Hexafluoroisopropanol Solvent Effects on Enantioselectivity of Dirhodium Tetracarboxylate-Catalyzed CyclopropanationClick to copy article linkArticle link copied!
- Turki M. AlturaifiTurki M. AlturaifiDepartment of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United StatesMore by Turki M. Alturaifi
- Kristin ShimabukuroKristin ShimabukuroDepartment of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United StatesMore by Kristin Shimabukuro
- Jack C. SharlandJack C. SharlandDepartment of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United StatesMore by Jack C. Sharland
- Binh Khanh MaiBinh Khanh MaiDepartment of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United StatesMore by Binh Khanh Mai
- Evan A. WeingartenEvan A. WeingartenDepartment of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United StatesMore by Evan A. Weingarten
- Mithun C. MadhusudhananMithun C. MadhusudhananDepartment of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United StatesMore by Mithun C. Madhusudhanan
- Djamaladdin G. Musaev*Djamaladdin G. Musaev*E-mail: [email protected]Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United StatesCherry L. Emerson Center for Scientific Computation, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United StatesMore by Djamaladdin G. Musaev
- Peng Liu*Peng Liu*E-mail: [email protected]Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United StatesMore by Peng Liu
- Huw M. L. Davies*Huw M. L. Davies*E-mail: [email protected]Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United StatesMore by Huw M. L. Davies
Abstract
In recent years, additives that modulate both reactivity and selectivity in rhodium-catalyzed reactions of aryldiazoacetates have become increasingly prominent. 1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) has been shown to have a profound effect on rhodium carbene reactivity and selectivity, especially on enabling carbene cyclopropanation in the presence of various nucleophilic poisons. HFIP also has a variable influence on the enantioselectivity of the reactions catalyzed by chiral dirhodium tetracarboxylates, and this study examines the fundamental properties of the rhodium carbene/HFIP system through experimentation, density functional theory (DFT), and molecular dynamics (MD) simulations. These studies revealed that the C4-symmetric bowl-shaped catalysts, which have been previously considered to be relatively rigid, experience far greater flexibility in this hydrogen bonding media, resulting in distortion of the bowl-shaped catalysts. These studies explain why even though a majority of the catalysts have a drop in enantioselectivity in HFIP, some catalysts, such as Rh2(TCPTAD)4, lead to a switch in enantioselectivity, whereas others, such as Rh2(NTTL)4, lead to a considerably enhanced enantioselectivity.
This publication is licensed under
License Summary*
You are free to share(copy and redistribute) this article in any medium or format and to adapt(remix, transform, and build upon) the material for any purpose, even commercially within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format and to adapt(remix, transform, and build upon) the material for any purpose, even commercially within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format and to adapt(remix, transform, and build upon) the material for any purpose, even commercially within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
Introduction
Figure 1
Figure 1. HFIP solvent effects on asymmetric cyclopropanation. (A) Previous study of HFIP in dirhodium tetracarboxylate-catalyzed cyclopropanation; (16) (B) effect of HFIP equivalents on enantioselectivity; (C) shapes of the dirhodium tetracarboxylate catalysts. X-ray crystal structures: Rh-1 (CCDC: 749270), Rh-2 (CCDC: 1535046), Rh-3 (CCDC: 1855295), and Rh-4 (CCDC: 2156564); (D) this work: solvent effects on catalyst flexibility and enantioselectivity of dirhodium tetracarboxylate-catalyzed cyclopropanation.
Results and Discussion
Experimental Studies of HFIP Solvent Effects on Enantioinduction
Figure 2
Figure 2. (A) Equivalent screens; (B) solvent screens.
Figure 3
Figure 3. Substrate scope. Rh-1 = Rh2(S-NTTL)4, Rh-2 = Rh2(S-TCPTAD)4. aResults are taken from ref (16). TCE: trichloroethyl.
Molecular Dynamics (MD) Simulations of Dirhodium Catalysts and Rh-Carbene Complexes in HFIP and DCM Solvents
Figure 4
Figure 4. Solvent effects on the shapes of the dirhodium tetracarboxylate catalysts (Rh-1–Rh-4) and corresponding Rh–carbene complexes (Rh-1a–Rh-4a). The conformational distributions and snapshots were obtained from three to six replicas of 1,000 ns classical MD simulations.
Enantioinduction Models
Scheme 1
ad(Re): distance to the closest carboxylate ligand on the (Re) face of the carbene; d(Si): distance to the closest carboxylate ligand on the (Si) face of the carbene.
Figure 5
Figure 5. Ligand–carbene distance-based metrics for enantioselectivity prediction. Representative QM/MM MD snapshots and DFT-optimized structures shown to demonstrate preferred conformations of the Rh–carbene complexes and the steric environments at the (Re)- and (Si)-faces of the carbene. A longer d(Re) or d(Si) indicates the less hindered prochiral face of the carbene that preferentially undergoes reaction with the alkene substrate. See Figure S17 for the MD snapshot and DFT-optimized structure of Rh-1a conformer B in DCM.
Figure 6
Figure 6. Facial selectivity predictor: a model using steric environments of the Rh–carbene complexes from classical MD simulations to predict ligand and solvent effects on enantioselectivity. Positive experimental ee values indicate carbene (Si)-face addition is favored; negative experimental ee values indicate carbene (Re)-face addition is favored.
Conclusion
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.5c03007.
Experimental procedures, compound characterization, computational details, additional results, and Cartesian coordinates of computed structures (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
Acknowledgments
This work was financially supported by the US National Institutes of Health (R35 GM128779 to P.L. and GM099142 to H.M.L.D.). The calculations were carried out at the University of Pittsburgh Center for Research Computing (RRID: SCR_022735), which is supported by NSF award number OAC-2117681; at the Emory Integrated Computational Core (RRID: SCR_023525); and at the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) program, which is supported by NSF award numbers OAC-2117681, OAC-1928147, and OAC-1928224. We thank Dr. Leonardo Bernasconi (University of Pittsburgh) for assistance with the QM/MM MD simulations.
