; Handy, N. Int. J. Quantum Chem. 1992, 43, 91– 118 DOI: 10.1002/qua.560430110Google ScholarThere is no corresponding record for this reference.(c) Sekino, H.; Bartlett, R. J. Chem. Phys. Lett. 1995, 234, 87– 93 DOI: 10.1016/0009-2614(95)00007-QGoogle ScholarThere is no corresponding record for this reference.(d) Jacquemin, D.; Champagne, B.; Hättig, C. Chem. Phys. Lett. 2000, 319, 327– 334 DOI: 10.1016/S0009-2614(00)00155-XGoogle ScholarThere is no corresponding record for this reference.
- 35Willetts, A.; Rice, J. E.; Burland, D. M.; Shelton, D. P. J. Chem. Phys. 1992, 97, 7590– 7599 DOI: 10.1063/1.463479Google ScholarThere is no corresponding record for this reference.
- 36(a) Mennucci, B.; Cammi, R.; Tomasi, J. Int. J. Quantum Chem. 1999, 75, 767– 781 DOI: 10.1002/(SICI)1097-461X(1999)75:4/5<767::AID-QUA43>3.0.CO;2-LGoogle ScholarThere is no corresponding record for this reference.(b) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999– 3094 DOI: 10.1021/cr9904009Google Scholar36bhttps://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD2MXmsVynurc%253D&md5=462420dd18b3006ee63d1298b66db247Quantum Mechanical Continuum Solvation ModelsTomasi, Jacopo; Mennucci, Benedetta; Cammi, RobertoChemical Reviews (Washington, DC, United States) (2005), 105 (8), 2999-3093CODEN: CHREAY; ISSN:0009-2665. (American Chemical Society)A review.
- 37Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.Gaussian 09, Revision D01; Gaussian, Inc.: Wallingford, CT, 2009.Google ScholarThere is no corresponding record for this reference.
- 38(a) Castet, F.; Champagne, B. J. Phys. Chem. A 2001, 105, 1366– 1370 DOI: 10.1021/jp003746sGoogle ScholarThere is no corresponding record for this reference.(b) Suponitsky, K. Y.; Masunov, A. E. J. Chem. Phys. 2013, 139, 094310 DOI: 10.1063/1.4819265Google ScholarThere is no corresponding record for this reference.
Cited By
This article is cited by 99 publications.
- Simon Dubuis, Angela Dellai, Chloé Courdurié, Josianne Owona, Apostolos Kalafatis, Luc Vellutini, Emilie Genin, Vincent Rodriguez, Frédéric Castet. Nonlinear Optical Responses of Photoswitchable Donor–Acceptor Stenhouse Adducts. Journal of the American Chemical Society 2023, 145
(19)
, 10861-10871. https://doi.org/10.1021/jacs.3c02778
- Frédéric Castet, Claire Tonnelé, Luca Muccioli, Benoît Champagne. Predicting the Second-Order Nonlinear Optical Responses of Organic Materials: The Role of Dynamics. Accounts of Chemical Research 2022, 55
(24)
, 3716-3726. https://doi.org/10.1021/acs.accounts.2c00616
- Qingbao Gong, Xinfu Zhang, Wanwan Li, Xing Guo, Qinghua Wu, Changjiang Yu, Lijuan Jiao, Yi Xiao, Erhong Hao. Long-Wavelength Photoconvertible Dimeric BODIPYs for Super-Resolution Single-Molecule Localization Imaging in Near-Infrared Emission. Journal of the American Chemical Society 2022, 144
(48)
, 21992-21999. https://doi.org/10.1021/jacs.2c08947
- Lucas F. Sciuti, Luis M. G. Abegão, Carlos H. D. dos Santos, Leandro H. Zucolotto Cocca, Rafaela G. M. da Costa, Jones Limberger, Lino Misoguti, Cleber R. Mendonça, Leonardo De Boni. Modeling the First-Order Molecular Hyperpolarizability Dispersion from Experimentally Obtained One- and Two-Photon Absorption. The Journal of Physical Chemistry A 2022, 126
(14)
, 2152-2159. https://doi.org/10.1021/acs.jpca.1c10559
- Fangfang Meng, Jie Niu, Huamiao Zhang, Rui Yang, Qing Lu, Guangle Niu, Zhiqiang Liu, Xiaoqiang Yu. A pH-Sensitive Spirocyclization Strategy for Constructing a Single Fluorescent Probe Simultaneous Two-Color Visualizing of Lipid Droplets and Lysosomes and Monitoring of Lipophagy. Analytical Chemistry 2021, 93
(34)
, 11729-11735. https://doi.org/10.1021/acs.analchem.1c01842
- Jean Quertinmont, Pierre Beaujean, Julien Stiennon, Youssef Aidibi, Philippe Leriche, Vincent Rodriguez, Lionel Sanguinet, Benoît Champagne. Combining Benzazolo-Oxazolidine Twins toward Multi-state Nonlinear Optical Switches. The Journal of Physical Chemistry B 2021, 125
(15)
, 3918-3931. https://doi.org/10.1021/acs.jpcb.1c01962
- Amin Abdollahi, Hossein Roghani-Mamaqani, Bahareh Razavi, Mehdi Salami-Kalajahi. Photoluminescent and Chromic Nanomaterials for Anticounterfeiting Technologies: Recent Advances and Future Challenges. ACS Nano 2020, 14
(11)
, 14417-14492. https://doi.org/10.1021/acsnano.0c07289
- Martina Canton, Angela B. Grommet, Luca Pesce, Julius Gemen, Shiming Li, Yael Diskin-Posner, Alberto Credi, Giovanni M. Pavan, Joakim Andréasson, Rafal Klajn. Improving Fatigue Resistance of Dihydropyrene by Encapsulation within a Coordination Cage. Journal of the American Chemical Society 2020, 142
(34)
, 14557-14565. https://doi.org/10.1021/jacs.0c06146
- Jin-Ting Ye, Hong-Qiang Wang, Yuan Zhang, Yong-Qing Qiu. Regulation of the Molecular Architectures on Second-Order Nonlinear Optical Response and Thermally Activated Delayed Fluorescence Property: Homoconjugation and Twisted Donor–Acceptor. The Journal of Physical Chemistry C 2020, 124
(1)
, 921-931. https://doi.org/10.1021/acs.jpcc.9b10067
- Clément Guerrin, Youssef Aidibi, Lionel Sanguinet, Philippe Leriche, Stéphane Aloise, Maylis Orio, Stéphanie Delbaere. When Light and Acid Play Tic-Tac-Toe with a Nine-State Molecular Switch. Journal of the American Chemical Society 2019, 141
(48)
, 19151-19160. https://doi.org/10.1021/jacs.9b11048
- Claire Tonnelé, Benoît Champagne, Luca Muccioli, Frédéric Castet. Nonlinear Optical Contrast in Azobenzene-Based Self-Assembled Monolayers. Chemistry of Materials 2019, 31
(17)
, 6759-6769. https://doi.org/10.1021/acs.chemmater.9b01241
- Kornelia Pielak, Claire Tonnelé, Lionel Sanguinet, Elena Cariati, Stefania Righetto, Luca Muccioli, Frédéric Castet, Benoît Champagne. Dynamical Behavior and Second Harmonic Generation Responses in Acido-Triggered Molecular Switches. The Journal of Physical Chemistry C 2018, 122
(45)
, 26160-26168. https://doi.org/10.1021/acs.jpcc.8b08697
- Baihao Shao, Massimo Baroncini, Hai Qian, Laura Bussotti, Mariangela Di Donato, Alberto Credi, Ivan Aprahamian. Solution and Solid-State Emission Toggling of a Photochromic Hydrazone. Journal of the American Chemical Society 2018, 140
(39)
, 12323-12327. https://doi.org/10.1021/jacs.8b07108
- L. Kortekaas, J. Chen, D. Jacquemin, W. R. Browne. Proton-Stabilized Photochemically Reversible E/Z Isomerization of Spiropyrans. The Journal of Physical Chemistry B 2018, 122
(24)
, 6423-6430. https://doi.org/10.1021/acs.jpcb.8b03528
- Wei-Ming Sun, Bi-Lian Ni, Di Wu, Jian-Ming Lan, Chun-Yan Li, Ying Li, and Zhi-Ru Li . Designing Alkalides with Considerable Nonlinear Optical Responses and High Stability Based on the Facially Polarized Janus all-cis-1,2,3,4,5,6-Hexafluorocyclohexane. Organometallics 2017, 36
(17)
, 3352-3359. https://doi.org/10.1021/acs.organomet.7b00491
- Miquel Torrent-Sucarrat, Sara Navarro, Enrique Marcos, Josep M. Anglada, and Josep M. Luis . Design of Hückel–Möbius Topological Switches with High Nonlinear Optical Properties. The Journal of Physical Chemistry C 2017, 121
(35)
, 19348-19357. https://doi.org/10.1021/acs.jpcc.7b05900
- Pedro R. Florindo, Paulo J. Costa, M. F. M. Piedade, and M. Paula Robalo . pH-Switchability and Second-Order Nonlinear Optical Properties of Monocyclopentadienylruthenium(II)/iron(II) Tetrazoles/Tetrazolates: Synthesis, Characterization, and Time-Dependent Density Functional Theory Calculations. Inorganic Chemistry 2017, 56
(12)
, 6849-6863. https://doi.org/10.1021/acs.inorgchem.7b00138
- Salahuddin Attar, Davide Espa, Flavia Artizzu, Luca Pilia, Angela Serpe, Maddalena Pizzotti, Gabriele Di Carlo, Luciano Marchiò, and Paola Deplano . Optically Multiresponsive Heteroleptic Platinum Dithiolene Complex with Proton-Switchable Properties. Inorganic Chemistry 2017, 56
(12)
, 6763-6767. https://doi.org/10.1021/acs.inorgchem.7b00238
