Reduced and Superreduced Diplatinum ComplexesClick to copy article linkArticle link copied!
Abstract
A d8–d8 complex [Pt2(μ-P2O5(BF2)4]4– (abbreviated Pt(pop-BF2)4–) undergoes two 1e– reductions at E1/2 = −1.68 and Ep = −2.46 V (vs Fc+/Fc) producing reduced Pt(pop-BF2)5– and superreduced Pt(pop-BF2)6– species, respectively. The EPR spectrum of Pt(pop-BF2)5– and UV–vis spectra of both the reduced and the superreduced complexes, together with TD-DFT calculations, reveal successive filling of the 6pσ orbital accompanied by gradual strengthening of Pt–Pt bonding interactions and, because of 6pσ delocalization, of Pt–P bonds in the course of the two reductions. Mayer–Millikan Pt–Pt bond orders of 0.173, 0.268, and 0.340 were calculated for the parent, reduced, and superreduced complexes, respectively. The second (5–/6−) reduction is accompanied by a structural distortion that is experimentally manifested by electrochemical irreversibility. Both reduction steps proceed without changing either d8 Pt electronic configuration, making the superreduced Pt(pop-BF2)6– a very rare 6p2 σ-bonded binuclear complex. However, the Pt–Pt σ bonding interaction is limited by the relatively long bridging-ligand-imposed Pt–Pt distance accompanied by repulsive electronic congestion. Pt(pop-BF2)4– is predicted to be a very strong photooxidant (potentials of +1.57 and +0.86 V are estimated for the singlet and triplet dσ*pσ excited states, respectively).
Introduction
Results
Molecular and Electronic Structures: DFT Calculations
n = | |||||||
---|---|---|---|---|---|---|---|
4 | 5 | Δ(5–4) | 6 | Δ(6–5) | 6′ | Δ(6′–5) | |
Pt–Pt | 2.887 | 2.803 | –0.084 | 2.739 | –0.058 | 2.745 | –0.058 |
Pt–P (average) | 2.301 | 2.278 | –0.025 | 2.255 | –0.023 | 2.255 | –0.023 |
P–O(−P) (average) | 1.625 | 1.634 | 0.009 | 1.643 | 0.010 | 1.644 | 0.010 |
P–Pt–P (average) | 178.8a | 177.1a | –1.7 | 166.8,a −175.7b | –10.3 7.2 | 176.0a | –1.1 |
The P → Pt vectors point inward to the Pt–Pt unit.
The P → Pt vectors point outward from the Pt–Pt unit. The Pt–P directions are reversed at the other PtP4 unit (Figure S4, Table S1).
state | main contributing excitations (%) | transition energy, eV (nm) | oscillator strength | exptl. eV, nm |
---|---|---|---|---|
b2A | 99 (αHOMO → αLUMO+1) | 2.32 (533) | 0.0b | |
c2A | 70 (αHOMO → αLUMO) | 2.43 (509) | 0.036 | ∼550 |
23 (βHOMO → βLUMO) | ||||
d2A | 99 (αHOMO → αLUMO+2) | 2.46 (505) | 0.0b | ∼450 |
e2A | 74 (βHOMO → βLUMO) | 3.02 (411) | 0.285 | 416 |
25 (αHOMO → αLUMO) | ||||
f2A | 90 (αHOMO → αLUMO+6) | 3.82 (325) | 0.009 | 338 |
g2A | 99 (αHOMO → αLUMO+7) | 3.82 (325) | 0.015 |
state | main contributing excitations (%) | transition energy eV (nm) | oscillator strength | exptl. (nm) |
---|---|---|---|---|
b1A | 90 (HOMO → LUMO) | 2.53 (490) | 0.184 | 496 |
c1A | 80 (HOMO → LUMO+1) | 3.07 (404) | 0.075 | 408 |
10 (HOMO → LUMO+4) | ||||
d1A | 87 (HOMO → LUMO+4) | 3.53 (350) | 0.081 | 356 |
12 (HOMO → LUMO+1) | ||||
e1A | 92 (HOMO → LUMO+6) | 4.00 (310) | 0.016 | |
f1A | 70 (HOMO → LUMO+7) | 4.08 (304) | 0.013 |
Discussion
n | |||
---|---|---|---|
bond | 4 | 5 | 6/conf. 6 |
Pt–Pt | 0.173 | 0.268 | 0.340 |
Pt–P1 | 1.119 | 1.181 | 1.175 |
Pt–P2 | 1.122 | 1.173 | 1.309 |
Pt–P3 | 1.122 | 1.173 | 1.167 |
Pt–P4 | 1.119 | 1.182 | 1.312 |
Pt–P5 | 1.119 | 1.183 | 1.320 |
Pt–P6 | 1.121 | 1.174 | 1.175 |
Pt–P7 | 1.121 | 1.175 | 1.328 |
Pt–P8 | 1.119 | 1.183 | 1.168 |
Atom P5 is in alignment with atom P1, etc.