References
This article references 51 other publications.
- 1Colomer, I.; Chamberlain, A. E. R.; Haughey, M. B.; Donohoe, T. J. Hexafluoroisopropanol as a highly versatile solvent. Nat. Rev. Chem. 2017, 1 (11), 0088, DOI: 10.1038/s41570-017-0088Google ScholarThere is no corresponding record for this reference.
- 2Bhattacharya, T.; Ghosh, A.; Maiti, D. Hexafluoroisopropanol: The magical solvent for Pd-catalyzed C–H activation. Chem. Sci. 2021, 12 (11), 3857– 3870, DOI: 10.1039/D0SC06937JGoogle ScholarThere is no corresponding record for this reference.
- 3Sinha, S. K.; Bhattacharya, T.; Maiti, D. Role of hexafluoroisopropanol in C–H activation. React. Chem. Eng. 2019, 4, 244– 253, DOI: 10.1039/C8RE00225HGoogle ScholarThere is no corresponding record for this reference.
- 4Pozhydaiev, V.; Power, M.; Gandon, V.; Moran, J.; Leboeuf, D. Exploiting hexafluoroisopropanol (HFIP) in Lewis and Brønsted acid-catalyzed reactions. Chem. Commun. 2020, 56, 11548– 11564, DOI: 10.1039/D0CC05194BGoogle ScholarThere is no corresponding record for this reference.
- 5Röckl, J. L.; Dörr, M.; Waldvogel, S. R. Electrosynthesis 2.0 in 1,1,1,3,3,3-hexafluoroisopropanol/amine mixtures. ChemElectrochem 2020, 7, 3686– 3694, DOI: 10.1002/celc.202000761Google ScholarThere is no corresponding record for this reference.
- 6Saito, A.; Kasai, J.; Konishi, T.; Hanzawa, Y. Tandem synthesis of 2,3-dihydro-4-iminoquinolines via three-component alkyne-imine metathesis. J. Org. Chem. 2010, 75, 6980– 6982, DOI: 10.1021/jo1013993Google ScholarThere is no corresponding record for this reference.
- 7Shen, P.-X.; Hu, L.; Shao, Q.; Hong, K.; Yu, J.-Q. Pd(II)-catalyzed enantioselective C(sp3)–H arylation of free carboxylic acids. J. Am. Chem. Soc. 2018, 140, 6545– 6549, DOI: 10.1021/jacs.8b03509Google ScholarThere is no corresponding record for this reference.
- 8Okamoto, K.; Chiba, K. Electrochemical total synthesis of pyrrolophenanthridone alkaloids: Controlling the anodically initiated electron transfer process. Org. Lett. 2020, 22, 3613– 3617, DOI: 10.1021/acs.orglett.0c01082Google ScholarThere is no corresponding record for this reference.
- 9Borrell, M.; Gil-Caballero, S.; Bietti, M.; Costas, M. Site-selective and product chemoselective aliphatic C–H bond hydroxylation of polyhydroxylated substrates. ACS Catal. 2020, 10, 4702– 4709, DOI: 10.1021/acscatal.9b05423Google ScholarThere is no corresponding record for this reference.
- 10Leboeuf, D.; Marin, L.; Michelet, B.; Perez-Luna, A.; Guillot, R.; Schulz, E.; Gandon, V. Harnessing the Lewis acidity of HFIP through its cooperation with a calcium(II) salt: Application to the aza-piancatelli reaction. Chem.- Eur. J. 2016, 22, 16165– 16171, DOI: 10.1002/chem.201603592Google ScholarThere is no corresponding record for this reference.
- 11Qi, C.; Hasenmaile, F.; Gandon, V.; Leboeuf, D. Calcium(II)-catalyzed intra- and intermolecular hydroamidation of unactivated alkenes in hexafluoroisopropanol. ACS Catal. 2018, 8, 1734– 1739, DOI: 10.1021/acscatal.7b04271Google ScholarThere is no corresponding record for this reference.
- 12Qi, C.; Yang, S.; Gandon, V.; Lebœuf, D. Calcium(II)- and triflimide-catalyzed intramolecular hydroacyloxylation of unactivated alkenes in hexafluoroisopropanol. Org. Lett. 2019, 21, 7405– 7409, DOI: 10.1021/acs.orglett.9b02705Google ScholarThere is no corresponding record for this reference.
- 13Tzouras, N. V.; Zorba, L. P.; Kaplanai, E.; Tsoureas, N.; Nelson, D. J.; Nolan, S. P.; Vougioukalakis, G. C. Hexafluoroisopropanol (HFIP) as a multifunctional agent in gold-catalyzed cycloisomerizations and sequential transformations. ACS Catal. 2023, 13, 8845– 8860, DOI: 10.1021/acscatal.3c01660Google ScholarThere is no corresponding record for this reference.
- 14Li, G.; Leow, D.; Wan, L.; Yu, J.-Q. Ether-directed ortho-C–H olefination with a palladium(II)/monoprotected amino acid catalyst. Angew. Chem., Int. Ed. 2013, 52, 1245– 1247, DOI: 10.1002/anie.201207770Google ScholarThere is no corresponding record for this reference.
- 15Sisti, S.; Galeotti, M.; Scarchilli, F.; Salamone, M.; Costas, M.; Bietti, M. Highly selective C(sp3)–H bond oxygenation at remote methylenic sites enabled by polarity enhancement. J. Am. Chem. Soc. 2023, 145, 22086– 22096, DOI: 10.1021/jacs.3c07658Google ScholarThere is no corresponding record for this reference.