- Chengmin Ji, Sasa Wang, Sijie Liu, Zhihua Sun, Jing Zhang, Lina Li, and Junhua Luo . Exceptional Three-Level Switching Behaviors of Quadratic Nonlinear Optical Properties in a Tristable Molecule-Based Dielectric. Chemistry of Materials 2017, 29
(7)
, 3251-3256. https://doi.org/10.1021/acs.chemmater.7b00524
- Jean Quertinmont, Andrea Carletta, Nikolay A. Tumanov, Tom Leyssens, Johan Wouters, and Benoît Champagne . Assessing Density Functional Theory Approaches for Predicting the Structure and Relative Energy of Salicylideneaniline Molecular Switches in the Solid State. The Journal of Physical Chemistry C 2017, 121
(12)
, 6898-6908. https://doi.org/10.1021/acs.jpcc.7b00580
- Kornelia Pielak, Flavie Bondu, Lionel Sanguinet, Vincent Rodriguez, Benoît Champagne, and Frédéric Castet . Second-Order Nonlinear Optical Properties of Multiaddressable Indolinooxazolidine Derivatives: Joint Computational and Hyper-Rayleigh Scattering Investigations. The Journal of Physical Chemistry C 2017, 121
(3)
, 1851-1860. https://doi.org/10.1021/acs.jpcc.6b11082
- M. Chattopadhyaya, N. Arul Murugan, and Zilvinas Rinkevicius . Origin of the Absorption Band of Bromophenol Blue in Acidic and Basic pH: Insight from a Combined Molecular Dynamics and TD-DFT/MM Study. The Journal of Physical Chemistry A 2016, 120
(36)
, 7175-7182. https://doi.org/10.1021/acs.jpca.6b07660
- Ye-xuan Li, Chang-Zhe Sun, Hong-Liang Xu. The solvation effect of photochromic nonlinear optical properties switch. Computational and Theoretical Chemistry 2024, 1231 , 114419. https://doi.org/10.1016/j.comptc.2023.114419
- Angela Dellai, Chloé Courdurié, Simon Dubuis, Komlanvi Sèvi Kaka, Benoît Champagne, Luc Vellutini, Emilie Genin, Vincent Rodriguez, Frédéric Castet. Second harmonic responses of clickable azobenzenes in solution: Comparative Hyper-Rayleigh scattering and density functional theory studies. Dyes and Pigments 2023, 220 , 111744. https://doi.org/10.1016/j.dyepig.2023.111744
- O. Esquivel-González, R.A. Vázquez-García, M.A. Veloz-Rodríguez, J.E. Muñoz-Pérez, E. Rueda-Soriano, O.J. Hernández-Ortiz. Synthesis, photophysical properties and nonlinear response of a bisquinoline A-D-A with aggregation-induced emission for potential application in optoelectronic devices. Chemical Physics Impact 2023, 7 , 100398. https://doi.org/10.1016/j.chphi.2023.100398
- Fengyi Yang, Jiali Chen, Junwen Wang, Jinjian Liu. Five novel supramolecular assemblies constructed from the thiazolothiazole extended viologen moiety. CrystEngComm 2023, 25
(38)
, 5461-5469. https://doi.org/10.1039/D3CE00650F
- Ajeet Kumar, Satish Kumar. Light-controlled receptors for environmentally and biologically relevant anions. Chemical Engineering Journal 2023, 474 , 145493. https://doi.org/10.1016/j.cej.2023.145493
- Cheng Ma, Lijing Gong, Xiangyu Zhang, Hongmei Liu. Investigation of linear and second-order nonlinear optical properties of donor-acceptor interaction derivatives based on acceptor DCPPr core. Journal of Molecular Structure 2023, 1282 , 135203. https://doi.org/10.1016/j.molstruc.2023.135203
- Carmelo Naim, Raphaël Vangheluwe, Isabelle Ledoux-Rak, Benoît Champagne, Claire Tonnelé, Mireille Blanchard-Desce, Eduard Matito, Frédéric Castet. Electric-field induced second harmonic generation responses of push–pull polyenic dyes: experimental and theoretical characterizations. Physical Chemistry Chemical Physics 2023, 25
(20)
, 13978-13988. https://doi.org/10.1039/D3CP00750B
- Francisco A. Santos, Carlos E. R. Cardoso, José J. Rodrigues, Leonardo De Boni, Luis M. G. Abegão. Nonlinear Optical Materials: Predicting the First-Order Molecular Hyperpolarizability of Organic Molecular Structures. Photonics 2023, 10
(5)
, 545. https://doi.org/10.3390/photonics10050545
- Bethany R. Hood, Yovan de Coene, Afonso V. Torre Do Vale Froes, Claire F. Jones, Pierre Beaujean, Vincent Liégeois, Fraser MacMillan, Benoît Champagne, Koen Clays, John Fielden. Electrochemically‐Switched 2nd Order Non‐Linear Optical Response in an Arylimido‐Polyoxometalate with High Contrast and Cyclability. Angewandte Chemie 2023, 135
(5)
https://doi.org/10.1002/ange.202215537
- Bethany R. Hood, Yovan de Coene, Afonso V. Torre Do Vale Froes, Claire F. Jones, Pierre Beaujean, Vincent Liégeois, Fraser MacMillan, Benoît Champagne, Koen Clays, John Fielden. Electrochemically‐Switched 2nd Order Non‐Linear Optical Response in an Arylimido‐Polyoxometalate with High Contrast and Cyclability. Angewandte Chemie International Edition 2023, 62
(5)
https://doi.org/10.1002/anie.202215537
- Milad Babazadeh-Mamaqani, Hossein Roghani-Mamaqani, Hossein Alidaei-Sharif, Mehdi Salami-Kalajahi. Development of pH sensing colloidal nanoparticles and oil/water separating electrospun membranes containing oxazolidine from functional polymers. Journal of Materials Chemistry C 2023, 11
(2)
, 685-697. https://doi.org/10.1039/D2TC04546J
- Tárcius N. Ramos, Benoît Champagne. Investigation of the Second Harmonic Generation at the Water–Vacuum Interface by Using Multi‐Scale Modeling Methods. ChemistryOpen 2023, 12
(1)
https://doi.org/10.1002/open.202200045
- Bahareh Razavi, Hossein Roghani-Mamaqani, Mehdi Salami-Kalajahi. Colorimetric/fluorometric optical chemosensors based on oxazolidine for highly selective detection of Fe3+ and Ag+ in aqueous media: Development of ionochromic security papers. Journal of Molecular Structure 2023, 1271 , 134021. https://doi.org/10.1016/j.molstruc.2022.134021
- Hossein Roghani‐Mamaqani, Zeinab Tajmoradi. Photoresponsive Polymers. 2022, 53-134. https://doi.org/10.1002/9783527832385.ch2
- Bahareh Razavi, Hossein Roghani-Mamaqani, Mehdi Salami-Kalajahi. Development of highly sensitive metal-ion chemosensor and key-lock anticounterfeiting technology based on oxazolidine. Scientific Reports 2022, 12
(1)
https://doi.org/10.1038/s41598-022-05098-x
- Lijing Gong, Cheng Ma, Wanfeng Lin, Huan Guo, Hongliang Zhao. Linear and second‐order nonlinear optical properties of B,N‐embedded double hetero[7]helicenes. International Journal of Quantum Chemistry 2022, 122
(21)
https://doi.org/10.1002/qua.26974
- Bicheng Zhang, Zaitian Cheng, Jianhua Hou. The electronic structures and nonlinear optical properties of Alkali and Alkali earth metal atoms doped C6H6Cl6: A density functional theoretical study. Journal of Molecular Graphics and Modelling 2022, 116 , 108263. https://doi.org/10.1016/j.jmgm.2022.108263
- Bicheng Zhang, Ruiting Zheng, Chao Wang, Jianhua Hou. The Alkaline-earthides based parallel-stacked dimer and trimer of Janus face C6H6F6 showing extremely large nonlinear optical responses. Polyhedron 2022, 227 , 116119. https://doi.org/10.1016/j.poly.2022.116119
- Na Hou, Ran Feng, Xiao‐Hui Fang. A theoretical comparison of the electrical and nonlinear optical properties of
GDY
–
π
–
TPA
: The important role of
π
‐conjugated bridge. International Journal of Quantum Chemistry 2022, 122
(19)
https://doi.org/10.1002/qua.26965
- Yao Yao, Hong-Liang Xu, Zhong-Min Su. A novel acid-controlled second-order nonlinear optical switch based on dimethyldihydropyrene/cyclophanediene photoswitch. Journal of Materials Chemistry C 2022, 10
(34)
, 12338-12349. https://doi.org/10.1039/D2TC02521C
- Chun-Lei Li, Yu-He Sun, Ming-Sheng Wang, Xiu-Shuang Xing. A crystalline photochromic metalloviologen compound with a chiral ligand: Synthetic strategy and SHG-photoswitching property. Inorganic Chemistry Communications 2022, 140 , 109448. https://doi.org/10.1016/j.inoche.2022.109448
- Pierre Beaujean, Lionel Sanguinet, Vincent Rodriguez, Frédéric Castet, Benoît Champagne. Multi-State Second-Order Nonlinear Optical Switches Incorporating One to Three Benzazolo-Oxazolidine Units: A Quantum Chemistry Investigation. Molecules 2022, 27
(9)
, 2770. https://doi.org/10.3390/molecules27092770
