ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Aryl Group Transfer from Tetraarylborato Anions to an Electrophilic Dicopper(I) Center and Mixed-Valence μ-Aryl Dicopper(I,II) Complexes

View Author Information
Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
§ Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
Cite this: J. Am. Chem. Soc. 2016, 138, 20, 6484–6491
Publication Date (Web):May 13, 2016
https://doi.org/10.1021/jacs.6b00802
Copyright © 2016 American Chemical Society

    Article Views

    6176

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (2)»

    Abstract

    Abstract Image

    The synthesis of discrete, cationic binuclear μ-aryl dicopper complexes [Cu2(μ-η11-Ar)DPFN]X (Ar = C6H5, 3,5-(CF3)2C6H3, and C6F5; DPFN = 2,7-bis(fluoro-di(2-pyridyl)methyl)-1,8-naphthyridine; X = BAr4 and NTf2; Tf = SO2CF3) was achieved by treatment of a dicopper complex [Cu2(μ-η11-NCCH3)DPFN]X2 (X = PF6 and NTf2) with tetraarylborates. Structural characterization revealed symmetrically bridging aryl groups, and 1H NMR spectroscopy evidenced the same structure in solution at 24 °C. Electrochemical investigation of the resulting arylcopper complexes uncovered reversible redox events that led to the synthesis and isolation of a rare mixed-valence organocopper complex [Cu2(μ-η11-Ph)DPFN](NTf2)2 in high yield. The solid-state structure of the mixed-valence μ-phenyl complex exhibits inequivalent copper centers, despite a short Cu···Cu distance. Electronic and variable-temperature electron paramagnetic resonance spectroscopy of the mixed-valence μ-phenyl complex suggest that the degree of spin localization is temperature-dependent, with a high degree of spin localization observed at lower temperatures. Electronic structure calculations agree with the experimental results and suggest that the spin is localized almost entirely on one metal center.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b00802. CIF files can also be obtained free of charge from the Cambridge Crystallographic Data Centre under reference numbers 1473702, 1473703, 1473705, 1473706, 1473704, and 1473701.

    • Experimental details, supplementary figures and tables, and crystallographic figures and data. (PDF)

    • X-ray crystallographic data for 1·2.5(C6H5NO2), 2·3(o-C6H4F2), 3·3(o-C6H4F2), 5·n(o-C6H4Cl2), 6·2.5(C6H5F), and 7·n(o-C6H4F2). (CIF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 55 publications.