- 16Sharland, J. C.; Dunstan, D.; Majumdar, D.; Gao, J.; Tan, K.; Malik, H. A.; Davies, H. M. Hexafluoroisopropanol for the selective deactivation of poisonous nucleophiles enabling catalytic asymmetric cyclopropanation of complex molecules. ACS Catal. 2022, 12, 12530– 12542, DOI: 10.1021/acscatal.2c03909Google ScholarThere is no corresponding record for this reference.
- 17Davies, H. M. L.; Liao, K. Dirhodium tetracarboxylates as catalysts for selective intermolecular C–H functionalization. Nat. Rev. Chem. 2019, 3, 347– 360, DOI: 10.1038/s41570-019-0099-xGoogle ScholarThere is no corresponding record for this reference.
- 18Jana, S.; Yang, Z.; Li, F.; Empel, C.; Ho, J.; Koenigs, R. M. Photoinduced proton-transfer reactions for mild O–H functionalization of unreactive alcohols. Angew. Chem., Int. Ed. 2020, 59, 5562– 5566, DOI: 10.1002/anie.201915161Google ScholarThere is no corresponding record for this reference.
- 19Gray, E. E.; Nielsen, M. K.; Choquette, K. A.; Kalow, J. A.; Graham, T. J.; Doyle, A. G. Nucleophilic (radio) fluorination of α-diazocarbonyl compounds enabled by copper-catalyzed H–F insertion. J. Am. Chem. Soc. 2016, 138, 10802– 10805, DOI: 10.1021/jacs.6b06770Google ScholarThere is no corresponding record for this reference.
- 20Boni, Y. T.; Vaitla, J.; Davies, H. M. Catalyst controlled site- and stereoselective rhodium(II) carbene C(sp3)–H functionalization of allyl boronates. Org. Lett. 2023, 25, 5– 10, DOI: 10.1021/acs.orglett.2c03335Google ScholarThere is no corresponding record for this reference.
- 21Sharland, J. C.; Wei, B.; Hardee, D. J.; Hodges, T. R.; Gong, W.; Voight, E. A.; Davies, H. M. Asymmetric synthesis of pharmaceutically relevant 1-aryl-2-heteroaryl- and 1,2-diheteroarylcyclopropane-1-carboxylates. Chem. Sci. 2021, 12, 11181– 11190, DOI: 10.1039/D1SC02474DGoogle ScholarThere is no corresponding record for this reference.
- 22Wei, B.; Sharland, J. C.; Blackmond, D. G.; Musaev, D. G.; Davies, H. M. L. In situ kinetic studies of Rh(II)-catalyzed C–H functionalization to achieve high catalyst turnover numbers. ACS Catal. 2022, 12, 13400– 13410, DOI: 10.1021/acscatal.2c04115Google ScholarThere is no corresponding record for this reference.
- 23Fu, J.; Ren, Z.; Bacsa, J.; Musaev, D. G.; Davies, H. M. Desymmetrization of cyclohexanes by site- and stereoselective C–H functionalization. Nature 2018, 564, 395– 399, DOI: 10.1038/s41586-018-0799-2Google ScholarThere is no corresponding record for this reference.
- 24Fu, J.; Wurzer, N.; Lehner, V.; Reiser, O.; Davies, H. M. Rh(II)–catalyzed monocyclopropanation of pyrroles and its application to the synthesis pharmaceutically relevant compounds. Org. Lett. 2019, 21, 6102– 6106, DOI: 10.1021/acs.orglett.9b02250Google ScholarThere is no corresponding record for this reference.
- 25Garlets, Z. J.; Boni, Y. T.; Sharland, J. C.; Kirby, R. P.; Fu, J.; Bacsa, J.; Davies, H. M. Design, synthesis, and evaluation of extended C4–symmetric dirhodium tetracarboxylate catalysts. ACS Catal. 2022, 12, 10841– 10848, DOI: 10.1021/acscatal.2c03041Google ScholarThere is no corresponding record for this reference.
- 26Lindsay, V. N. G.; Lin, W.; Charette, A. B. Experimental evidence for the all-up reactive conformation of chiral rhodium(II) carboxylate catalysts: Enantioselective synthesis of cis-cyclopropane α-amino acids. J. Am. Chem. Soc. 2009, 131, 16383– 16385, DOI: 10.1021/ja9044955Google ScholarThere is no corresponding record for this reference.
- 27DeAngelis, A.; Dmitrenko, O.; Yap, G. P. A.; Fox, J. M. Chiral crown conformation of Rh2(S-PTTL)4: Enantioselective cyclopropanation with α-alkyl-α-diazoesters. J. Am. Chem. Soc. 2009, 131, 7230– 7231, DOI: 10.1021/ja9026852Google ScholarThere is no corresponding record for this reference.
- 28Werlé, C.; Goddard, R.; Philipps, P.; Farès, C.; Fürstner, A. Stabilization of a chiral dirhodium carbene by encapsulation and a discussion of the stereochemical implications. Angew. Chem., Int. Ed. 2016, 55, 10760– 10765, DOI: 10.1002/anie.201605502Google ScholarThere is no corresponding record for this reference.
- 29DeAngelis, A.; Boruta, D. T.; Lubin, J.-B.; Plampin, J. N., III; Yap, G. P. A.; Fox, J. M. The chiral crown conformation in paddlewheel complexes. Chem. Commun. 2010, 46 (25), 4541– 4543, DOI: 10.1039/c001557aGoogle ScholarThere is no corresponding record for this reference.
- 30Su, X.-X.; Chen, X.-H.; Ding, D.-B.; She, Y.-B.; Yang, Y.-F. Computational exploration of dirhodium complex-catalyzed selective intermolecular amination of tertiary vs. benzylic C–H bonds. Molecules 2023, 28, 1928, DOI: 10.3390/molecules28041928Google ScholarThere is no corresponding record for this reference.