- S. Grande-Sánchez, O. J. Hernández-Ortiz, F. M. Muñoz-Pérez, J. M. Sausedo-Solorio, J. G. Ortega-Mendoza, J. R. Villagómez-Ibarra, M. A. Veloz-Rodríguez, A. Espinosa-Roa, C. H. Escalante, R. A. Vázquez-García. Functionalization of carminic acid, the study of its electrochemical, linear, and nonlinear optical properties as a potential material for optoelectronic applications. Journal of Materials Science: Materials in Electronics 2022, 33
(9)
, 6226-6239. https://doi.org/10.1007/s10854-022-07797-7
- Geping Zhang, Dandan Lu, Keyang Yin, Nicolas Godbert, Renhao Dong, Hongguang Li, Jingcheng Hao. Alkylated, naphthalimide-containing ionic compounds with rich thermotropic behaviour and nonlinear optical response. Journal of Materials Chemistry C 2022, 10
(8)
, 3061-3070. https://doi.org/10.1039/D1TC05039G
- Flavia Artizzu, Davide Espa, Luciano Marchiò, Luca Pilia, Angela Serpe, Paola Deplano. Progress and perspectives on strategies to control photochemical properties in Metallo-Dithiolene Donor-Acceptor systems. Inorganica Chimica Acta 2022, 531 , 120731. https://doi.org/10.1016/j.ica.2021.120731
- Lijing Gong, Xiangyu Zhang, Cheng Ma. Computational study on the optical and NLO properties of donor–acceptor interaction molecules containing a triazolobenzothiadiazole or benzothiadiazole central acceptor core. New Journal of Chemistry 2021, 45
(48)
, 22824-22832. https://doi.org/10.1039/D1NJ04538E
- Muhammed Jeneesh Kariyottu Kuniyil, Ramanathan Padmanaban. Anti‐Stokes Fluorescence and Nonlinear Optical Properties of the Functionalized Phenoxazine‐based Dye: A computational study. ChemistrySelect 2021, 6
(42)
, 11706-11717. https://doi.org/10.1002/slct.202103286
- Lijing Gong, Cheng Ma, Jian Zhang, Xiangyu Zhang, Kun Jin. Optical and NLO properties of zigzag carbon nanobelt compounds. Journal of Molecular Structure 2021, 1244 , 130936. https://doi.org/10.1016/j.molstruc.2021.130936
- Wenning Jiang, Lulu Han, Ting Xu, Zhenhua Chao, Ziyu Liu, Chong Zhang, Lingyun Jia. Fossil-like pollen grains for construction of UV-responsive photochromic and fluorogenic dual-functional film. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 625 , 126944. https://doi.org/10.1016/j.colsurfa.2021.126944
- Gurleen Kaur Gulati, Loveleen Kaur Gulati, Satish Kumar. Recent progress in multi-stimulable photochromic oxazines with their wide-ranging applications. Dyes and Pigments 2021, 192 , 109445. https://doi.org/10.1016/j.dyepig.2021.109445
- Huimin Kang, Jinting Ye, Hongqiang Wang, Yuan Zhang, Yongqing Qiu. DFT study of effect of substituents on second-order NLO response of novel BODIPY dyes. Theoretical Chemistry Accounts 2021, 140
(5)
https://doi.org/10.1007/s00214-021-02758-5
- Lin Zhang, Hongjun Li, Huajun He, Yu Yang, Yuanjing Cui, Guodong Qian. Structural Variation and Switchable Nonlinear Optical Behavior of Metal–Organic Frameworks. Small 2021, 17
(6)
https://doi.org/10.1002/smll.202006649
- Steven Wild, Nathan Tice. DFT study of structural and electronic properties of 1,4-diarylcyclopenta[d] pyridazines and oxazines for non-linear optical applications. Journal of Molecular Modeling 2021, 27
(2)
https://doi.org/10.1007/s00894-021-04676-6
- Roger Bresolí-Obach, Walter A. Massad, Abasi Abudulimu, Larry Lüer, Cristina Flors, Javier G. Luis, Laura I. Rosquete, Teresa A. Grillo, Ommid Anamimoghadam, Götz Bucher, Santi Nonell. 9-Aryl-phenalenones: Bioinspired thermally reversible photochromic compounds for photoswitching applications in the pico-to milliseconds range. Dyes and Pigments 2021, 186 , 109060. https://doi.org/10.1016/j.dyepig.2020.109060
- Huamiao Zhang, Minggang Tian, Rui Yang, Xiuquan He, Xiaoqiang Yu. A general strategy to increase emission shift of two-photon ratiometric pH probes using a reversible intramolecular reaction of spiro-oxazolidine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2021, 246 , 119035. https://doi.org/10.1016/j.saa.2020.119035
- Frédéric Castet, Adrien Gillet, Filip Bureš, Aurélie Plaquet, Vincent Rodriguez, Benoît Champagne. Second-order nonlinear optical properties of
Λ
-shaped pyrazine derivatives. Dyes and Pigments 2021, 184 , 108850. https://doi.org/10.1016/j.dyepig.2020.108850
- Shivani, Ishpreet Kaur, Karthika Chemmanghattu, Paramjit Kaur, Kamaljit Singh. Non-linear optical behavior of benzothiazole based chromophores: Second harmonic generation. Dyes and Pigments 2020, 183 , 108739. https://doi.org/10.1016/j.dyepig.2020.108739
- Lijing Gong, Cheng Ma, Tiejun Liu, Jinkai Lv, Xianchao Xun. Theoretical study on functionalized acrylonitrile compounds with a large second-order nonlinear optical response. New Journal of Chemistry 2020, 44
(45)
, 19623-19629. https://doi.org/10.1039/D0NJ04575F
- Amin Abdollahi, Hossein Roghani-Mamaqani, Mehdi Salami-Kalajahi, Bahareh Razavi. Encryption and authentication of security patterns by ecofriendly multi-color photoluminescent inks containing oxazolidine-functionalized nanoparticles. Journal of Colloid and Interface Science 2020, 580 , 192-210. https://doi.org/10.1016/j.jcis.2020.06.121
- Guo-Chen Zhao, Chun-Guang Liu. Twisted chromophore assist to tetrathiafulvalene-spiropyran hybrid driving four-state molecular switch. Computational and Theoretical Chemistry 2020, 1186 , 112915. https://doi.org/10.1016/j.comptc.2020.112915
- Laurie Lescos, Sebastian P. Sitkiewicz, Pierre Beaujean, Mireille Blanchard-Desce, Benoît Champagne, Eduard Matito, Frédéric Castet. Performance of DFT functionals for calculating the second-order nonlinear optical properties of dipolar merocyanines. Physical Chemistry Chemical Physics 2020, 22
(29)
, 16579-16594. https://doi.org/10.1039/D0CP02992K
- Yanling Si, Guochun Yang. The photophysical properties of cycloparaphenylene-based compounds with figure-eight configurations. New Journal of Chemistry 2020, 44
(28)
, 12185-12193. https://doi.org/10.1039/D0NJ02637A
- Li-jing Gong, Cheng Ma, Chun-ping Li, Jin-kai Lv, Xiang-yu Zhang. Electronic structure and second-order nonlinear optical properties of linear [3]spirobifluorenylene compounds. New Journal of Chemistry 2020, 44
(25)
, 10484-10491. https://doi.org/10.1039/D0NJ02454F
- Li-jing Gong, Cheng Ma, Wan-feng Lin, Jin-kai Lv, Xiang-yu Zhang. Electronic structure and second-order nonlinear optical properties of lemniscular [16]cycloparaphenylene compounds. RSC Advances 2020, 10
(24)
, 13984-13990. https://doi.org/10.1039/D0RA01323D
- Francisco A. Santos, Luis M. G. Abegão, Ruben D. Fonseca, Aline M. Alcântara, Cleber R. Mendonça, Márcio A. R. C. Alencar, Marcelo S. Valle, Kenji Kamada, Leonardo De Boni, José J. Rodrigues. Nonlinear Optical Study in a Set of Dibenzylideneacetone Derivatives with Potential for Optical Frequency Conversion. Photonics 2020, 7
(1)
, 8. https://doi.org/10.3390/photonics7010008
- Amin Abdollahi, Ata Herizchi, Hossein Roghani-Mamaqani, Hossein Alidaei-Sharif. Interaction of photoswitchable nanoparticles with cellulosic materials for anticounterfeiting and authentication security documents. Carbohydrate Polymers 2020, 230 , 115603. https://doi.org/10.1016/j.carbpol.2019.115603
- Amin Abdollahi, Hossein Roghani-Mamaqani, Bahareh Razavi. Stimuli-chromism of photoswitches in smart polymers: Recent advances and applications as chemosensors. Progress in Polymer Science 2019, 98 , 101149. https://doi.org/10.1016/j.progpolymsci.2019.101149
- Claire Tonnelé, Frédéric Castet. Nonlinear optical properties of spirocyclohexadine photochromes: insights from DFT calculations. Photochemical & Photobiological Sciences 2019, 18
(11)
, 2759-2765. https://doi.org/10.1039/c9pp00312f
- Amin Abdollahi, Hossein Roghani-Mamaqani, Bahareh Razavi, Mehdi Salami-Kalajahi. The light-controlling of temperature-responsivity in stimuli-responsive polymers. Polymer Chemistry 2019, 10
(42)
, 5686-5720. https://doi.org/10.1039/C9PY00890J
- Jinjian Liu, Jing Li, Wenbo Lu. Effect of counter cations on the photochromic behaviors of three Zn–viologen complexes. New Journal of Chemistry 2019, 43
(32)
, 12678-12683. https://doi.org/10.1039/C9NJ03022K