    1. Matthew S. See, Pablo Ríos, T. Don Tilley. Diborane Reductions of CO2 and CS2 Mediated by Dicopper μ-Boryl Complexes of a Robust Bis(phosphino)-1,8-naphthyridine Ligand. Organometallics 2024, Article ASAP.
    2. Lars Killian, Roel L. M. Bienenmann, Daniël L. J. Broere. Quantification of the Steric Properties of 1,8-Naphthyridine-Based Ligands in Dinuclear Complexes. Organometallics 2023, 42 (1) , 27-37. https://doi.org/10.1021/acs.organomet.2c00458
    3. Peter D. Hall, Michael A. Stevens, Jiao Yu J. Wang, Le Nhan Pham, Michelle L. Coote, Annie L. Colebatch. Copper and Zinc Complexes of 2,7-Bis(6-methyl-2-pyridyl)-1,8-naphthyridine─A Redox-Active, Dinucleating Bis(bipyridine) Ligand. Inorganic Chemistry 2022, 61 (48) , 19333-19343. https://doi.org/10.1021/acs.inorgchem.2c03126
    4. Jorge A. Garduño, David S. Glueck, Ritchie E. Hernandez, Joshua S. Figueroa, Arnold L. Rheingold. Protonolysis of the [B(ArF)4]− Anion Mediated by Nucleophile/Electrophile/Water Cooperativity in a Platinum–PMe2OH Complex. Organometallics 2022, 41 (12) , 1475-1479. https://doi.org/10.1021/acs.organomet.2c00230
    5. Amélie Nicolay, Julie Héron, Chungkeun Shin, Serene Kuramarohit, Micah S. Ziegler, David Balcells, T. Don Tilley. Unsymmetrical Naphthyridine-Based Dicopper(I) Complexes: Synthesis, Stability, and Carbon–Hydrogen Bond Activations. Organometallics 2021, 40 (12) , 1866-1873. https://doi.org/10.1021/acs.organomet.1c00188
    6. Addison N. Desnoyer, Amélie Nicolay, Micah S. Ziegler, K. V. Lakshmi, Thomas R. Cundari, T. Don Tilley. A Dicopper Nitrenoid by Oxidation of a CuICuI Core: Synthesis, Electronic Structure, and Reactivity. Journal of the American Chemical Society 2021, 143 (18) , 7135-7143. https://doi.org/10.1021/jacs.1c02235
    7. Addison N. Desnoyer, Amélie Nicolay, Pablo Rios, Micah S. Ziegler, T. Don Tilley. Bimetallics in a Nutshell: Complexes Supported by Chelating Naphthyridine-Based Ligands. Accounts of Chemical Research 2020, 53 (9) , 1944-1956. https://doi.org/10.1021/acs.accounts.0c00382
    8. Errikos Kounalis, Martin Lutz, Daniël L. J. Broere. Tuning the Bonding of a μ-Mesityl Ligand on Dicopper(I) through a Proton-Responsive Expanded PNNP Pincer Ligand. Organometallics 2020, 39 (4) , 585-592. https://doi.org/10.1021/acs.organomet.9b00829
    9. Kurtis M. Carsch, James T. Lukens, Ida M. DiMucci, Diana A. Iovan, Shao-Liang Zheng, Kyle M. Lancaster, Theodore A. Betley. Electronic Structures and Reactivity Profiles of Aryl Nitrenoid-Bridged Dicopper Complexes. Journal of the American Chemical Society 2020, 142 (5) , 2264-2276. https://doi.org/10.1021/jacs.9b09616
    10. Marian Olaru, Elena Rychagova, Sergey Ketkov, Yevhen Shynkarenko, Sergii Yakunin, Maksym V. Kovalenko, Artem Yablonskiy, Boris Andreev, Florian Kleemiss, Jens Beckmann, Matthias Vogt. A Small Cationic Organo–Copper Cluster as Thermally Robust Highly Photo- and Electroluminescent Material. Journal of the American Chemical Society 2020, 142 (1) , 373-381. https://doi.org/10.1021/jacs.9b10829
    11. Matthew J. West, James W. B. Fyfe, Julien C. Vantourout, Allan J. B. Watson. Mechanistic Development and Recent Applications of the Chan–Lam Amination. Chemical Reviews 2019, 119 (24) , 12491-12523. https://doi.org/10.1021/acs.chemrev.9b00491