- 31Liao, K.; Liu, W.; Niemeyer, Z. L.; Ren, Z.; Bacsa, J.; Musaev, D. G.; Sigman, M. S.; Davies, H. M. L. Site-selective carbene-induced C–H functionalization catalyzed by dirhodium tetrakis(triarylcyclopropanecarboxylate) complexes. ACS Catal. 2018, 8, 678– 682, DOI: 10.1021/acscatal.7b03421Google ScholarThere is no corresponding record for this reference.
- 32Hayashi, N.; Ujihara, T.; Anada, M. Origin of the conformational stability of dirhodium(II) tetrakis[N-phthaloyl-(S)-tert-leucinate] and its halogenated derivatives. J. Phys. Chem. A 2024, 128, 3051– 3061, DOI: 10.1021/acs.jpca.3c07880Google ScholarThere is no corresponding record for this reference.
- 33Tantillo, D. J. Quantum chemical interrogation of reactions promoted by dirhodium tetracarboxylate catalysts–mechanism, selectivity, and nonstatistical dynamic effects. Acc. Chem. Res. 2024, 57, 1931– 1940, DOI: 10.1021/acs.accounts.4c00214Google ScholarThere is no corresponding record for this reference.
- 34Cammarota, R. C.; Liu, W.; Bacsa, J.; Davies, H. M. L.; Sigman, M. S. Mechanistically guided workflow for relating complex reactive site topologies to catalyst performance in C–H functionalization reactions. J. Am. Chem. Soc. 2022, 144, 1881– 1898, DOI: 10.1021/jacs.1c12198Google ScholarThere is no corresponding record for this reference.
- 35Guo, W.; Hare, S. R.; Chen, S.-S.; Saunders, C. M.; Tantillo, D. J. C–H insertion in dirhodium tetracarboxylate-catalyzed reactions despite dynamical tendencies toward fragmentation: Implications for reaction efficiency and catalyst design. J. Am. Chem. Soc. 2022, 144, 17219– 17231, DOI: 10.1021/jacs.2c07681Google ScholarThere is no corresponding record for this reference.
- 36Hong, B.; Shi, L.; Li, L.; Zhan, S.; Gu, Z. Paddlewheel dirhodium(II) complexes with N-heterocyclic carbene or phosphine ligand: New reactivity and selectivity. Green Synth. Catal. 2022, 3, 137– 149, DOI: 10.1016/j.gresc.2022.03.001Google ScholarThere is no corresponding record for this reference.
- 37Laconsay, C. J.; Pla-Quintana, A.; Tantillo, D. J. Effects of axial solvent coordination to dirhodium complexes on the reactivity and selectivity in C–H insertion reactions: A computational study. Organometallics 2021, 40, 4120– 4132, DOI: 10.1021/acs.organomet.1c00574Google ScholarThere is no corresponding record for this reference.
- 38Mattiza, J. T.; Fohrer, J. G. G.; Duddeck, H.; Gardiner, M. G.; Ghanem, A. Optimizing dirhodium(II) tetrakiscarboxylates as chiral NMR auxiliaries. Org. Biomol. Chem. 2011, 9, 6542– 6550, DOI: 10.1039/c1ob05665dGoogle ScholarThere is no corresponding record for this reference.
- 39Adly, F. G.; Gardiner, M. G.; Ghanem, A. Design and synthesis of novel chiral dirhodium(II) carboxylate complexes for asymmetric cyclopropanation reactions. Chem.- Eur. J. 2016, 22, 3447– 3461, DOI: 10.1002/chem.201504817Google ScholarThere is no corresponding record for this reference.
- 40Davies, H. M. L. Dirhodium tetra(N-arylsulfonylprolinates) as chiral catalysts for asymmetric transformations of vinyl- and aryldiazoacetates. Eur. J. Org. Chem. 1999, 1999 (10), 2459– 2469, DOI: 10.1002/(SICI)1099-0690(199910)1999:10<2459::AID-EJOC2459>3.0.CO;2-RGoogle ScholarThere is no corresponding record for this reference.
- 41Ghosh, S.; Qu, Z.-W.; Pradhan, S.; Ghosh, A.; Grimme, S.; Chatterjee, I. HFIP-assisted single C–F bond activation of trifluoromethyl ketones using visible-light photoredox catalysis. Angew. Chem., Int. Ed. 2022, 61 (9), e202115272 DOI: 10.1002/anie.202115272Google ScholarThere is no corresponding record for this reference.
- 42Simlandy, A. K.; Rodphon, W.; Alturaifi, T. M.; Mai, B. K.; Ni, H.-Q.; Gurak, J. A., Jr; Liu, P.; Engle, K. M. Catalytic addition of nitroalkanes to unactivated alkenes via directed carbopalladation. ACS Catal. 2022, 12, 13755– 13762, DOI: 10.1021/acscatal.2c04557Google ScholarThere is no corresponding record for this reference.
- 43Davies, H. M. L.; Bruzinski, P. R.; Lake, D. H.; Kong, N.; Fall, M. J. Asymmetric cyclopropanations by rhodium(II) N-(arylsulfonyl)prolinate catalyzed decomposition of vinyldiazomethanes in the presence of alkenes. Practical enantioselective synthesis of the four stereoisomers of 2-phenylcyclopropan-1-amino acid. J. Am. Chem. Soc. 1996, 118, 6897– 6907, DOI: 10.1021/ja9604931Google ScholarThere is no corresponding record for this reference.
- 44Guo, W.; Tantillo, D. J. Running wild through dirhodium tetracarboxylate-catalyzed combined CH(C)-functionalization/Cope rearrangement landscapes: Does post-transition-state dynamic mismatching influence product distributions?. J. Am. Chem. Soc. 2024, 146, 7039– 7051, DOI: 10.1021/jacs.4c00382Google ScholarThere is no corresponding record for this reference.