- Ali Muhammad Arif, Afifa Yousaf, Rong-Lin Zhong, Mansoor Akhtar, Shabbir Muhammad, Hong-liang Xu, Zhong-Min Su. Metal ions doped into merocyanine form of coumarin derivatives: nonlinear optical molecular switches. Journal of Molecular Modeling 2019, 25
(8)
https://doi.org/10.1007/s00894-019-4068-6
- Lijing Gong, Chunyu Liu, Xin Du, Cong Wang, Guochun Yang. Electronic structure and second-order nonlinear optical property of chiral peropyrenes. Journal of Molecular Modeling 2019, 25
(8)
https://doi.org/10.1007/s00894-019-4106-4
- Li-jing Gong, Chun-yu Liu, Cheng Ma, Wan-feng Lin, Jin-kai Lv, Xiang-yu Zhang. Theoretical study on the electronic structure and second-order nonlinear optical properties of benzannulated or selenophene-annulated expanded helicenes. RSC Advances 2019, 9
(30)
, 17382-17390. https://doi.org/10.1039/C9RA01136F
- Jin-jian Liu, Jing Li, Guo-zheng Zhao. Photochromism of supramolecular assemblies based on benzenecarboxylate donors and viologen acceptors. New Journal of Chemistry 2019, 43
(17)
, 6607-6614. https://doi.org/10.1039/C9NJ00796B
- Bodo Alexander Voigt, Torben Steenbock, Carmen Herrmann. Structural diradical character. Journal of Computational Chemistry 2019, 40
(7)
, 854-865. https://doi.org/10.1002/jcc.25768
- Jin-jian Liu, Jing Li, Guo-zheng Zhao. Photochromism of three supramolecular assemblies derived from benzenecarboxylate donors and viologen acceptors. Polyhedron 2019, 161 , 237-242. https://doi.org/10.1016/j.poly.2019.01.014
- Jin‐jian Liu. Photochromism and decolorization controlled by auxiliary ligands of complexes derived from 1‐methyl‐4,4′‐bipyridinium cation. Applied Organometallic Chemistry 2019, 33
(1)
https://doi.org/10.1002/aoc.4578
- Kornelia Pielak, Flavie Bondu, Lionel Sanguinet, Vincent Rodriguez, Frédéric Castet, Benoît Champagne. Acido-triggered switching of the second-order nonlinear optical properties of a ferrocenyl-containing indolino-oxazolidine derivative. Dyes and Pigments 2019, 160 , 641-646. https://doi.org/10.1016/j.dyepig.2018.07.007
- Claire Tonnelé, Benoît Champagne, Luca Muccioli, Frédéric Castet. Second-order nonlinear optical properties of Stenhouse photoswitches: insights from density functional theory. Physical Chemistry Chemical Physics 2018, 20
(43)
, 27658-27667. https://doi.org/10.1039/C8CP05843A
- Chunyu Liu, Xue Zhang, Xiumei Pan, Guochun Yang. Unveiling the Photophysical Properties of Boron Heptaaryldipyrromethene Derivatives. ChemPhysChem 2018, 19
(20)
, 2751-2757. https://doi.org/10.1002/cphc.201800452
- Masahiro Oe, Koji Miki, Huiying Mu, Hiroshi Harada, Akiyo Morinibu, Kouichi Ohe. pH-Responsive Cy5 dyes having nucleophilic substituents for molecular imaging. Tetrahedron Letters 2018, 59
(35)
, 3317-3321. https://doi.org/10.1016/j.tetlet.2018.07.044
- . Introduction. 2018, 1-27. https://doi.org/10.1002/9783527801916.ch1
- . Nonlinear Optical Response of
ICT
Molecules. 2018, 149-195. https://doi.org/10.1002/9783527801916.ch5
- Jinjian Liu. Novel photo- and/or hydrochromic organometallics derived from methyl viologen cations. Dyes and Pigments 2018, 154 , 92-99. https://doi.org/10.1016/j.dyepig.2018.02.040
- Xiaojun Wang, Chang Gu, Hongzhi Zheng, Yu‐Mo Zhang, Sean Xiao‐An Zhang. A Multi‐Stimuli‐Responsive Oxazine Molecular Switch: A Strategy for the Design of Electrochromic Materials. Chemistry – An Asian Journal 2018, 13
(9)
, 1206-1212. https://doi.org/10.1002/asia.201800282
- Pierre Beaujean, Benoît Champagne. Coupled cluster evaluation of the second and third harmonic scattering responses of small molecules. Theoretical Chemistry Accounts 2018, 137
(4)
https://doi.org/10.1007/s00214-018-2219-y
- Venkatakrishnan Parthasarathy, Ravindra Pandey, Puspendu Kumar Das, Frédéric Castet, Mireille Blanchard‐Desce. Linear and Nonlinear Optical Properties of Tricyanopropylidene‐Based Merocyanine Dyes: Synergistic Experimental and Theoretical Investigations. ChemPhysChem 2018, 19
(2)
, 187-197. https://doi.org/10.1002/cphc.201701143
- Stein van Bezouw, Min-Jeong Koo, Seung-Chul Lee, Seung-Heon Lee, Jochen Campo, O-Pil Kwon, Wim Wenseleers. Three-stage pH-switchable organic chromophores with large nonlinear optical responses and switching contrasts. Chemical Communications 2018, 54
(56)
, 7842-7845. https://doi.org/10.1039/C8CC03495H
- Qi Shi, Meng Sun, Jinmei Tian, Wenjie Zhang, Guochun Yang. Photophysical properties of chiral covalent organic cages. Computational and Theoretical Chemistry 2017, 1120 , 1-7. https://doi.org/10.1016/j.comptc.2017.09.016
- Frédéric Castet, Timothée Lerychard, Kornelia Pielak, György Szalóki, Clément Dalinot, Philippe Leriche, Lionel Sanguinet, Benoît Champagne, Vincent Rodriguez. How Dimerization Through a Spiro Junction Modifies the Nonlinear Optical Properties of a Push–Pull Organic Dye: Insights from Theory and Hyper‐Rayleigh Scattering. ChemPhotoChem 2017, 1
(3)
, 93-101. https://doi.org/10.1002/cptc.201600039
- Yiwen Tang, Hui Liu, Hui Zhang, Dandan Li, Jian Su, Shengyi Zhang, Hongping Zhou, Shengli Li, Jieying Wu, Yupeng Tian. A series of stilbazolium salts with A-π-A model and their third-order nonlinear optical response in the near-IR region. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2017, 175 , 92-99. https://doi.org/10.1016/j.saa.2016.12.017
- Ariel Adamski, Małgorzata Osińska, Maciej Kubicki, Zbigniew Hnatejko, Giuseppe Consiglio, Violetta Patroniak. Molecular Switching of Copper Complexes with Quaterpyridine. European Journal of Inorganic Chemistry 2017, 2017
(5)
, 859-872. https://doi.org/10.1002/ejic.201601148
- Koji Miki, Kentaro Kojima, Kazuaki Oride, Hiroshi Harada, Akiyo Morinibu, Kouichi Ohe. pH-Responsive near-infrared fluorescent cyanine dyes for molecular imaging based on pH sensing. Chemical Communications 2017, 53
(55)
, 7792-7795. https://doi.org/10.1039/C7CC03035E
- E. Cariati, X. Liu, Y. Geng, A. Forni, E. Lucenti, S. Righetto, S. Decurtins, S.-X. Liu. Stimuli-responsive NLO properties of tetrathiafulvalene-fused donor–acceptor chromophores. Physical Chemistry Chemical Physics 2017, 19
(33)
, 22573-22579. https://doi.org/10.1039/C7CP04687A
- Xiu-Shuang Xing, Rong-Jian Sa, Pei-Xin Li, Ning-Ning Zhang, Zhong-Yuan Zhou, Bin-Wen Liu, Jie Liu, Ming-Sheng Wang, Guo-Cong Guo. Second-order nonlinear optical switching with a record-high contrast for a photochromic and thermochromic bistable crystal. Chem. Sci. 2017, 8
(11)
, 7751-7757. https://doi.org/10.1039/C7SC01228D
- Chunyu Liu, Guochun Yang, Yanling Si, Youjun Liu, Xiumei Pan. Understanding photophysical properties of chiral conjugated corrals for organic photovoltaics. Journal of Materials Chemistry C 2017, 5
(14)
, 3495-3502. https://doi.org/10.1039/C7TC00337D
- Pierre Beaujean, Benoît Champagne. Coupled cluster evaluation of the frequency dispersion of the first and second hyperpolarizabilities of water, methanol, and dimethyl ether. The Journal of Chemical Physics 2016, 145
(4)
https://doi.org/10.1063/1.4958736
Abstract
Scheme 1
Scheme 1. Reference Indolinooxazolidine (1a) and Spiropyran (2a) NLO Switches Together with the Equilibria with Their Open Forms, As Triggered by Acid/Base Addition (1b+/2b+) or by Irradiation (1b/2b)Scheme 2
Scheme 2. Oxazines (3–12) in Their Closed (a), Zwitterionic Open (b), and Protonated Open (b+) FormsFigure 1
Figure 1. Experimental versus ab initio βHRS values (λ = 1907 nm).
Figure 2
Figure 2. Spatial distribution on the S1–S5 and R1 molecular moieties of the variations of the Mulliken charges when opening the oxazine, as determined at the IEF-PCM/M06/6-311G(d) level (in chloroform). (Top) Phototriggered opening, Δq = q(b) – q(a); (Bottom) acido-triggered opening, Δq = q(b+) – q(a).
Figure 3
Figure 3. IEF-PCM/TDHF/6-311+G(d) dynamic (1064 nm) ΔβHRS(X) = βHRSX– βHRS7 for the closed (a), protonated (b+), and zwitterionic (b) open forms of 3–6 and 8–12 (in chloroform).
References
ARTICLE SECTIONSThis article references 38 other publications.