    12. Qian Zhang, Ting Wang, Xinhao Zhang, Shuo Tong, Yun-Dong Wu, Mei-Xiang Wang. Radical Reactivity, Catalysis, and Reaction Mechanism of Arylcopper(II) Compounds: The Missing Link in Organocopper Chemistry. Journal of the American Chemical Society 2019, 141 (45) , 18341-18348. https://doi.org/10.1021/jacs.9b10226
    13. Shengnan Zhang, Yike Song, Xueshan He, Raja Angamuthu, Chen-Ho Tung, Wenguang Wang. Reductive Coupling of Bridging Diaryl Ligands in Half-Sandwich Cobalt(II) Dimers: Revisiting Triple-Decker Cobalt(I) Complexes. Organometallics 2019, 38 (19) , 3610-3616. https://doi.org/10.1021/acs.organomet.9b00439
    14. Wenjie Tao, Jamey K. Bower, Curtis E. Moore, Shiyu Zhang. Dicopper μ-Oxo, μ-Nitrosyl Complex from the Activation of NO or Nitrite at a Dicopper Center. Journal of the American Chemical Society 2019, 141 (26) , 10159-10164. https://doi.org/10.1021/jacs.9b03635
    15. Micah S. Ziegler, Nicole A. Torquato, Daniel S. Levine, Amélie Nicolay, Hasan Celik, T. Don Tilley. Dicopper Alkyl Complexes: Synthesis, Structure, and Unexpected Persistence. Organometallics 2018, 37 (16) , 2807-2823. https://doi.org/10.1021/acs.organomet.8b00443
    16. Valérie Hardouin Duparc, Guillaume L. Bano, Frank Schaper. Chan–Evans–Lam Couplings with Copper Iminoarylsulfonate Complexes: Scope and Mechanism. ACS Catalysis 2018, 8 (8) , 7308-7325. https://doi.org/10.1021/acscatal.8b01881
    17. Subrata Kundu, Christine Greene, Kamille D. Williams, Tolani K. Salvador, Jeffery A. Bertke, Thomas R. Cundari, and Timothy H. Warren . Three-Coordinate Copper(II) Aryls: Key Intermediates in C–O Bond Formation. Journal of the American Chemical Society 2017, 139 (27) , 9112-9115. https://doi.org/10.1021/jacs.7b04046
    18. Jialing Lan, Tao Liao, Tonghuan Zhang, and Lung Wa Chung . Reaction Mechanism of Cu(I)-Mediated Reductive CO2 Coupling for the Selective Formation of Oxalate: Cooperative CO2 Reduction To Give Mixed-Valence Cu2(CO2•–) and Nucleophilic-Like Attack. Inorganic Chemistry 2017, 56 (12) , 6809-6819. https://doi.org/10.1021/acs.inorgchem.6b03080
    19. Micah S. Ziegler, K. V. Lakshmi, and T. Don Tilley . Dicopper Cu(I)Cu(I) and Cu(I)Cu(II) Complexes in Copper-Catalyzed Azide–Alkyne Cycloaddition. Journal of the American Chemical Society 2017, 139 (15) , 5378-5386. https://doi.org/10.1021/jacs.6b13261
    20. Thomas G. Ribelli, S. M. Wahidur Rahaman, Jean-Claude Daran, Pawel Krys, Krzysztof Matyjaszewski, and Rinaldo Poli . Effect of Ligand Structure on the CuII–R OMRP Dormant Species and Its Consequences for Catalytic Radical Termination in ATRP. Macromolecules 2016, 49 (20) , 7749-7757. https://doi.org/10.1021/acs.macromol.6b01334
    21. Naonari Sakamoto, Keita Sekizawa, Soichi Shirai, Takamasa Nonaka, Takeo Arai, Shunsuke Sato, Takeshi Morikawa. Dinuclear Cu(I) molecular electrocatalyst for CO2-to-C3 product conversion. Nature Catalysis 2024, 2 https://doi.org/10.1038/s41929-024-01147-y