- 45Motiwala, H. F.; Armaly, A. M.; Cacioppo, J. G.; Coombs, T. C.; Koehn, K. R. K.; Norwood, V. M. I. V.; Aubé, J. HFIP in organic synthesis. Chem. Rev. 2022, 122, 12544– 12747, DOI: 10.1021/acs.chemrev.1c00749Google ScholarThere is no corresponding record for this reference.
- 46Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157– 1174, DOI: 10.1002/jcc.20035Google ScholarThere is no corresponding record for this reference.
- 47Li, P.; Merz, K. M., Jr MCPB.py: a python based metal center parameter builder. J. Chem. Inf. Model. 2016, 56, 599– 604, DOI: 10.1021/acs.jcim.5b00674Google ScholarThere is no corresponding record for this reference.
- 48Fioroni, M.; Burger, K.; Mark, A. E.; Roccatano, D. Model of 1,1,1,3,3,3-hexafluoro-propan-2-ol for molecular dynamics simulations. J. Phys. Chem. B 2001, 105, 10967– 10975, DOI: 10.1021/jp012476qGoogle ScholarThere is no corresponding record for this reference.
- 49Grimme, S.; Bannwarth, C.; Shushkov, P. A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z= 1–86). J. Chem. Theory Comput. 2017, 13, 1989– 2009, DOI: 10.1021/acs.jctc.7b00118Google ScholarThere is no corresponding record for this reference.
- 50Ren, Z.; Musaev, D. G.; Davies, H. M. L. Influence of aryl substituents on the alignment of ligands in the dirhodium tetrakis(1,2,2-triarylcyclopropane-carboxylate) catalysts. ChemCatChem 2021, 13, 174– 179, DOI: 10.1002/cctc.202001206Google ScholarThere is no corresponding record for this reference.
- 51Ren, Z.; Musaev, D. G.; Davies, H. M. L. Key selectivity controlling elements in rhodium-catalyzed C–H functionalization with donor/acceptor carbenes. ACS Catal. 2022, 12, 13446– 13456, DOI: 10.1021/acscatal.2c04490Google ScholarThere is no corresponding record for this reference.
Cited By
This article has not yet been cited by other publications.
Article Views
Altmetric
Citations
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
Recommended Articles
Abstract
Figure 1
Figure 1. HFIP solvent effects on asymmetric cyclopropanation. (A) Previous study of HFIP in dirhodium tetracarboxylate-catalyzed cyclopropanation; (16) (B) effect of HFIP equivalents on enantioselectivity; (C) shapes of the dirhodium tetracarboxylate catalysts. X-ray crystal structures: Rh-1 (CCDC: 749270), Rh-2 (CCDC: 1535046), Rh-3 (CCDC: 1855295), and Rh-4 (CCDC: 2156564); (D) this work: solvent effects on catalyst flexibility and enantioselectivity of dirhodium tetracarboxylate-catalyzed cyclopropanation.
Figure 2
Figure 2. (A) Equivalent screens; (B) solvent screens.
Figure 3
Figure 3. Substrate scope. Rh-1 = Rh2(S-NTTL)4, Rh-2 = Rh2(S-TCPTAD)4. aResults are taken from ref (16). TCE: trichloroethyl.
Figure 4
Figure 4. Solvent effects on the shapes of the dirhodium tetracarboxylate catalysts (Rh-1–Rh-4) and corresponding Rh–carbene complexes (Rh-1a–Rh-4a). The conformational distributions and snapshots were obtained from three to six replicas of 1,000 ns classical MD simulations.
Scheme 1
Scheme 1. Defining the Ligand–Carbene Distances d(Re) and d(Si) as a Distance Metric to Describe the Steric Environments at the Prochiral Faces of the Rh–carbeneaad(Re): distance to the closest carboxylate ligand on the (Re) face of the carbene; d(Si): distance to the closest carboxylate ligand on the (Si) face of the carbene.
Figure 5
Figure 5. Ligand–carbene distance-based metrics for enantioselectivity prediction. Representative QM/MM MD snapshots and DFT-optimized structures shown to demonstrate preferred conformations of the Rh–carbene complexes and the steric environments at the (Re)- and (Si)-faces of the carbene. A longer d(Re) or d(Si) indicates the less hindered prochiral face of the carbene that preferentially undergoes reaction with the alkene substrate. See Figure S17 for the MD snapshot and DFT-optimized structure of Rh-1a conformer B in DCM.
Figure 6
Figure 6. Facial selectivity predictor: a model using steric environments of the Rh–carbene complexes from classical MD simulations to predict ligand and solvent effects on enantioselectivity. Positive experimental ee values indicate carbene (Si)-face addition is favored; negative experimental ee values indicate carbene (Re)-face addition is favored.
References
This article references 51 other publications.
- 1Colomer, I.; Chamberlain, A. E. R.; Haughey, M. B.; Donohoe, T. J. Hexafluoroisopropanol as a highly versatile solvent. Nat. Rev. Chem. 2017, 1 (11), 0088, DOI: 10.1038/s41570-017-0088There is no corresponding record for this reference.
- 2Bhattacharya, T.; Ghosh, A.; Maiti, D. Hexafluoroisopropanol: The magical solvent for Pd-catalyzed C–H activation. Chem. Sci. 2021, 12 (11), 3857– 3870, DOI: 10.1039/D0SC06937JThere is no corresponding record for this reference.
- 3Sinha, S. K.; Bhattacharya, T.; Maiti, D. Role of hexafluoroisopropanol in C–H activation. React. Chem. Eng. 2019, 4, 244– 253, DOI: 10.1039/C8RE00225HThere is no corresponding record for this reference.
- 4Pozhydaiev, V.; Power, M.; Gandon, V.; Moran, J.; Leboeuf, D. Exploiting hexafluoroisopropanol (HFIP) in Lewis and Brønsted acid-catalyzed reactions. Chem. Commun. 2020, 56, 11548– 11564, DOI: 10.1039/D0CC05194BThere is no corresponding record for this reference.