- 1(a) Berkovic, G.; Krongauz, V.; Weiss, V. Chem. Rev. 2000, 100, 1741– 1754 DOI: 10.1021/cr9800715Google Scholar1ahttps://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD3cXhsFyhtr8%253D&md5=df7d04dd8625ccf4280c8ff834a0dc7aSpiropyrans and spirooxazines for memories and switchesBerkovic, Garry; Krongauz, Valeri; Weiss, VictorChemical Reviews (Washington, D. C.) (2000), 100 (5), 1741-1753CODEN: CHREAY; ISSN:0009-2665. (American Chemical Society)A review with 94 refs. on applications of spiropyran-merocyanine systems in memories and switches. The formation of organized structures whose optical properties can be affected by an elec. field was discussed along with the nonlinear optical properties of photochromic systems. Employing photochromic spiropyran and spirooxazine systems in real-time holog. is also considered.(b) Bouas-Laurent, H.; Dürr, H. Pure Appl. Chem. 2001, 73, 639– 665 DOI: 10.1351/pac200173040639Google ScholarThere is no corresponding record for this reference.(c) Cusido, J.; Deniz, E.; Raymo, F. M. Eur. J. Org. Chem. 2009, 2009, 2031– 2045 DOI: 10.1002/ejoc.200801244Google ScholarThere is no corresponding record for this reference.(d) Feringa, B. L.; Browne, W. R., Eds. Molecular Switches, 2nd ed.; Wiley-VCH: Weinheim, 2011.Google ScholarThere is no corresponding record for this reference.(e) Zhang, J.; Zou, Q.; Tian, H. Adv. Mater. 2013, 25, 378– 399 DOI: 10.1002/adma.201201521Google Scholar1ehttps://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC38Xht1aqt7bK&md5=00b8bea6c1561d58964c35fe87f51149Photochromic Materials: More Than Meets The EyeZhang, Junji; Zou, Qi; Tian, HeAdvanced Materials (Weinheim, Germany) (2013), 25 (3), 378-399CODEN: ADVMEW; ISSN:0935-9648. (Wiley-VCH Verlag GmbH & Co. KGaA)A review. Photochromic materials are a family of compds. which can undergo reversible photoswitching between two different states or isomers with remarkably different properties. Inspired by their smart photoswitchable characteristics, a variety of light-driven functional materials have been exploited, such as ultrahigh-d. optical data storage, mol. switches, logic gates, mol. wires, optic/electronic devices, sensors, bio-imaging and so on. This review commences with a brief description of exciting progress in this field, from systems in soln. to modified functional surfaces. Further development of these photoswitchable systems into practical applications as well as existing challenges are also discussed and put in prospect.
- 2(a) Coe, B. J. Chem. - Eur. J. 1999, 5, 2464– 2471 DOI: 10.1002/(SICI)1521-3765(19990903)5:9<2464::AID-CHEM2464>3.0.CO;2-LGoogle Scholar2ahttps://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaK1MXmtVKlsb0%253D&md5=301fd687199dcc926f0bc647aa0f4d42Molecular materials possessing switchable quadratic nonlinear optical propertiesCoe, Benjamin J.Chemistry - A European Journal (1999), 5 (9), 2464-2471CODEN: CEUJED; ISSN:0947-6539. (Wiley-VCH Verlag GmbH)A review with 34 refs. A diverse range of org. and metalorg. mol. materials exhibit quadratic nonlinear optical (NLO) properties, for example, frequency doubling. The incorporation of switchability into the NLO behavior of such materials will further increase their potential for novel applications in emerging optoelectronic and photonic technologies. Strategies for the mol. engineering of switchable NLO materials are outlined, and recent practical demonstrations of the switching of NLO responses, which use stimuli such as photoexcitation or redox reactions, are discussed.(b) Delaire, J. A.; Nakatani, K. Chem. Rev. 2000, 100, 1817– 1845 DOI: 10.1021/cr980078mGoogle ScholarThere is no corresponding record for this reference.(c) Castet, F.; Rodriguez, V.; Pozzo, J.-L.; Ducasse, L.; Plaquet, A.; Champagne, B. Acc. Chem. Res. 2013, 46, 2656– 2665 DOI: 10.1021/ar4000955Google ScholarThere is no corresponding record for this reference.
- 3Okuno, K.; Shigeta, Y.; Kishi, R.; Nakano, M. J. Phys. Chem. Lett. 2013, 4, 2418– 2422 DOI: 10.1021/jz401228cGoogle Scholar3https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3sXhtV2msbbK&md5=12d67ae9b0c33b21845e7a26a31eb7b8Photochromic Switching of Diradical Character: Design of Efficient Nonlinear Optical SwitchesOkuno, Katsuki; Shigeta, Yasuteru; Kishi, Ryohei; Nakano, MasayoshiJournal of Physical Chemistry Letters (2013), 4 (15), 2418-2422CODEN: JPCLCD; ISSN:1948-7185. (American Chemical Society)Open-shell singlet diradical mols. were widely studied because they are key to understanding the nature of chem. bonds. A new concept is proposed for reversible switching of diradical character - an index of the instability of chem. bonds - of a mol. by photochromic reaction. Photochromic diarylethene derivs. with various open-shell singlet diradical characters are theor. designed, and their photochromic diradical character switching behaviors are clarified. These results contribute to designing highly efficient 3rd-order nonlinear optical switching substances based on the correlation between the diradical character and 2nd hyperpolarizability.
- 4(a) Kanis, D. R.; Ratner, M. A.; Marks, T. J. Chem. Rev. 1994, 94, 195– 242 DOI: 10.1021/cr00025a007Google ScholarThere is no corresponding record for this reference.(b) Brédas, J. L.; Adant, C.; Tackx, P.; Persoons, A.; Pierce, B. M. Chem. Rev. 1994, 94, 243– 278 DOI: 10.1021/cr00025a008Google ScholarThere is no corresponding record for this reference.(c) Verbiest, T.; Houbrechts, S.; Kauranen, M.; Clays, C.; Persoons, A. J. Mater. Chem. 1997, 7, 2175– 2189 DOI: 10.1039/a703434bGoogle ScholarThere is no corresponding record for this reference.(d) Nonlinear Optical Properties of Matter: From Molecules to Condensed Phases; Papadopoulos, M. G.; Leszczynski, J.; Sadlej, A. J., Eds.; Springer: Dordrecht, 2006.Google ScholarThere is no corresponding record for this reference.(e) Murugan, N. A.; Kongsted, J.; Rinkevicius, Z.; Ågren, H. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 16453– 16458 DOI: 10.1073/pnas.1006572107Google ScholarThere is no corresponding record for this reference.(f) Johnson, L. E.; Dalton, L. R.; Robinson, B. H. Acc. Chem. Res. 2014, 47, 3258– 3265 DOI: 10.1021/ar5000727Google ScholarThere is no corresponding record for this reference.
- 5Loucif-Saïbi, R.; Nakatani, K.; Delaire, J.; Dumont, M.; Sekkat, Z. Chem. Mater. 1993, 5, 229– 236 DOI: 10.1021/cm00026a014Google ScholarThere is no corresponding record for this reference.
- 6(a) Gilat, S. L.; Kawaï, S. H.; Lehn, J. M. Chem. - Eur. J. 1995, 1, 275– 284 DOI: 10.1002/chem.19950010504Google Scholar6ahttps://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaK2MXns1aktb4%253D&md5=017767ab5030f4f8927d9a5154088a5dLight-triggered molecular devices: photochemical switching of optical and electrochemical properties in molecular wire type diarylethene speciesGilat, Sylvain L.; Kawai, Stephen H.; Lehn, Jean-MarieChemistry - A European Journal (1995), 1 (5), 275-84CODEN: CEUJED; ISSN:0947-6539. (VCH)Bispyridine I (R = 4-pyridyl) and the corresponding bispyridinium were synthesized as the uncyclized isomers from 3,5-dibromo-2-methylthiophene in overall yields of 43 and 44%, resp. The diarylethene photochromes I [R = 1,3-benzodithiol-2-yl, CHO, CH:C(CN)2, etc.], substituted with electron donors and acceptors, were prepd. from 5-methylthiophene-2-carboxyaldehyde in 21-32% overall yield. All of the compds. were found to exhibit pronounced photochromic properties. Irradn. with UV light resulted in essentially complete photocyclization of the open forms to the intensely colored closed isomers which could, in turn, be reconverted back to the open state with visible light of λ > 600 nm. The absorption maxima of the described compds. in their closed forms are shifted far towards, and even into, the near-IR region. Whereas no thermochromic properties were obsd. for the open isomers, the rates of thermal decoloration of the cyclized forms was found to be highly dependent on the nature of the substituents on the thiophene rings. It was demonstrated that reversible photochem. interconversion between the two photochromic states could be used to effectively switch a no. of phys. properties. Thus, the bispyridinium formed from I (R = 4-pyridyl) and I (R = 1,3-benzodithiol-2-yl) represent two kinds of redox switches, the former in redn. and the latter in oxidn., in which electron conduction is switched on in the closed state and off in the open state. I (R = 1,3-benzodithiol-2-yl) may also be considered to be a photoswitchable analog of tetrathiafulvalene type substances. On the other hand, I (R = 2-benzodithiolyl) displays a marked increase in nonlinear optical activity on conversion from the open to the closed form. Such systems are prototypes of photoswitchable mol. wires where electron conduction and push-pull interaction can be reversibly modulated by an external stimulus, namely, irradn. by light.(b) Aubert, V.; Guerchais, V.; Ishow, E.; Hoang-Thi, K.; Ledoux, I.; Nakatani, K.; Le Bozec, H. Angew. Chem., Int. Ed. 2008, 47, 577– 580 DOI: 10.1002/anie.200704138Google Scholar6bhttps://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD1cXptVyrtQ%253D%253D&md5=1ffedbfc7c30e17729cbe0e166b83064Efficient photoswitching of the nonlinear optical properties of dipolar photochromic zinc(II) complexesAubert, Vincent; Guerchais, Veronique; Ishow, Elena; Hoang-Thi, Khuyen; Ledoux, Isabelle; Nakatani, Keitaro; Le Bozec, HubertAngewandte Chemie, International Edition (2008), 47 (3), 577-580CODEN: ACIEF5; ISSN:1433-7851. (Wiley-VCH Verlag GmbH & Co. KGaA)Flipping the switch: A new type of bipyridine-based ligand functionalized by phenyl- and dimethylaminophenyldithienylethene groups allows the prepn. of photochromic dipolar zinc(II) complexes. For the first time, efficient on/off photoswitching of the NLO response of metallochromophores is obsd.