Experimental Section
Materials and Procedures
DFT Calculations
Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b02559.
Room-temperature cyclic voltammetry, spectra monitored in the course of both reductions and respective reoxidations, TD-DFT simulated spectra, DFT calculated structures, and EPR parameters (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
Acknowledgment
We thank James Blakemore, Angelo Di Bilio, Yan-Choi Lam, and Jay R. Winkler for assistance with experiments and helpful discussions. This work was supported by the NSF CCI Solar Fuels Program (CHE-1305124). Additional support was provided by the Arnold and Mabel Beckman Foundation, the Ministry of Education of the Czech Republic (grants LH13015 and LD14129), and COST Actions CM1202 and CM1405. B.M.H. is a Fellow of the Resnick Sustainability Institute at Caltech; T.V.D. is an NSF Graduate Research Fellow.
References
This article references 40 other publications.
- 1Durrell, A. C.; Keller, G. E.; Lam, Y.-C.; Sýkora, J.; Vlček, A., Jr.; Gray, H. B. J. Am. Chem. Soc. 2012, 134, 14201– 14207 DOI: 10.1021/ja305666bGoogle ScholarThere is no corresponding record for this reference.
- 2Záliš, S.; Lam, Y. C.; Gray, H. B.; Vlček, A., Jr. Inorg. Chem. 2015, 54, 3491– 3500 DOI: 10.1021/acs.inorgchem.5b00063Google ScholarThere is no corresponding record for this reference.
- 3Roundhill, D. M.; Gray, H. B.; Che, C.-M. Acc. Chem. Res. 1989, 22, 55– 61 DOI: 10.1021/ar00158a002Google ScholarThere is no corresponding record for this reference.
- 4Hofbeck, T.; Lam, Y. C.; Kalbáč, M.; Záliš, S.; Vlček, A.; Yersin, H. Inorg. Chem. 2016, 55, 2441– 2449 DOI: 10.1021/acs.inorgchem.5b02839Google ScholarThere is no corresponding record for this reference.
- 5van der Veen, R. M.; Milne, C. J.; El Nahhas, A.; Lima, F. A.; Pham, V.-T.; Best, J.; Weinstein, J. A.; Borca, C. N.; Abela, R.; Bressler, C.; Chergui, M. Angew. Chem., Int. Ed. 2009, 48, 2711– 2714 DOI: 10.1002/anie.200805946Google ScholarThere is no corresponding record for this reference.
- 6Christensen, M.; Haldrup, K.; Bechgaard, K.; Feidenhans’l, R.; Kong, Q.; Cammarata, M.; Lo Russo, M.; Wulff, M.; Harrit, N.; N, M. M. J. Am. Chem. Soc. 2009, 131, 502– 508 DOI: 10.1021/ja804485dGoogle ScholarThere is no corresponding record for this reference.
- 7Rice, S. F.; Gray, H. B. J. Am. Chem. Soc. 1983, 105, 4571– 4575 DOI: 10.1021/ja00352a011Google ScholarThere is no corresponding record for this reference.
- 8Che, C.-M.; Butler, L. G.; Gray, H. B.; Crooks, R. M.; Woodruff, W. H. J. Am. Chem. Soc. 1983, 105, 5492– 5494 DOI: 10.1021/ja00354a059Google ScholarThere is no corresponding record for this reference.
- 9Stiegman, A. E.; Rice, S. F.; Gray, H. B.; Miskowski, V. M. Inorg. Chem. 1987, 26, 1112– 1116 DOI: 10.1021/ic00254a029Google ScholarThere is no corresponding record for this reference.