- 5Röckl, J. L.; Dörr, M.; Waldvogel, S. R. Electrosynthesis 2.0 in 1,1,1,3,3,3-hexafluoroisopropanol/amine mixtures. ChemElectrochem 2020, 7, 3686– 3694, DOI: 10.1002/celc.202000761There is no corresponding record for this reference.
- 6Saito, A.; Kasai, J.; Konishi, T.; Hanzawa, Y. Tandem synthesis of 2,3-dihydro-4-iminoquinolines via three-component alkyne-imine metathesis. J. Org. Chem. 2010, 75, 6980– 6982, DOI: 10.1021/jo1013993There is no corresponding record for this reference.
- 7Shen, P.-X.; Hu, L.; Shao, Q.; Hong, K.; Yu, J.-Q. Pd(II)-catalyzed enantioselective C(sp3)–H arylation of free carboxylic acids. J. Am. Chem. Soc. 2018, 140, 6545– 6549, DOI: 10.1021/jacs.8b03509There is no corresponding record for this reference.
- 8Okamoto, K.; Chiba, K. Electrochemical total synthesis of pyrrolophenanthridone alkaloids: Controlling the anodically initiated electron transfer process. Org. Lett. 2020, 22, 3613– 3617, DOI: 10.1021/acs.orglett.0c01082There is no corresponding record for this reference.
- 9Borrell, M.; Gil-Caballero, S.; Bietti, M.; Costas, M. Site-selective and product chemoselective aliphatic C–H bond hydroxylation of polyhydroxylated substrates. ACS Catal. 2020, 10, 4702– 4709, DOI: 10.1021/acscatal.9b05423There is no corresponding record for this reference.
- 10Leboeuf, D.; Marin, L.; Michelet, B.; Perez-Luna, A.; Guillot, R.; Schulz, E.; Gandon, V. Harnessing the Lewis acidity of HFIP through its cooperation with a calcium(II) salt: Application to the aza-piancatelli reaction. Chem.- Eur. J. 2016, 22, 16165– 16171, DOI: 10.1002/chem.201603592There is no corresponding record for this reference.
- 11Qi, C.; Hasenmaile, F.; Gandon, V.; Leboeuf, D. Calcium(II)-catalyzed intra- and intermolecular hydroamidation of unactivated alkenes in hexafluoroisopropanol. ACS Catal. 2018, 8, 1734– 1739, DOI: 10.1021/acscatal.7b04271There is no corresponding record for this reference.
- 12Qi, C.; Yang, S.; Gandon, V.; Lebœuf, D. Calcium(II)- and triflimide-catalyzed intramolecular hydroacyloxylation of unactivated alkenes in hexafluoroisopropanol. Org. Lett. 2019, 21, 7405– 7409, DOI: 10.1021/acs.orglett.9b02705There is no corresponding record for this reference.
- 13Tzouras, N. V.; Zorba, L. P.; Kaplanai, E.; Tsoureas, N.; Nelson, D. J.; Nolan, S. P.; Vougioukalakis, G. C. Hexafluoroisopropanol (HFIP) as a multifunctional agent in gold-catalyzed cycloisomerizations and sequential transformations. ACS Catal. 2023, 13, 8845– 8860, DOI: 10.1021/acscatal.3c01660There is no corresponding record for this reference.
- 14Li, G.; Leow, D.; Wan, L.; Yu, J.-Q. Ether-directed ortho-C–H olefination with a palladium(II)/monoprotected amino acid catalyst. Angew. Chem., Int. Ed. 2013, 52, 1245– 1247, DOI: 10.1002/anie.201207770There is no corresponding record for this reference.
- 15Sisti, S.; Galeotti, M.; Scarchilli, F.; Salamone, M.; Costas, M.; Bietti, M. Highly selective C(sp3)–H bond oxygenation at remote methylenic sites enabled by polarity enhancement. J. Am. Chem. Soc. 2023, 145, 22086– 22096, DOI: 10.1021/jacs.3c07658There is no corresponding record for this reference.
- 16Sharland, J. C.; Dunstan, D.; Majumdar, D.; Gao, J.; Tan, K.; Malik, H. A.; Davies, H. M. Hexafluoroisopropanol for the selective deactivation of poisonous nucleophiles enabling catalytic asymmetric cyclopropanation of complex molecules. ACS Catal. 2022, 12, 12530– 12542, DOI: 10.1021/acscatal.2c03909There is no corresponding record for this reference.
- 17Davies, H. M. L.; Liao, K. Dirhodium tetracarboxylates as catalysts for selective intermolecular C–H functionalization. Nat. Rev. Chem. 2019, 3, 347– 360, DOI: 10.1038/s41570-019-0099-xThere is no corresponding record for this reference.
- 18Jana, S.; Yang, Z.; Li, F.; Empel, C.; Ho, J.; Koenigs, R. M. Photoinduced proton-transfer reactions for mild O–H functionalization of unreactive alcohols. Angew. Chem., Int. Ed. 2020, 59, 5562– 5566, DOI: 10.1002/anie.201915161There is no corresponding record for this reference.
- 19Gray, E. E.; Nielsen, M. K.; Choquette, K. A.; Kalow, J. A.; Graham, T. J.; Doyle, A. G. Nucleophilic (radio) fluorination of α-diazocarbonyl compounds enabled by copper-catalyzed H–F insertion. J. Am. Chem. Soc. 2016, 138, 10802– 10805, DOI: 10.1021/jacs.6b06770There is no corresponding record for this reference.
- 20Boni, Y. T.; Vaitla, J.; Davies, H. M. Catalyst controlled site- and stereoselective rhodium(II) carbene C(sp3)–H functionalization of allyl boronates. Org. Lett. 2023, 25, 5– 10, DOI: 10.1021/acs.orglett.2c03335There is no corresponding record for this reference.