- 7Houbrechts, S.; Clays, K.; Persoons, A.; Pikramenou, Z.; Lehn, J.-M. Chem. Phys. Lett. 1996, 258, 485– 489 DOI: 10.1016/0009-2614(96)00676-8Google ScholarThere is no corresponding record for this reference.
- 8(a) Nakatani, K.; Delaire, J. A. Chem. Mater. 1997, 9, 2682– 2684 DOI: 10.1021/cm970369wGoogle ScholarThere is no corresponding record for this reference.(b)Sliwa, M.; Létard, S.; Malfant, I.; Nierlich, M.; Lacroix, P. G.; Asahi, T.; Masuhara, H.; Yu, P.; Nakatani, K. Chem. Mater. 2005, 17, 4727– 4735 DOI: 10.1021/cm050929o
(a)
Google ScholarThere is no corresponding record for this reference.(c) Bogdan, E.; Plaquet, A.; Antonov, L.; Rodriguez, V.; Ducasse, L.; Champagne, B.; Castet, F. J. Phys. Chem. C 2010, 114, 12760– 12768 DOI: 10.1021/jp103556cGoogle ScholarThere is no corresponding record for this reference. - 9(a) Coe, B. J.; Houbrechts, S.; Asselberghs, I.; Persoons, A. Angew. Chem., Int. Ed. 1999, 38, 366– 369 DOI: 10.1002/(SICI)1521-3773(19990201)38:3<366::AID-ANIE366>3.0.CO;2-DGoogle ScholarThere is no corresponding record for this reference.(b) Averseng, F.; Lepetit, C.; Lacroix, P. G.; Tuchagues, J. P. Chem. Mater. 2000, 12, 2225– 2229 DOI: 10.1021/cm001015zGoogle ScholarThere is no corresponding record for this reference.(c) Asselberghs, I.; Clays, K.; Persoons, A.; McDonagh, A. M.; Ward, M. D.; McCleverty, J. A. Chem. Phys. Lett. 2003, 368, 408– 411 DOI: 10.1016/S0009-2614(02)01890-0Google ScholarThere is no corresponding record for this reference.(d) Aubert, V.; Guerchais, V.; Ishow, E.; Hoang-Thi, K.; Ledoux, I.; Nakatani, K.; Le Bozec, H. Angew. Chem., Int. Ed. 2008, 47, 577– 580 DOI: 10.1002/anie.200704138Google Scholar9dhttps://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD1cXptVyrtQ%253D%253D&md5=1ffedbfc7c30e17729cbe0e166b83064Efficient photoswitching of the nonlinear optical properties of dipolar photochromic zinc(II) complexesAubert, Vincent; Guerchais, Veronique; Ishow, Elena; Hoang-Thi, Khuyen; Ledoux, Isabelle; Nakatani, Keitaro; Le Bozec, HubertAngewandte Chemie, International Edition (2008), 47 (3), 577-580CODEN: ACIEF5; ISSN:1433-7851. (Wiley-VCH Verlag GmbH & Co. KGaA)Flipping the switch: A new type of bipyridine-based ligand functionalized by phenyl- and dimethylaminophenyldithienylethene groups allows the prepn. of photochromic dipolar zinc(II) complexes. For the first time, efficient on/off photoswitching of the NLO response of metallochromophores is obsd.(e) Boubekeur–Lecaque, L.; Coe, B. J.; Harris, J. A.; Helliwell, M.; Asselberghs, I.; Clays, K.; Foerier, S.; Verbiest, T. Inorg. Chem. 2011, 50, 12886– 12899 DOI: 10.1021/ic202145bGoogle ScholarThere is no corresponding record for this reference.(f) Green, K. A.; Cifuentes, M. P.; Samoc, M.; Humphrey, M. G. Coord. Chem. Rev. 2011, 255, 2530– 2544 DOI: 10.1016/j.ccr.2011.02.021Google ScholarThere is no corresponding record for this reference.(g) Di Bella, S.; Oliveri, I. P.; Colombo, A.; Dragonetti, C.; Righetto, S.; Roberto, D. Dalton Trans. 2012, 41, 7013– 7016 DOI: 10.1039/c2dt30702bGoogle ScholarThere is no corresponding record for this reference.(h) Zhang, Y. R.; Castet, F.; Champagne, B. Chem. Phys. Lett. 2013, 574, 42– 46 DOI: 10.1016/j.cplett.2013.04.071Google ScholarThere is no corresponding record for this reference.(i) Boixel, J.; Guerchais, V.; LeBozec, H.; Jacquemin, D.; Amar, A.; Boucekkine, A.; Colombo, A.; Dragonetti, C.; Marinotto, D.; Roberto, D.; Righetto, S.; De Angelis, R. J. Am. Chem. Soc. 2014, 136, 5367– 5375 DOI: 10.1021/ja4131615Google ScholarThere is no corresponding record for this reference.(j) Wang, W. Y.; Ma, N. N.; Sun, S. L.; Qiu, Y. Q. Organometallics 2014, 33, 3341– 3352 DOI: 10.1021/om500224gGoogle ScholarThere is no corresponding record for this reference.(k) Boixel, J.; Guerchais, V.; Le Bozec, H.; Chantzis, A.; Jacquemin, D.; Colombo, A.; Dragonetti, C.; Marinotto, D.; Roberto, D. Chem. Commun. 2015, 51, 7805– 7808 DOI: 10.1039/C5CC01893EGoogle ScholarThere is no corresponding record for this reference.
- 10Asselberghs, I.; Zhao, Y.; Clays, K.; Persoons, A.; Comito, A.; Rubin, Y. Chem. Phys. Lett. 2002, 364, 279– 283 DOI: 10.1016/S0009-2614(02)01346-5Google ScholarThere is no corresponding record for this reference.
- 11(a) Sanguinet, L.; Pozzo, J.-L.; Rodriguez, V.; Adamietz, F.; Castet, F.; Ducasse, L.; Champagne, B. J. Phys. Chem. B 2005, 109, 11139– 11150 DOI: 10.1021/jp0442450Google ScholarThere is no corresponding record for this reference.(b) Mançois, F.; Pozzo, J.-L.; Adamietz, F.; Rodriguez, V.; Ducasse, L.; Castet, F.; Plaquet, A.; Champagne, B. Chem. - Eur. J. 2009, 15, 2560– 2571 DOI: 10.1002/chem.200801967Google Scholar11bhttps://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD1MXjsVOqsL8%253D&md5=e05a3af520ccdff89c9bbc62c369d717Two-way molecular switches with large nonlinear optical contrastMancois, Fabien; Pozzo, Jean-Luc; Pan, Jianfeng; Adamietz, Frederic; Rodriguez, Vincent; Ducasse, Laurent; Castet, Frederic; Plaquet, Aurelie; Champagne, BenoitChemistry - A European Journal (2009), 15 (11), 2560-2571CODEN: CEUJED; ISSN:0947-6539. (Wiley-VCH Verlag GmbH & Co. KGaA)To optimize the nonlinear optical (NLO) contrast, a series of indolinooxazolidine derivs. with electron-withdrawing substituents in the para position on the indolinic residue have been synthesized. Their linear and nonlinear optical properties have been characterized by UV-visible absorption and hyper-Rayleigh scattering measurements, as well as by ab initio calcns. The two-way photo- or pH-triggered switching mechanism has been demonstrated by comparing the absorption spectra of the zwitterionic and protonated open forms (POF). Hyper-Rayleigh measurements have revealed that the second-order NLO contrast between the closed indolinooxazolidine and the open π-conjugated colored forms remain very large upon substitution. Theory and measurements show that for the POFs the amplitude of the first hyperpolarizability follows the Hammett parameters of the withdrawing groups. However, because the measurements are performed in resonance, to recover this behavior, elaborate procedures including homogeneous and inhomogeneous broadenings, as well as single-mode vibronic structures are necessary to extrapolate to the static limit.(c) Szaloki, G.; Alévêque, O.; Pozzo, J. L.; Hadji, R.; Levillain, E.; Sanguinet, L. J. Phys. Chem. B 2015, 119, 307– 315 DOI: 10.1021/jp511825fGoogle ScholarThere is no corresponding record for this reference.(d) Bondu, F.; Hadji, R.; Szalóki, G.; Alévêque, O.; Sanguinet, L.; Pozzo, J. L.; Cavagnat, D.; Buffeteau, T.; Rodriguez, V. J. Phys. Chem. B 2015, 119, 6758– 6765 DOI: 10.1021/acs.jpcb.5b03070Google ScholarThere is no corresponding record for this reference.
- 12Giraud, M.; Léaustic, A.; Guillot, R.; Yu, P.; Lacroix, P. G.; Nakatani, K.; Pansu, R.; Maurel, F. J. Mater. Chem. 2007, 17, 4414– 4425 DOI: 10.1039/b704806hGoogle ScholarThere is no corresponding record for this reference.