- 10Fordyce, W. A.; Brummer, J. G.; Crosby, G. A. J. Am. Chem. Soc. 1981, 103, 7061– 7064 DOI: 10.1021/ja00414a006Google ScholarThere is no corresponding record for this reference.
- 11Bryan, S. A.; Schmehl, R. H.; Roundhill, D. M. J. Am. Chem. Soc. 1986, 108, 5408– 5412 DOI: 10.1021/ja00278a006Google ScholarThere is no corresponding record for this reference.
- 12Che, C.-M.; Atherton, S. J.; Butler, L. G.; Gray, H. B. J. Am. Chem. Soc. 1984, 106, 5143– 5145 DOI: 10.1021/ja00330a018Google ScholarThere is no corresponding record for this reference.
- 13Vogler, A.; Kunkely, H. Angew. Chem., Int. Ed. Engl. 1984, 23, 316– 317 DOI: 10.1002/anie.198403161Google ScholarThere is no corresponding record for this reference.
- 14Kim, J.; Fan, F. F.; Bard, A. J.; Che, C.-M.; Gray, H. B. Chem. Phys. Lett. 1985, 121, 543– 546 DOI: 10.1016/0009-2614(85)87137-2Google ScholarThere is no corresponding record for this reference.
- 15Braterman, P. S.; Song, J.-I.; Vogler, C.; Kaim, W. Inorg. Chem. 1992, 31, 222– 224 DOI: 10.1021/ic00028a018Google ScholarThere is no corresponding record for this reference.
- 16Hirani, B.; Li, J.; Djurovich, P. I.; Yousufuddin, M.; Oxgaard, J.; Persson, P.; Wilson, S. R.; Bau, R.; Goddard, W. A., III; Thompson, M. E. Inorg. Chem. 2007, 46, 3865– 3875 DOI: 10.1021/ic061556bGoogle ScholarThere is no corresponding record for this reference.
- 17Matsunami, J.; Urata, H.; Matsumoto, K. Inorg. Chem. 1995, 34, 202– 208 DOI: 10.1021/ic00105a034Google ScholarThere is no corresponding record for this reference.
- 18Arrizabalaga, P.; Castan, P.; Geoffroy, M.; Laurent, J.-P. Inorg. Chem. 1985, 24, 3656– 3660 DOI: 10.1021/ic00216a036Google ScholarThere is no corresponding record for this reference.
- 19Schmauke, T.; Einar Möller, E.; Roduner, E. Chem. Commun. 1998, 2589– 2590 DOI: 10.1039/a805409fGoogle ScholarThere is no corresponding record for this reference.
- 20
Reaction of Pt(pop) with 2 equiv of Cr2+ in aqueous solution produced a stable species that was tentatively assigned as Pt(pop)6–. (40) However, this assignment cannot be correct, because the Cr3+/Cr2+ potential (ca. −1.1 V) is more positive than the estimated E(Pt(pop)4–/5–) value of −1.8 V. Moreover, the Raman spectrum of the product has a ν(Pt–Pt) band at lower wavenumber than in the Pt(pop) parent. (40)
There is no corresponding record for this reference. - 21Heuer, W. B.; Totten, M. D.; Rodman, G. S.; Hebert, E. J.; Tracy, H. J.; Nagle, J. K. J. Am. Chem. Soc. 1984, 106, 1163– 1164 DOI: 10.1021/ja00316a083Google ScholarThere is no corresponding record for this reference.
- 22Lam, Y. C. Ph.D. Dissertation, California Institute of Technology, 2015.Google ScholarThere is no corresponding record for this reference.
- 23Vlček, A., Jr.; Gray, H. B. J. Am. Chem. Soc. 1987, 109, 286– 287 DOI: 10.1021/ja00235a051Google ScholarThere is no corresponding record for this reference.
- 24Vlček, A., Jr.; Gray, H. B. Inorg. Chem. 1987, 26, 1997– 2001 DOI: 10.1021/ic00259a037Google ScholarThere is no corresponding record for this reference.
- 25Smith, D. C.; Gray, H. B. In ACS Symposium Series 394. The Challenge of d and f Electrons; Salahub, D. R.; Zerner, M. C., Eds.; American Chemical Society: Washington, DC, 1989; pp 356– 365.Google ScholarThere is no corresponding record for this reference.