- 21Sharland, J. C.; Wei, B.; Hardee, D. J.; Hodges, T. R.; Gong, W.; Voight, E. A.; Davies, H. M. Asymmetric synthesis of pharmaceutically relevant 1-aryl-2-heteroaryl- and 1,2-diheteroarylcyclopropane-1-carboxylates. Chem. Sci. 2021, 12, 11181– 11190, DOI: 10.1039/D1SC02474DThere is no corresponding record for this reference.
- 22Wei, B.; Sharland, J. C.; Blackmond, D. G.; Musaev, D. G.; Davies, H. M. L. In situ kinetic studies of Rh(II)-catalyzed C–H functionalization to achieve high catalyst turnover numbers. ACS Catal. 2022, 12, 13400– 13410, DOI: 10.1021/acscatal.2c04115There is no corresponding record for this reference.
- 23Fu, J.; Ren, Z.; Bacsa, J.; Musaev, D. G.; Davies, H. M. Desymmetrization of cyclohexanes by site- and stereoselective C–H functionalization. Nature 2018, 564, 395– 399, DOI: 10.1038/s41586-018-0799-2There is no corresponding record for this reference.
- 24Fu, J.; Wurzer, N.; Lehner, V.; Reiser, O.; Davies, H. M. Rh(II)–catalyzed monocyclopropanation of pyrroles and its application to the synthesis pharmaceutically relevant compounds. Org. Lett. 2019, 21, 6102– 6106, DOI: 10.1021/acs.orglett.9b02250There is no corresponding record for this reference.
- 25Garlets, Z. J.; Boni, Y. T.; Sharland, J. C.; Kirby, R. P.; Fu, J.; Bacsa, J.; Davies, H. M. Design, synthesis, and evaluation of extended C4–symmetric dirhodium tetracarboxylate catalysts. ACS Catal. 2022, 12, 10841– 10848, DOI: 10.1021/acscatal.2c03041There is no corresponding record for this reference.
- 26Lindsay, V. N. G.; Lin, W.; Charette, A. B. Experimental evidence for the all-up reactive conformation of chiral rhodium(II) carboxylate catalysts: Enantioselective synthesis of cis-cyclopropane α-amino acids. J. Am. Chem. Soc. 2009, 131, 16383– 16385, DOI: 10.1021/ja9044955There is no corresponding record for this reference.
- 27DeAngelis, A.; Dmitrenko, O.; Yap, G. P. A.; Fox, J. M. Chiral crown conformation of Rh2(S-PTTL)4: Enantioselective cyclopropanation with α-alkyl-α-diazoesters. J. Am. Chem. Soc. 2009, 131, 7230– 7231, DOI: 10.1021/ja9026852There is no corresponding record for this reference.
- 28Werlé, C.; Goddard, R.; Philipps, P.; Farès, C.; Fürstner, A. Stabilization of a chiral dirhodium carbene by encapsulation and a discussion of the stereochemical implications. Angew. Chem., Int. Ed. 2016, 55, 10760– 10765, DOI: 10.1002/anie.201605502There is no corresponding record for this reference.
- 29DeAngelis, A.; Boruta, D. T.; Lubin, J.-B.; Plampin, J. N., III; Yap, G. P. A.; Fox, J. M. The chiral crown conformation in paddlewheel complexes. Chem. Commun. 2010, 46 (25), 4541– 4543, DOI: 10.1039/c001557aThere is no corresponding record for this reference.
- 30Su, X.-X.; Chen, X.-H.; Ding, D.-B.; She, Y.-B.; Yang, Y.-F. Computational exploration of dirhodium complex-catalyzed selective intermolecular amination of tertiary vs. benzylic C–H bonds. Molecules 2023, 28, 1928, DOI: 10.3390/molecules28041928There is no corresponding record for this reference.
- 31Liao, K.; Liu, W.; Niemeyer, Z. L.; Ren, Z.; Bacsa, J.; Musaev, D. G.; Sigman, M. S.; Davies, H. M. L. Site-selective carbene-induced C–H functionalization catalyzed by dirhodium tetrakis(triarylcyclopropanecarboxylate) complexes. ACS Catal. 2018, 8, 678– 682, DOI: 10.1021/acscatal.7b03421There is no corresponding record for this reference.
- 32Hayashi, N.; Ujihara, T.; Anada, M. Origin of the conformational stability of dirhodium(II) tetrakis[N-phthaloyl-(S)-tert-leucinate] and its halogenated derivatives. J. Phys. Chem. A 2024, 128, 3051– 3061, DOI: 10.1021/acs.jpca.3c07880There is no corresponding record for this reference.
- 33Tantillo, D. J. Quantum chemical interrogation of reactions promoted by dirhodium tetracarboxylate catalysts–mechanism, selectivity, and nonstatistical dynamic effects. Acc. Chem. Res. 2024, 57, 1931– 1940, DOI: 10.1021/acs.accounts.4c00214There is no corresponding record for this reference.
- 34Cammarota, R. C.; Liu, W.; Bacsa, J.; Davies, H. M. L.; Sigman, M. S. Mechanistically guided workflow for relating complex reactive site topologies to catalyst performance in C–H functionalization reactions. J. Am. Chem. Soc. 2022, 144, 1881– 1898, DOI: 10.1021/jacs.1c12198There is no corresponding record for this reference.
- 35Guo, W.; Hare, S. R.; Chen, S.-S.; Saunders, C. M.; Tantillo, D. J. C–H insertion in dirhodium tetracarboxylate-catalyzed reactions despite dynamical tendencies toward fragmentation: Implications for reaction efficiency and catalyst design. J. Am. Chem. Soc. 2022, 144, 17219– 17231, DOI: 10.1021/jacs.2c07681There is no corresponding record for this reference.