- 13Plaquet, A.; Guillaume, M.; Champagne, B.; Castet, F.; Ducasse, L.; Pozzo, J. L.; Rodriguez, V. Phys. Chem. Chem. Phys. 2008, 10, 6223– 6232 DOI: 10.1039/b806561fGoogle Scholar13https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD1cXht1KrsbvK&md5=c339e74d7050a65c36a648cecb88787bIn silico optimization of merocyanine-spiropyran compounds as second-order nonlinear optical molecular switchesPlaquet, Aurelie; Guillaume, Maxime; Champagne, Benoit; Castet, Frederic; Ducasse, Laurent; Pozzo, Jean-Luc; Rodriguez, VincentPhysical Chemistry Chemical Physics (2008), 10 (41), 6223-6232CODEN: PPCPFQ; ISSN:1463-9076. (Royal Society of Chemistry)Time-dependent Hartree-Fock and Moller-Plesset 2nd-order calcns. were used to unravel the relations between structure and 1st hyperpolarizability in spiropyran/merocyanine couples and therefore to design efficient 2nd-order nonlinear optical switching compds. Large 1st hyperpolarizabilities for the merocyanine form as well as large contrasts of 1st hyperpolarizability were obtained when, on the same species, (i) substituents at R1 and R2 positions on the phenolate ring of the merocyanine form are strong acceptor and donor substituents, resp., (ii) the ethylenic bridge is substituted by donor groups, (iii) the other arom. part of the system is benzimidazolo rather than indolino or benzothiazolo, and (iv) strong donor substituents are placed on the benzimidazolo moiety.
- 14(a) Plaquet, A.; Champagne, B.; Castet, F.; Ducasse, L.; Bogdan, E.; Rodriguez, V.; Pozzo, J.-L. New J. Chem. 2009, 33, 1349– 1356 DOI: 10.1039/b900432gGoogle ScholarThere is no corresponding record for this reference.(b) Broman, S. L.; Jevric, M.; Bond, A. D.; Nielsen, M. B. J. Org. Chem. 2014, 79, 41– 64 DOI: 10.1021/jo4020326Google ScholarThere is no corresponding record for this reference.
- 15(a) Plaquet, A.; Champagne, B.; Kulhánek, J.; Bures, F.; Bogdan, E.; Castet, F.; Ducasse, L.; Rodriguez, V. ChemPhysChem 2011, 12, 3245– 3252 DOI: 10.1002/cphc.201100299Google ScholarThere is no corresponding record for this reference.(b) Bures, F.; Cermakova, A.; Kulhánek, J.; Ludwig, M.; Kuznik, W.; Kityk, I. V.; Mikysek, T.; Ruzicka, A. Eur. J. Org. Chem. 2012, 2012, 529– 538 DOI: 10.1002/ejoc.201101226Google ScholarThere is no corresponding record for this reference.
- 16Cariati, E.; Dragonetti, C.; Lucenti, E.; Nisic, F.; Righetto, S.; Roberto, D.; Tordin, E. Chem. Commun. 2014, 50, 1608– 1610 DOI: 10.1039/c3cc48149bGoogle ScholarThere is no corresponding record for this reference.
- 17Castet, F.; Champagne, B.; Pina, F.; Rodriguez, V. ChemPhysChem 2014, 15, 2221– 2224 DOI: 10.1002/cphc.201402190Google ScholarThere is no corresponding record for this reference.
- 18van Bezouw, S.; Campo, J.; Lee, S. H.; Kwon, O. P.; Wenseleers, W. J. Phys. Chem. C 2015, 119, 21658– 21663 DOI: 10.1021/acs.jpcc.5b06968Google ScholarThere is no corresponding record for this reference.
- 19Asselberghs, I.; Flors, C.; Ferrighi, L.; Botek, E.; Champagne, B.; Mizuno, H.; Ando, R.; Miyawaki, A.; Hofkens, J.; Van der Auweraer, M.; Clays, K. J. Am. Chem. Soc. 2008, 130, 15713– 15719 DOI: 10.1021/ja805171qGoogle ScholarThere is no corresponding record for this reference.
- 20(a) Tomasulo, M.; Sortino, S.; White, A. J. P.; Raymo, F. M. J. Org. Chem. 2005, 70, 8180– 8189 DOI: 10.1021/jo051417wGoogle ScholarThere is no corresponding record for this reference.(b) Deniz, E.; Tomasulo, M.; Cusido, J.; Sortino, S.; Raymo, F. M. Langmuir 2011, 27, 11773– 11783 DOI: 10.1021/la201062hGoogle ScholarThere is no corresponding record for this reference.(c) Deniz, E.; Cusido, J.; Swaminathan, S.; Battal, M.; Impellizzeri, S.; Sortino, S.; Raymo, F. M. J. Photochem. Photobiol., A 2012, 229, 20– 28 DOI: 10.1016/j.jphotochem.2011.11.008Google Scholar20chttps://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC38XhtlKnsLo%253D&md5=7afcdb2fcb1e7f98fce9128f6cbcbf27Synthesis and properties of molecular switches based on the opening and closing of oxazine ringsDeniz, Erhan; Cusido, Janet; Swaminathan, Subramani; Battal, Mutlu; Impellizzeri, Stefania; Sortino, Salvatore; Raymo, Francisco M.Journal of Photochemistry and Photobiology, A: Chemistry (2012), 229 (1), 20-28CODEN: JPPCEJ; ISSN:1010-6030. (Elsevier B.V.)The authors designed and synthesized a family of mol. switches each pairing an oxazine ring to a chromophoric fragment. Under the influence of either chem. or optical stimulations, the oxazine ring opens to bring the chromophoric appendage in conjugation with either a 3H-indolium cation or a phenolate anion. These structural transformations alter the electronic structure of the chromophore and, as a result, its electrochem. and spectroscopic signatures. Specifically, the authors demonstrated that the absorption of triphenylamine and thiophene fragments, the fluorescence of a coumarin appendage and the oxidn. potential of a ferrocene center can all be switched with acid, base or UV inputs. Thus, these operating principles and structural designs for switching properties at the mol. level with the aid of external stimulations might eventually lead to a general strategy for the realization of chemo- and photoresponsive materials.(d) Deniz, E.; Tomasulo, M.; Cusido, J.; Yildiz, I.; Petriella, M.; Bossi, M. L.; Sortino, S.; Raymo, F. M. J. Phys. Chem. C 2012, 116, 6058– 6068 DOI: 10.1021/jp211796pGoogle ScholarThere is no corresponding record for this reference.(e) Garcia-Amorós, J.; Swami-Nathan, S.; Raymo, F. M. Dyes Pigm. 2014, 106, 71– 73 DOI: 10.1016/j.dyepig.2014.02.019Google Scholar20ehttps://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2cXmslakurc%253D&md5=c0dacfd696c5693a9ddd65bbd56fe7fcSaving paper with switchable inkGarcia-Amoros, Jaume; Swaminathan, Subramani; Raymo, Francisco M.Dyes and Pigments (2014), 106 (), 71-73CODEN: DYPIDX; ISSN:0143-7208. (Elsevier Ltd.)An oxazine auxochrome and a carbazole chromophore can be integrated within the same covalent skeleton to generate a halochromic mol. switch. Upon addn. of acid, the oxazine ring opens to bring the carbazole fragment in conjugation with a 3H-indolium cation. This structural transformation shifts the main absorption of the carbazole chromophore from the UV to the visible region and, as a result, is accompanied by the appearance of an intense red color. This species can be formulated into an ink to print colored patterns on conventional paper. Upon treatment with base, however, the oxazine ring closes to restore the initial colorless state and erase the printed pattern. In fact, the very same sheet of paper can be recycled for multiple printing and erasing steps. Thus, this structural design for switchable inks can evolve into viable operating principles to enable innovative printing technologies and reduce drastically paper consumption.
- 21Zhu, S.; Li, M.; Tang, S.; Zhang, Y.-M.; Yang, B.; Zhang, S. X.-A. Eur. J. Org. Chem. 2014, 2014, 1227– 1235 DOI: 10.1002/ejoc.201301182Google ScholarThere is no corresponding record for this reference.
- 22(a) Raymo, F. M. J. Phys. Chem. A 2012, 116, 11888– 95 DOI: 10.1021/jp3095787Google ScholarThere is no corresponding record for this reference.(b) Toliautas, S.; Sulskus, J.; Valkunas, L.; Vengris, M. Chem. Phys. 2012, 404, 64– 73 DOI: 10.1016/j.chemphys.2012.03.006Google ScholarThere is no corresponding record for this reference.(c) Redeckas, K.; Martynaitis, V.; Šačkus, A.; Vengris, M. J. Photochem. Photobiol., A 2014, 285, 7– 15 DOI: 10.1016/j.jphotochem.2014.04.010Google Scholar22chttps://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2cXotFGqsLs%253D&md5=8fe92d3389dab134ffec0e45846bbcceUltrafast spectral dynamics of structurally modified photochromic indolo[2,1-b][1,3]benzoxazinesRedeckas, Kipras; Voiciuk, Vladislava; Steponaviciute, Rasa; Martynaitis, Vytas; Sackus, Algirdas; Vengris, MikasJournal of Photochemistry and Photobiology, A: Chemistry (2014), 285 (), 7-15CODEN: JPPCEJ; ISSN:1010-6030. (Elsevier B.V.)Excited state dynamics of structurally modified photochromic compds. of the indolo[2,1-b][1,3]benzoxazine family were studied using femtosecond transient absorption spectroscopy. Four new compds. presented in this paper are classified into two groups according to the attachment site of the phenylic substituents. The excited state evolution was analyzed using global anal. techniques. The proposed nonlinear photoevolution model involves the formation of a short-lived photoproduct in addn. to the main photoreaction pathway. The final ring-opened photoproduct is formed from the mol. excited state S1 via non-radiative transition in ca. 100 ps, and the full thermal ring closure is completed in a sub-microsecond timescale.(d) Redeckas, K.; Voiciuk, V.; Steponavičiute, R.; Martynaitis, V.; Šačkus, A.; Vengris, M. J. Phys. Chem. A 2014, 118, 5642– 51 DOI: 10.1021/jp505723qGoogle ScholarThere is no corresponding record for this reference.
- 23Verbiest, T.; Clays, K.; Rodriguez, V. Second-Order Nonlinear Optical Characterization Techniques: An Introduction; Taylor & Francis: Boca Raton, FL, 2009.Google ScholarThere is no corresponding record for this reference.