- 26Bridgeman, A. J.; Cavigliasso, G.; Ireland, L. R.; Rothery, J. J. Chem. Soc., Dalton Trans. 2001, 2095– 2108 DOI: 10.1039/b102094nGoogle ScholarThere is no corresponding record for this reference.
- 27Hill, M. G.; Sykes, A. G.; Mann, K. R. Inorg. Chem. 1993, 32, 783– 784 DOI: 10.1021/ic00058a004Google ScholarThere is no corresponding record for this reference.
- 28Hunter, B. M.; Villahermosa, R. M.; Exstrom, C. L.; Hill, M. G.; Mann, K. R.; Gray, H. B. Inorg. Chem. 2012, 51, 6898– 6905 DOI: 10.1021/ic300716qGoogle ScholarThere is no corresponding record for this reference.
- 29Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.Gaussian 09, revision C.01; Gaussian, Inc.: Wallingford, CT, 2009.Google ScholarThere is no corresponding record for this reference.
- 30ADF2014.06, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands; http://www.scm.com.Google ScholarThere is no corresponding record for this reference.
- 31Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865– 3868 DOI: 10.1103/PhysRevLett.77.3865Google Scholar31https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaK28XmsVCgsbs%253D&md5=55943538406ee74f93aabdf882cd4630Generalized gradient approximation made simplePerdew, John P.; Burke, Kieron; Ernzerhof, MatthiasPhysical Review Letters (1996), 77 (18), 3865-3868CODEN: PRLTAO; ISSN:0031-9007. (American Physical Society)Generalized gradient approxns. (GGA's) for the exchange-correlation energy improve upon the local spin d. (LSD) description of atoms, mols., and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental consts. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential.
- 32Adamo, C.; Scuseria, G. E.; Barone, V. J. Chem. Phys. 1999, 111, 2889– 2899 DOI: 10.1063/1.479571Google ScholarThere is no corresponding record for this reference.
- 33Raghavachari, K.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650– 654 DOI: 10.1063/1.438955Google ScholarThere is no corresponding record for this reference.
- 34Andrae, D.; Häussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta 1990, 77, 123– 141 DOI: 10.1007/BF01114537Google Scholar34https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaK3cXkt12ntLo%253D&md5=8203c6bc6149924cbd4b23b3063715e1Energy-adjusted ab initio pseudopotentials for the second and third row transition elementsAndrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H.Theoretica Chimica Acta (1990), 77 (2), 123-41CODEN: TCHAAM; ISSN:0040-5744.Nonrelativistic and quasirelativistic ab initio pseudopotentials substituting the M(z-28)+-core orbitals of the second row transition elements and M(z-60)+-core orbitals of the third row transition elements, resp., and optimized (8s7p6d)/[6s5p3d]-GTO valence basis sets for use in mol. calcns. have been generated. Addnl., corresponding spin-orbit operators have also been derived. At. excitation and ionization energies from numerical HF as well as from SCF pseudopotential calcns. using the derived basis sets differ in most cases by less than 0.1 eV from corresponding numerical all-electron results. Spin-orbit splittings for low-lying states are in reasonable agreement with corresponding all-electron Dirac-Fock (DF) results.
- 35Martin, J. M. L.; Sundermann, A. J. Chem. Phys. 2001, 114, 3408 DOI: 10.1063/1.1337864Google ScholarThere is no corresponding record for this reference.
- 36Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Landis, C. R.; Weinhold, F. Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2013.Google ScholarThere is no corresponding record for this reference.
- 37Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669– 681 DOI: 10.1002/jcc.10189Google Scholar37https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD3sXivFWqsbc%253D&md5=570ef9f44e925c9f78de6c7d97123229Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation modelCossi, Maurizio; Rega, Nadia; Scalmani, Giovanni; Barone, VincenzoJournal of Computational Chemistry (2003), 24 (6), 669-681CODEN: JCCHDD; ISSN:0192-8651. (John Wiley & Sons, Inc.)The conductor-like solvation model, as developed in the framework of the polarizable continuum model (PCM), has been reformulated and newly implemented in order to compute energies, geometric structures, harmonic frequencies, and electronic properties in soln. for any chem. system that can be studied in vacuo. Particular attention is devoted to large systems requiring suitable iterative algorithms to compute the solvation charges: the fast multipole method (FMM) has been extensively used to ensure a linear scaling of the computational times with the size of the solute. A no. of test applications are presented to evaluate the performances of the method.