- 36Hong, B.; Shi, L.; Li, L.; Zhan, S.; Gu, Z. Paddlewheel dirhodium(II) complexes with N-heterocyclic carbene or phosphine ligand: New reactivity and selectivity. Green Synth. Catal. 2022, 3, 137– 149, DOI: 10.1016/j.gresc.2022.03.001There is no corresponding record for this reference.
- 37Laconsay, C. J.; Pla-Quintana, A.; Tantillo, D. J. Effects of axial solvent coordination to dirhodium complexes on the reactivity and selectivity in C–H insertion reactions: A computational study. Organometallics 2021, 40, 4120– 4132, DOI: 10.1021/acs.organomet.1c00574There is no corresponding record for this reference.
- 38Mattiza, J. T.; Fohrer, J. G. G.; Duddeck, H.; Gardiner, M. G.; Ghanem, A. Optimizing dirhodium(II) tetrakiscarboxylates as chiral NMR auxiliaries. Org. Biomol. Chem. 2011, 9, 6542– 6550, DOI: 10.1039/c1ob05665dThere is no corresponding record for this reference.
- 39Adly, F. G.; Gardiner, M. G.; Ghanem, A. Design and synthesis of novel chiral dirhodium(II) carboxylate complexes for asymmetric cyclopropanation reactions. Chem.- Eur. J. 2016, 22, 3447– 3461, DOI: 10.1002/chem.201504817There is no corresponding record for this reference.
- 40Davies, H. M. L. Dirhodium tetra(N-arylsulfonylprolinates) as chiral catalysts for asymmetric transformations of vinyl- and aryldiazoacetates. Eur. J. Org. Chem. 1999, 1999 (10), 2459– 2469, DOI: 10.1002/(SICI)1099-0690(199910)1999:10<2459::AID-EJOC2459>3.0.CO;2-RThere is no corresponding record for this reference.
- 41Ghosh, S.; Qu, Z.-W.; Pradhan, S.; Ghosh, A.; Grimme, S.; Chatterjee, I. HFIP-assisted single C–F bond activation of trifluoromethyl ketones using visible-light photoredox catalysis. Angew. Chem., Int. Ed. 2022, 61 (9), e202115272 DOI: 10.1002/anie.202115272There is no corresponding record for this reference.
- 42Simlandy, A. K.; Rodphon, W.; Alturaifi, T. M.; Mai, B. K.; Ni, H.-Q.; Gurak, J. A., Jr; Liu, P.; Engle, K. M. Catalytic addition of nitroalkanes to unactivated alkenes via directed carbopalladation. ACS Catal. 2022, 12, 13755– 13762, DOI: 10.1021/acscatal.2c04557There is no corresponding record for this reference.
- 43Davies, H. M. L.; Bruzinski, P. R.; Lake, D. H.; Kong, N.; Fall, M. J. Asymmetric cyclopropanations by rhodium(II) N-(arylsulfonyl)prolinate catalyzed decomposition of vinyldiazomethanes in the presence of alkenes. Practical enantioselective synthesis of the four stereoisomers of 2-phenylcyclopropan-1-amino acid. J. Am. Chem. Soc. 1996, 118, 6897– 6907, DOI: 10.1021/ja9604931There is no corresponding record for this reference.
- 44Guo, W.; Tantillo, D. J. Running wild through dirhodium tetracarboxylate-catalyzed combined CH(C)-functionalization/Cope rearrangement landscapes: Does post-transition-state dynamic mismatching influence product distributions?. J. Am. Chem. Soc. 2024, 146, 7039– 7051, DOI: 10.1021/jacs.4c00382There is no corresponding record for this reference.
- 45Motiwala, H. F.; Armaly, A. M.; Cacioppo, J. G.; Coombs, T. C.; Koehn, K. R. K.; Norwood, V. M. I. V.; Aubé, J. HFIP in organic synthesis. Chem. Rev. 2022, 122, 12544– 12747, DOI: 10.1021/acs.chemrev.1c00749There is no corresponding record for this reference.
- 46Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157– 1174, DOI: 10.1002/jcc.20035There is no corresponding record for this reference.
- 47Li, P.; Merz, K. M., Jr MCPB.py: a python based metal center parameter builder. J. Chem. Inf. Model. 2016, 56, 599– 604, DOI: 10.1021/acs.jcim.5b00674There is no corresponding record for this reference.
- 48Fioroni, M.; Burger, K.; Mark, A. E.; Roccatano, D. Model of 1,1,1,3,3,3-hexafluoro-propan-2-ol for molecular dynamics simulations. J. Phys. Chem. B 2001, 105, 10967– 10975, DOI: 10.1021/jp012476qThere is no corresponding record for this reference.
- 49Grimme, S.; Bannwarth, C.; Shushkov, P. A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z= 1–86). J. Chem. Theory Comput. 2017, 13, 1989– 2009, DOI: 10.1021/acs.jctc.7b00118There is no corresponding record for this reference.
- 50Ren, Z.; Musaev, D. G.; Davies, H. M. L. Influence of aryl substituents on the alignment of ligands in the dirhodium tetrakis(1,2,2-triarylcyclopropane-carboxylate) catalysts. ChemCatChem 2021, 13, 174– 179, DOI: 10.1002/cctc.202001206There is no corresponding record for this reference.
- 51Ren, Z.; Musaev, D. G.; Davies, H. M. L. Key selectivity controlling elements in rhodium-catalyzed C–H functionalization with donor/acceptor carbenes. ACS Catal. 2022, 12, 13446– 13456, DOI: 10.1021/acscatal.2c04490There is no corresponding record for this reference.
Supporting Information
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.5c03007.
Experimental procedures, compound characterization, computational details, additional results, and Cartesian coordinates of computed structures (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.