    22. Deepamali Dissanayake, Alysia Draper, Zhizhou Liu, Neelofur Jaunnoo, Joris J. Haven, Craig Forsyth, Alasdair I. McKay, Tanja Junkers, Dragoslav Vidović. Lewis acid catalysed polymerisation of cyclopentenone. Chemical Science 2024, 15 (2) , 639-643. https://doi.org/10.1039/D3SC05186B
    23. Sam H. Brooks, Corey A. Richards, Patrick J. Carroll, Michael R. Gau, Neil C. Tomson. Anion Capture at the Open Core of a Geometrically Flexible Dicopper(II,II) Macrocycle Complex. Inorganics 2023, 11 (9) , 348. https://doi.org/10.3390/inorganics11090348
    24. Xin Zeng, Yao Li, Qiao-Qiao Min, Xiao-Song Xue, Xingang Zhang. Copper-catalysed difluorocarbene transfer enables modular synthesis. Nature Chemistry 2023, 15 (8) , 1064-1073. https://doi.org/10.1038/s41557-023-01236-8
    25. Tiago F. C. Cruz, Patrícia S. Lopes, M. Amélia N. D. A. Lemos, Luís F. Veiros, Pedro T. Gomes. New copper( i ) complexes of bulky 5-substituted-2-iminopyrrolyl ligands as catalysts for azide–alkyne cycloaddition. Dalton Transactions 2023, 52 (23) , 8003-8019. https://doi.org/10.1039/D3DT00617D
    26. Yang Liu, Stefan G. Resch, Haowei Chen, Sebastian Dechert, Serhiy Demeshko, Eckhard Bill, Shengfa Ye, Franc Meyer. Fully Delocalized Mixed‐Valent Cu 1.5 Cu 1.5 Complex: Strong Cu‐Cu interaction and Fast Electron Self‐Exchange Rate Despite Large Structural Changes**. Angewandte Chemie 2023, 135 (10) https://doi.org/10.1002/ange.202215840
    27. Yang Liu, Stefan G. Resch, Haowei Chen, Sebastian Dechert, Serhiy Demeshko, Eckhard Bill, Shengfa Ye, Franc Meyer. Fully Delocalized Mixed‐Valent Cu 1.5 Cu 1.5 Complex: Strong Cu‐Cu interaction and Fast Electron Self‐Exchange Rate Despite Large Structural Changes**. Angewandte Chemie International Edition 2023, 62 (10) https://doi.org/10.1002/anie.202215840
    28. Hong Wang, Mingquan Xiao, Zhongming Wang, Xun Chen, Wenxin Dai, Xianzhi Fu. Visible photocatalytic hydrogen production from CH3OH over CuO/WO3: The effect of electron transfer behavior of the adsorbed CH3OH. Chemical Engineering Journal 2023, 459 , 141616. https://doi.org/10.1016/j.cej.2023.141616
    29. Laurent Maron, Philippe Kalck. Dinuclear Reactivity Between the Two Metal Centers. 2023, 157-205. https://doi.org/10.1007/3418_2023_88
    30. Kui Xiao, Liang Zhao. Synthesis, carbon-polymetal bonding and applications of organometallic clusters. 2023, 1050-1071. https://doi.org/10.1016/B978-0-12-823144-9.00025-X
    31. Martin Piesch, Amélie Nicolay, Maria Haimerl, Michael Seidl, Gábor Balázs, T. Don Tilley, Manfred Scheer. Binding, Release and Functionalization of Intact Pnictogen Tetrahedra Coordinated to Dicopper Complexes. Chemistry – A European Journal 2022, 28 (45) https://doi.org/10.1002/chem.202201144
    32. HeeJin Jang, Juhee Lee, Yong-Jin Chun, Soon-Young Soh. Corrosion of Cu in Antifreeze Solutions with Triazine- or Triazole-Type Corrosion Inhibitors for 3 Weeks. Metals 2022, 12 (7) , 1192. https://doi.org/10.3390/met12071192
    33. Pablo Ríos, Matthew S. See, Rex C. Handford, Simon J. Teat, T. Don Tilley. Robust dicopper( i ) μ-boryl complexes supported by a dinucleating naphthyridine-based ligand. Chemical Science 2022, 13 (22) , 6619-6625. https://doi.org/10.1039/D2SC00848C