- 38Klamt, A.; Schüürmann, G. J. Chem. Soc., Perkin Trans. 2 1993, 799– 805 DOI: 10.1039/P29930000799Google Scholar38https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaK3sXkvVSku7o%253D&md5=a8e9e41514d60ca7f11212cf5c281424COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradientKlamt, A.; Schueuermann, G.Journal of the Chemical Society, Perkin Transactions 2: Physical Organic Chemistry (1972-1999) (1993), (5), 799-805CODEN: JCPKBH; ISSN:0300-9580.Starting from the screening in conductors, an algorithm for the accurate calcn. of dielec. screening effects in solvents is presented, which leads to rather simple explicit expressions for the screening energy and its analytic gradient with respect to the solute coordinates. Thus geometry optimization of a solute within a realistic dielec. continuum model becomes practicable for the first time. The algorithm is suited for mol. mechanics as well as for any MO algorithm. The implementation into MOPAC and some example applications are reported.
- 39van Lenthe, E.; Ehlers, A.; Baerends, E. J. J. Chem. Phys. 1999, 110, 8943– 8953 DOI: 10.1063/1.478813Google ScholarThere is no corresponding record for this reference.
- 40Alexander, K. A.; Paul, Stein; Hedden, D. B.; Roundhill, D. M. Polyhedron 1983, 2, 1389– 1392 DOI: 10.1016/S0277-5387(00)84403-4Google ScholarThere is no corresponding record for this reference.
Cited By
This article is cited by 9 publications.
- Arnab Chakraborty, James E. Yarnell, Roger D. Sommer, Subhangi Roy, and Felix N. Castellano . Excited-State Processes of Cyclometalated Platinum(II) Charge-Transfer Dimers Bridged by Hydroxypyridines. Inorganic Chemistry 2018, 57
(3)
, 1298-1310. https://doi.org/10.1021/acs.inorgchem.7b02736
- Stanislav Záliš, Bryan M. Hunter, Harry B. Gray, and Antonín Vlček . Electronic Structures of Reduced and Superreduced Ir2(1,8-diisocyanomenthane)4n+ Complexes. Inorganic Chemistry 2017, 56
(5)
, 2874-2883. https://doi.org/10.1021/acs.inorgchem.6b03001
- Yungen Liu, Hao‐Chong Tan, Daohong Yu, Chi‐Ming Che. Photochemical CH Bond Activation by Gold, Platinum, Tungsten, and Osmium Complexes. 2022, 1-59. https://doi.org/10.1002/9783527834242.chf0064
- Ramin Rabbani, Sima Saeedi, Md Nazimuddin, Héctor Barbero, Nathalie Kyritsakas, Travis A. White, Eric Masson. Enhanced photoreduction of water catalyzed by a cucurbit[8]uril-secured platinum dimer. Chemical Science 2021, 12
(46)
, 15347-15352. https://doi.org/10.1039/D1SC03743A
- Fabian Ehret, Vasileios Filippou, Svenja Blickle, Martina Bubrin, Stanislav Záliš, Wolfgang Kaim. Structural and Oxidation State Alternatives in Platinum and Palladium Complexes of a Redox‐Active Amidinato Ligand. Chemistry – A European Journal 2021, 27
(10)
, 3374-3381. https://doi.org/10.1002/chem.202003636
- Maya Chaaban, Chenkun Zhou, Haoran Lin, Brandon Chyi, Biwu Ma. Platinum(
ii
) binuclear complexes: molecular structures, photophysical properties, and applications. Journal of Materials Chemistry C 2019, 7
(20)
, 5910-5924. https://doi.org/10.1039/C9TC01585J
- Jian-Ji Zhong, Wai-Pong To, Yungen Liu, Wei Lu, Chi-Ming Che. Efficient acceptorless photo-dehydrogenation of alcohols and
N
-heterocycles with binuclear platinum(
ii
) diphosphite complexes. Chemical Science 2019, 10
(18)
, 4883-4889. https://doi.org/10.1039/C8SC05600E
- Chen-Hao Wang, Wen-Yang Gao, Qing Ma, David C. Powers. Templating metastable Pd
2
carboxylate aggregates. Chemical Science 2019, 10
(6)
, 1823-1830. https://doi.org/10.1039/C8SC04940H
- Harry B. Gray, Stanislav Záliš, Antonín Vlček. Electronic structures and photophysics of d8-d8 complexes. Coordination Chemistry Reviews 2017, 345 , 297-317. https://doi.org/10.1016/j.ccr.2017.01.008
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
Recommended Articles
References
This article references 40 other publications.