- 24(a) Castet, F.; Bogdan, E.; Plaquet, A.; Ducasse, L.; Champagne, B.; Rodriguez, V. J. Chem. Phys. 2012, 136, 024506 DOI: 10.1063/1.3675848Google Scholar24ahttps://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC38XnvVeltw%253D%253D&md5=c1a34fae5a264b360aa9c710cb95ac8aReference molecules for nonlinear optics: a joint experimental and theoretical investigationCastet, Frederic; Bogdan, Elena; Plaquet, Aurelie; Ducasse, Laurent; Champagne, Benoit; Rodriguez, VincentJournal of Chemical Physics (2012), 136 (2), 024506/1-024506/15CODEN: JCPSA6; ISSN:0021-9606. (American Institute of Physics)Hyper-Rayleigh scattering (HRS) expts. and quantum chem. calcns. are combined to study the 2nd-order nonlinear optical responses of ref. mols., namely, CCl4, CHCl3, trichloroacetonitrile, MeCN, and CH2Cl2. The multipolar decompn. of the 1st hyperpolarizability tensor through the use of the spherical harmonics formalism is employed to highlight the impact of the symmetry of the mol. scatterers on their nonlinear optical responses. HRS is a technique of choice to probe the mol. symmetry of the compds. Coupled-cluster calcns. performed at the coupled-cluster level with singles, doubles, and perturbative triples in combination with highly extended basis sets and including environment effects by using the polarizable continuum model qual. reproduce the mol. 1st hyperpolarizabilities and depolarization ratios of the mol. scatterers. (c) 2012 American Institute of Physics.(b) Castet, F.; Blanchard-Desce, M.; Adamietz, F.; Poronik, Y. M.; Gryko, D. T.; Rodriguez, V. ChemPhysChem 2014, 15, 2575– 81 DOI: 10.1002/cphc.201402083Google ScholarThere is no corresponding record for this reference.
- 25Bersohn, R. J. Chem. Phys. 1966, 45, 3184– 3198 DOI: 10.1063/1.1728092Google ScholarThere is no corresponding record for this reference.
- 26(a) Oudar, J. L.; Chemla, D. S. J. Chem. Phys. 1977, 66, 2664– 2668 DOI: 10.1063/1.434213Google ScholarThere is no corresponding record for this reference.(b) Campo, J.; Wenseleers, W.; Goovaerts, E.; Szablewski, M.; Cross, G. H. J. Phys. Chem. C 2008, 112, 287– 296 DOI: 10.1021/jp0758824Google ScholarThere is no corresponding record for this reference.
- 27(a) Orr, B.; Ward, J. Mol. Phys. 1971, 20, 513– 526 DOI: 10.1080/00268977100100481Google ScholarThere is no corresponding record for this reference.(b) Bishop, D. M. J. Chem. Phys. 1994, 100, 6535– 6542 DOI: 10.1063/1.467062Google ScholarThere is no corresponding record for this reference.
- 28Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215– 241 DOI: 10.1007/s00214-007-0310-xGoogle Scholar28https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD1cXltFyltbY%253D&md5=c31d6f319d7c7a45aa9b716220e4a422The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionalsZhao, Yan; Truhlar, Donald G.Theoretical Chemistry Accounts (2008), 120 (1-3), 215-241CODEN: TCACFW; ISSN:1432-881X. (Springer GmbH)We present two new hybrid meta exchange-correlation functionals, called M06 and M06-2X. The M06 functional is parametrized including both transition metals and nonmetals, whereas the M06-2X functional is a high-nonlocality functional with double the amt. of nonlocal exchange (2X), and it is parametrized only for nonmetals. The functionals, along with the previously published M06-L local functional and the M06-HF full-Hartree-Fock functionals, constitute the M06 suite of complementary functionals. We assess these four functionals by comparing their performance to that of 12 other functionals and Hartree-Fock theory for 403 energetic data in 29 diverse databases, including ten databases for thermochem., four databases for kinetics, eight databases for noncovalent interactions, three databases for transition metal bonding, one database for metal atom excitation energies, and three databases for mol. excitation energies. We also illustrate the performance of these 17 methods for three databases contg. 40 bond lengths and for databases contg. 38 vibrational frequencies and 15 vibrational zero point energies. We recommend the M06-2X functional for applications involving main-group thermochem., kinetics, noncovalent interactions, and electronic excitation energies to valence and Rydberg states. We recommend the M06 functional for application in organometallic and inorganometallic chem. and for noncovalent interactions.
- 29Li, R.; Zheng, J.; Truhlar, D. G. Phys. Chem. Chem. Phys. 2010, 12, 12697– 12701 DOI: 10.1039/c0cp00549eGoogle ScholarThere is no corresponding record for this reference.
- 30(a) Sekino, H.; Bartlett, R. J. J. Chem. Phys. 1986, 85, 976– 989 DOI: 10.1063/1.451255Google ScholarThere is no corresponding record for this reference.(b) Karna, S. P.; Dupuis, M. J. Comput. Chem. 1991, 12, 487– 504 DOI: 10.1002/jcc.540120409Google ScholarThere is no corresponding record for this reference.
- 31(a) Champagne, B.; Kirtman, B. J. Chem. Phys. 2006, 125, 024101 DOI: 10.1063/1.2206181Google ScholarThere is no corresponding record for this reference.(b) de Wergifosse, M.; Champagne, B. J. Chem. Phys. 2011, 134, 074113 DOI: 10.1063/1.3549814Google ScholarThere is no corresponding record for this reference.(c) Hidalgo Cardenuto, M.; Champagne, B. Phys. Chem. Chem. Phys. 2015, 17, 23634– 23642 DOI: 10.1039/C5CP03455HGoogle ScholarThere is no corresponding record for this reference.
- 32Cohen, H. D.; Roothaan, C. C. J. J. Chem. Phys. 1965, 43, S34 DOI: 10.1063/1.1701512Google ScholarThere is no corresponding record for this reference.
- 33(a) Mohammed, A. A. K.; Limacher, P. A.; Champagne, B. J. Comput. Chem. 2013, 34, 1497– 1503 DOI: 10.1002/jcc.23285Google ScholarThere is no corresponding record for this reference.(b) de Wergifosse, M.; Liégeois, V.; Champagne, B. Int. J. Quantum Chem. 2014, 114, 900– 910 DOI: 10.1002/qua.24685Google ScholarThere is no corresponding record for this reference.
- 34(a) Sekino, H.; Bartlett, R. J. J. Chem. Phys. 1986, 84, 2726– 2733 DOI: 10.1063/1.450348Google ScholarThere is no corresponding record for this reference.(b) Rice, J. E.; Handy, N. Int. J. Quantum Chem. 1992, 43, 91– 118 DOI: 10.1002/qua.560430110Google ScholarThere is no corresponding record for this reference.(c) Sekino, H.; Bartlett, R. J. Chem. Phys. Lett. 1995, 234, 87– 93 DOI: 10.1016/0009-2614(95)00007-QGoogle ScholarThere is no corresponding record for this reference.(d) Jacquemin, D.; Champagne, B.; Hättig, C. Chem. Phys. Lett. 2000, 319, 327– 334 DOI: 10.1016/S0009-2614(00)00155-XGoogle ScholarThere is no corresponding record for this reference.
- 35Willetts, A.; Rice, J. E.; Burland, D. M.; Shelton, D. P. J. Chem. Phys. 1992, 97, 7590– 7599 DOI: 10.1063/1.463479Google ScholarThere is no corresponding record for this reference.
- 36(a) Mennucci, B.; Cammi, R.; Tomasi, J. Int. J. Quantum Chem. 1999, 75, 767– 781 DOI: 10.1002/(SICI)1097-461X(1999)75:4/5<767::AID-QUA43>3.0.CO;2-LGoogle ScholarThere is no corresponding record for this reference.(b) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999– 3094 DOI: 10.1021/cr9904009Google Scholar36bhttps://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD2MXmsVynurc%253D&md5=462420dd18b3006ee63d1298b66db247Quantum Mechanical Continuum Solvation ModelsTomasi, Jacopo; Mennucci, Benedetta; Cammi, RobertoChemical Reviews (Washington, DC, United States) (2005), 105 (8), 2999-3093CODEN: CHREAY; ISSN:0009-2665. (American Chemical Society)A review.
- 37Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.Gaussian 09, Revision D01; Gaussian, Inc.: Wallingford, CT, 2009.Google ScholarThere is no corresponding record for this reference.
- 38(a) Castet, F.; Champagne, B. J. Phys. Chem. A 2001, 105, 1366– 1370 DOI: 10.1021/jp003746sGoogle ScholarThere is no corresponding record for this reference.(b) Suponitsky, K. Y.; Masunov, A. E. J. Chem. Phys. 2013, 139, 094310 DOI: 10.1063/1.4819265Google ScholarThere is no corresponding record for this reference.
Supporting Information
Supporting Information
ARTICLE SECTIONSThe Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b13243.
Experimental UV/vis absorption spectra of the closed and protonated open forms of 3, 4, 11, and 12 recorded in chloroform together with characteristics of their main low-energy bands and frequency dispersion factors; Simulated UV/vis absorption spectra of the closed and open forms of compounds 1–12 together with the excitation energies, oscillator strengths, and molecular orbitals involved in the major singly excited determinants for the dominant low-energy transitions; Parameters of the linear regression relationships between the experimental and simulated UV/vis absorption spectra of compounds 3, 4, 11, and 12 in their closed and protonated open forms; HRS power and polarization scans of the closed and protonated open forms of 3, 4, 11, and 12; first hyperpolarizabilities of the protonated open and closed forms of compounds 1–12 as calculated at different levels of approximation and their contrast ratios; Spatial distribution on the S1–S5 and R1 molecular moieties of the Mulliken, Hirshfeld, and NPA charge distributions and their variations for the closed, zwitterionic, and protonated open forms of compounds 1–12; Cartesian coordinates and absolute energies of all compounds (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.