    34. Hugo Valdés, Xavi Ribas. Organometallic Complexes of Copper. 2022, 1-31. https://doi.org/10.1016/B978-0-12-820206-7.00124-4
    35. Wenxin Dai, Hong Wang, Mingquan Xiao, Zhongming Wang, Xun Chen, Xianzhi Fu. Visible Photocatalytic Hydrogen Production from Ch3oh Over Cuo/Wo3: The Effect of Electron Transfer Behavior of the Adsorbed Ch3oh. SSRN Electronic Journal 2022, 45 https://doi.org/10.2139/ssrn.4147104
    36. Orestes Rivada-Wheelaghan, Shubham Deolka, Ramadoss Govindarajan, Eugene Khaskin, Robert R. Fayzullin, Shrinwantu Pal, Julia R. Khusnutdinova. Construction of modular Pd/Cu multimetallic chains via ligand- and anion-controlled metal–metal interactions. Chemical Communications 2021, 57 (79) , 10206-10209. https://doi.org/10.1039/D1CC04212B
    37. Qiuran Wang, Sam H. Brooks, Tianchang Liu, Neil C. Tomson. Tuning metal–metal interactions for cooperative small molecule activation. Chemical Communications 2021, 57 (23) , 2839-2853. https://doi.org/10.1039/D0CC07721F
    38. Taghrid Chahrour, Annie Castonguay, Paul O. Oguadinma, Frank Schaper, Davit Zargarian. Reactions of a pincer proligand with copper iodide: bridging instead of C–H metalation. Canadian Journal of Chemistry 2020, 98 (9) , 524-530. https://doi.org/10.1139/cjc-2020-0058
    39. Addison N. Desnoyer, Amélie Nicolay, Micah S. Ziegler, Nicole A. Torquato, T. Don Tilley. A Dicopper Platform that Stabilizes the Formation of Pentanuclear Coinage Metal Hydride Complexes. Angewandte Chemie 2020, 132 (31) , 12869-12873. https://doi.org/10.1002/ange.202004346
    40. Addison N. Desnoyer, Amélie Nicolay, Micah S. Ziegler, Nicole A. Torquato, T. Don Tilley. A Dicopper Platform that Stabilizes the Formation of Pentanuclear Coinage Metal Hydride Complexes. Angewandte Chemie International Edition 2020, 59 (31) , 12769-12773. https://doi.org/10.1002/anie.202004346
    41. Arthur R. Scheerder, Martin Lutz, Daniël L. J. Broere. Unexpected reactivity of a PONNOP ‘expanded pincer’ ligand. Chemical Communications 2020, 56 (59) , 8198-8201. https://doi.org/10.1039/D0CC02166K
    42. Nikolay Akatyev, Mikhail Il'in, Mikhail Il'in(Jr.), Svetlana Peregudova, Alexander Peregudov, Anastasiya Buyanovskaya, Kirill Kudryavtsev, Alexander Dubovik, Valerij Grinberg, Victor Orlov, Alexander Pavlov, Valentin Novikov, Ilya Volkov, Yuri Belokon. Chan‐Evans‐Lam C−N Coupling Promoted by a Dinuclear Positively Charged Cu(II) Complex. Catalytic Performance and Some Evidence for the Mechanism of CEL Reaction Obviating Cu(III)/Cu(I) Catalytic Cycle. ChemCatChem 2020, 12 (11) , 3010-3021. https://doi.org/10.1002/cctc.202000212
    43. Shubham Deolka, Orestes Rivada-Wheelaghan, Sandra L. Aristizábal, Robert R. Fayzullin, Shrinwantu Pal, Kyoko Nozaki, Eugene Khaskin, Julia R. Khusnutdinova. Metal–metal cooperative bond activation by heterobimetallic alkyl, aryl, and acetylide Pt II /Cu I complexes. Chemical Science 2020, 11 (21) , 5494-5502. https://doi.org/10.1039/D0SC00646G
    44. Amélie Nicolay, Micah S. Ziegler, David W. Small, Rebecca Grünbauer, Manfred Scheer, T. Don Tilley. Isomerism and dynamic behavior of bridging phosphaalkynes bound to a dicopper complex. Chemical Science 2020, 11 (6) , 1607-1616. https://doi.org/10.1039/C9SC05835D