- 1Durrell, A. C.; Keller, G. E.; Lam, Y.-C.; Sýkora, J.; Vlček, A., Jr.; Gray, H. B. J. Am. Chem. Soc. 2012, 134, 14201– 14207 DOI: 10.1021/ja305666bThere is no corresponding record for this reference.
- 2Záliš, S.; Lam, Y. C.; Gray, H. B.; Vlček, A., Jr. Inorg. Chem. 2015, 54, 3491– 3500 DOI: 10.1021/acs.inorgchem.5b00063There is no corresponding record for this reference.
- 3Roundhill, D. M.; Gray, H. B.; Che, C.-M. Acc. Chem. Res. 1989, 22, 55– 61 DOI: 10.1021/ar00158a002There is no corresponding record for this reference.
- 4Hofbeck, T.; Lam, Y. C.; Kalbáč, M.; Záliš, S.; Vlček, A.; Yersin, H. Inorg. Chem. 2016, 55, 2441– 2449 DOI: 10.1021/acs.inorgchem.5b02839There is no corresponding record for this reference.
- 5van der Veen, R. M.; Milne, C. J.; El Nahhas, A.; Lima, F. A.; Pham, V.-T.; Best, J.; Weinstein, J. A.; Borca, C. N.; Abela, R.; Bressler, C.; Chergui, M. Angew. Chem., Int. Ed. 2009, 48, 2711– 2714 DOI: 10.1002/anie.200805946There is no corresponding record for this reference.
- 6Christensen, M.; Haldrup, K.; Bechgaard, K.; Feidenhans’l, R.; Kong, Q.; Cammarata, M.; Lo Russo, M.; Wulff, M.; Harrit, N.; N, M. M. J. Am. Chem. Soc. 2009, 131, 502– 508 DOI: 10.1021/ja804485dThere is no corresponding record for this reference.
- 7Rice, S. F.; Gray, H. B. J. Am. Chem. Soc. 1983, 105, 4571– 4575 DOI: 10.1021/ja00352a011There is no corresponding record for this reference.
- 8Che, C.-M.; Butler, L. G.; Gray, H. B.; Crooks, R. M.; Woodruff, W. H. J. Am. Chem. Soc. 1983, 105, 5492– 5494 DOI: 10.1021/ja00354a059There is no corresponding record for this reference.
- 9Stiegman, A. E.; Rice, S. F.; Gray, H. B.; Miskowski, V. M. Inorg. Chem. 1987, 26, 1112– 1116 DOI: 10.1021/ic00254a029There is no corresponding record for this reference.
- 10Fordyce, W. A.; Brummer, J. G.; Crosby, G. A. J. Am. Chem. Soc. 1981, 103, 7061– 7064 DOI: 10.1021/ja00414a006There is no corresponding record for this reference.
- 11Bryan, S. A.; Schmehl, R. H.; Roundhill, D. M. J. Am. Chem. Soc. 1986, 108, 5408– 5412 DOI: 10.1021/ja00278a006There is no corresponding record for this reference.
- 12Che, C.-M.; Atherton, S. J.; Butler, L. G.; Gray, H. B. J. Am. Chem. Soc. 1984, 106, 5143– 5145 DOI: 10.1021/ja00330a018There is no corresponding record for this reference.
- 13Vogler, A.; Kunkely, H. Angew. Chem., Int. Ed. Engl. 1984, 23, 316– 317 DOI: 10.1002/anie.198403161There is no corresponding record for this reference.
- 14Kim, J.; Fan, F. F.; Bard, A. J.; Che, C.-M.; Gray, H. B. Chem. Phys. Lett. 1985, 121, 543– 546 DOI: 10.1016/0009-2614(85)87137-2There is no corresponding record for this reference.
- 15Braterman, P. S.; Song, J.-I.; Vogler, C.; Kaim, W. Inorg. Chem. 1992, 31, 222– 224 DOI: 10.1021/ic00028a018There is no corresponding record for this reference.
- 16Hirani, B.; Li, J.; Djurovich, P. I.; Yousufuddin, M.; Oxgaard, J.; Persson, P.; Wilson, S. R.; Bau, R.; Goddard, W. A., III; Thompson, M. E. Inorg. Chem. 2007, 46, 3865– 3875 DOI: 10.1021/ic061556bThere is no corresponding record for this reference.
- 17Matsunami, J.; Urata, H.; Matsumoto, K. Inorg. Chem. 1995, 34, 202– 208 DOI: 10.1021/ic00105a034There is no corresponding record for this reference.
- 18Arrizabalaga, P.; Castan, P.; Geoffroy, M.; Laurent, J.-P. Inorg. Chem. 1985, 24, 3656– 3660 DOI: 10.1021/ic00216a036There is no corresponding record for this reference.
- 19Schmauke, T.; Einar Möller, E.; Roduner, E. Chem. Commun. 1998, 2589– 2590 DOI: 10.1039/a805409fThere is no corresponding record for this reference.
- 20
Reaction of Pt(pop) with 2 equiv of Cr2+ in aqueous solution produced a stable species that was tentatively assigned as Pt(pop)6–. (40) However, this assignment cannot be correct, because the Cr3+/Cr2+ potential (ca. −1.1 V) is more positive than the estimated E(Pt(pop)4–/5–) value of −1.8 V. Moreover, the Raman spectrum of the product has a ν(Pt–Pt) band at lower wavenumber than in the Pt(pop) parent. (40)
There is no corresponding record for this reference. - 21Heuer, W. B.; Totten, M. D.; Rodman, G. S.; Hebert, E. J.; Tracy, H. J.; Nagle, J. K. J. Am. Chem. Soc. 1984, 106, 1163– 1164 DOI: 10.1021/ja00316a083There is no corresponding record for this reference.
- 22Lam, Y. C. Ph.D. Dissertation, California Institute of Technology, 2015.There is no corresponding record for this reference.
- 23Vlček, A., Jr.; Gray, H. B. J. Am. Chem. Soc. 1987, 109, 286– 287 DOI: 10.1021/ja00235a051There is no corresponding record for this reference.
- 24Vlček, A., Jr.; Gray, H. B. Inorg. Chem. 1987, 26, 1997– 2001 DOI: 10.1021/ic00259a037There is no corresponding record for this reference.
- 25Smith, D. C.; Gray, H. B. In ACS Symposium Series 394. The Challenge of d and f Electrons; Salahub, D. R.; Zerner, M. C., Eds.; American Chemical Society: Washington, DC, 1989; pp 356– 365.There is no corresponding record for this reference.
- 26Bridgeman, A. J.; Cavigliasso, G.; Ireland, L. R.; Rothery, J. J. Chem. Soc., Dalton Trans. 2001, 2095– 2108 DOI: 10.1039/b102094nThere is no corresponding record for this reference.
- 27Hill, M. G.; Sykes, A. G.; Mann, K. R. Inorg. Chem. 1993, 32, 783– 784 DOI: 10.1021/ic00058a004There is no corresponding record for this reference.
- 28Hunter, B. M.; Villahermosa, R. M.; Exstrom, C. L.; Hill, M. G.; Mann, K. R.; Gray, H. B. Inorg. Chem. 2012, 51, 6898– 6905 DOI: 10.1021/ic300716qThere is no corresponding record for this reference.
- 29Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.Gaussian 09, revision C.01; Gaussian, Inc.: Wallingford, CT, 2009.There is no corresponding record for this reference.
- 30ADF2014.06, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands; http://www.scm.com.There is no corresponding record for this reference.
- 31Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865– 3868 DOI: 10.1103/PhysRevLett.77.386531https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaK28XmsVCgsbs%253D&md5=55943538406ee74f93aabdf882cd4630Generalized gradient approximation made simplePerdew, John P.; Burke, Kieron; Ernzerhof, MatthiasPhysical Review Letters (1996), 77 (18), 3865-3868CODEN: PRLTAO; ISSN:0031-9007. (American Physical Society)Generalized gradient approxns. (GGA's) for the exchange-correlation energy improve upon the local spin d. (LSD) description of atoms, mols., and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental consts. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential.
- 32Adamo, C.; Scuseria, G. E.; Barone, V. J. Chem. Phys. 1999, 111, 2889– 2899 DOI: 10.1063/1.479571There is no corresponding record for this reference.
- 33Raghavachari, K.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650– 654 DOI: 10.1063/1.438955There is no corresponding record for this reference.
- 34Andrae, D.; Häussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta 1990, 77, 123– 141 DOI: 10.1007/BF0111453734https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaK3cXkt12ntLo%253D&md5=8203c6bc6149924cbd4b23b3063715e1Energy-adjusted ab initio pseudopotentials for the second and third row transition elementsAndrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H.Theoretica Chimica Acta (1990), 77 (2), 123-41CODEN: TCHAAM; ISSN:0040-5744.Nonrelativistic and quasirelativistic ab initio pseudopotentials substituting the M(z-28)+-core orbitals of the second row transition elements and M(z-60)+-core orbitals of the third row transition elements, resp., and optimized (8s7p6d)/[6s5p3d]-GTO valence basis sets for use in mol. calcns. have been generated. Addnl., corresponding spin-orbit operators have also been derived. At. excitation and ionization energies from numerical HF as well as from SCF pseudopotential calcns. using the derived basis sets differ in most cases by less than 0.1 eV from corresponding numerical all-electron results. Spin-orbit splittings for low-lying states are in reasonable agreement with corresponding all-electron Dirac-Fock (DF) results.
- 35Martin, J. M. L.; Sundermann, A. J. Chem. Phys. 2001, 114, 3408 DOI: 10.1063/1.1337864There is no corresponding record for this reference.
- 36Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Landis, C. R.; Weinhold, F. Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2013.There is no corresponding record for this reference.
- 37Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669– 681 DOI: 10.1002/jcc.1018937https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD3sXivFWqsbc%253D&md5=570ef9f44e925c9f78de6c7d97123229Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation modelCossi, Maurizio; Rega, Nadia; Scalmani, Giovanni; Barone, VincenzoJournal of Computational Chemistry (2003), 24 (6), 669-681CODEN: JCCHDD; ISSN:0192-8651. (John Wiley & Sons, Inc.)The conductor-like solvation model, as developed in the framework of the polarizable continuum model (PCM), has been reformulated and newly implemented in order to compute energies, geometric structures, harmonic frequencies, and electronic properties in soln. for any chem. system that can be studied in vacuo. Particular attention is devoted to large systems requiring suitable iterative algorithms to compute the solvation charges: the fast multipole method (FMM) has been extensively used to ensure a linear scaling of the computational times with the size of the solute. A no. of test applications are presented to evaluate the performances of the method.
- 38Klamt, A.; Schüürmann, G. J. Chem. Soc., Perkin Trans. 2 1993, 799– 805 DOI: 10.1039/P2993000079938https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaK3sXkvVSku7o%253D&md5=a8e9e41514d60ca7f11212cf5c281424COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradientKlamt, A.; Schueuermann, G.Journal of the Chemical Society, Perkin Transactions 2: Physical Organic Chemistry (1972-1999) (1993), (5), 799-805CODEN: JCPKBH; ISSN:0300-9580.Starting from the screening in conductors, an algorithm for the accurate calcn. of dielec. screening effects in solvents is presented, which leads to rather simple explicit expressions for the screening energy and its analytic gradient with respect to the solute coordinates. Thus geometry optimization of a solute within a realistic dielec. continuum model becomes practicable for the first time. The algorithm is suited for mol. mechanics as well as for any MO algorithm. The implementation into MOPAC and some example applications are reported.
- 39van Lenthe, E.; Ehlers, A.; Baerends, E. J. J. Chem. Phys. 1999, 110, 8943– 8953 DOI: 10.1063/1.478813There is no corresponding record for this reference.
- 40Alexander, K. A.; Paul, Stein; Hedden, D. B.; Roundhill, D. M. Polyhedron 1983, 2, 1389– 1392 DOI: 10.1016/S0277-5387(00)84403-4There is no corresponding record for this reference.
Supporting Information
Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b02559.
Room-temperature cyclic voltammetry, spectra monitored in the course of both reductions and respective reoxidations, TD-DFT simulated spectra, DFT calculated structures, and EPR parameters (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.