    45. Yuanyi Zhou, Ling Zhang, Wenzhong Wang. Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-08454-0
    46. Errikos Kounalis, Martin Lutz, Daniël L. J. Broere. Cooperative H 2 Activation on Dicopper(I) Facilitated by Reversible Dearomatization of an “Expanded PNNP Pincer” Ligand. Chemistry – A European Journal 2019, 25 (58) , 13280-13284. https://doi.org/10.1002/chem.201903724
    47. Florian Ritter, Debabrata Mukherjee, Thomas P. Spaniol, Alexander Hoffmann, Jun Okuda. Ein maskiertes Kupferhydrid als Katalysator für die Carbonylhydrosilylierung in wässrigen Lösungen. Angewandte Chemie 2019, 131 (6) , 1832-1836. https://doi.org/10.1002/ange.201811890
    48. Florian Ritter, Debabrata Mukherjee, Thomas P. Spaniol, Alexander Hoffmann, Jun Okuda. A Masked Cuprous Hydride as a Catalyst for Carbonyl Hydrosilylation in Aqueous Solutions. Angewandte Chemie International Edition 2019, 58 (6) , 1818-1822. https://doi.org/10.1002/anie.201811890
    49. Qiuyan Jin, Jiaye Li, Alireza Ariafard, Allan J Canty, Richard AJ O’Hair. Formation and reactions of the 1, 8-naphthyridine (napy) ligated geminally dimetallated phenyl complexes [(napy)Cu 2 (Ph)] + , [(napy)Ag 2 (Ph)] + and [(napy)CuAg(Ph)] +. European Journal of Mass Spectrometry 2019, 25 (1) , 30-43. https://doi.org/10.1177/1469066718795959
    50. Michael Neugebauer, Simon Schmitz, Maren Krause, Nikos L. Doltsinis, Axel Klein. Reactions of the organoplatinum complex [Pt(cod) (neoSi)Cl] (neoSi = trimethylsilylmethyl) with the non-coordinating anions SbF 6 – and BPh 4 –. Open Chemistry 2018, 16 (1) , 1214-1226. https://doi.org/10.1515/chem-2018-0130
    51. Manoj Chahal, Kalaikodikumaran Mani, Chetan Singh Lodhi, Ray J. Butcher, Sakthi Raje, Raja Angamuthu. Metal Dependent Formation of Imidazolidine or Hemiaminal Ether Complexes from Multicomponent One‐pot Reactions. ChemistrySelect 2018, 3 (34) , 9960-9964. https://doi.org/10.1002/slct.201802755
    52. Zhouqing Xu, Qingqing Li, Xinglei He, Huijun Li, Yuan Wang, Jianliang Cao. Construction of mixed-valence Cu(I)/Cu(II) 3-D framework and its photocatalytic activities. Polyhedron 2018, 151 , 478-482. https://doi.org/10.1016/j.poly.2018.06.012
    53. Amélie Nicolay, T. Don Tilley. Selective Synthesis of a Series of Isostructural M II Cu I Heterobimetallic Complexes Spontaneously Assembled by an Unsymmetrical Naphthyridine‐Based Ligand. Chemistry – A European Journal 2018, 24 (41) , 10329-10333. https://doi.org/10.1002/chem.201802623
    54. Chuan Jing, Zhenqiang Wang, Yulong Gong, Haijun Huang, Yiwen Ma, Huanxin Xie, Hongru Li, Shengtao Zhang, Fang Gao. Photo and thermally stable branched corrosion inhibitors containing two benzotriazole groups for copper in 3.5 wt% sodium chloride solution. Corrosion Science 2018, 138 , 353-371. https://doi.org/10.1016/j.corsci.2018.04.027
    55. Felix Koch, Andreas Berkefeld, Hartmut Schubert, Claudius Grauer. Redox and Acid–Base Properties of Binuclear 4‐Terphenyldithiophenolate Complexes of Nickel. Chemistry – A European Journal 2016, 22 (41) , 14640-14647. https://doi.org/10.1002/chem.201603060

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect