ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Enantioselective CuH-Catalyzed Reductive Coupling of Aryl Alkenes and Activated Carboxylic Acids

View Author Information
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
Cite this: J. Am. Chem. Soc. 2016, 138, 18, 5821–5824
Publication Date (Web):April 27, 2016
https://doi.org/10.1021/jacs.6b03086

Copyright © 2016 American Chemical Society. This publication is licensed under these Terms of Use.

  • Open Access

Article Views

12285

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (756 KB)
Supporting Info (1)»

Abstract

A new method for the enantioselective reductive coupling of aryl alkenes with activated carboxylic acid derivatives via copper hydride catalysis is described. Dual catalytic cycles are proposed, with a relatively fast enantioselective hydroacylation cycle followed by a slower diastereoselective ketone reduction cycle. Symmetrical aryl carboxyclic anhydrides provide access to enantioenriched α-substituted ketones or alcohols with excellent stereoselectivity and functional group tolerance.

The asymmetric construction of chiral ketones and alcohols remains an important area of research in organic synthesis due to the high utility of these functional groups. (1) The reaction of an alkene with an aldehyde, via catalytic hydroacylation or reductive coupling, represents an attractive route to α-chiral ketones and alcohols, respectively. (2, 3) These processes construct a carbon–carbon bond (and corresponding stereogenic center) while obviating the need for stoichiometric preformed organometallic reagents. Impressive developments toward generalizing these transformations have been reported although significant limitations and challenges remain. For example, numerous methods for highly enantioselective intermolecular alkene hydroacylation have been reported; however, a metal-coordinating substituent on either the alkene or aldehyde component is typically required. (4) Pioneering work by Krische has led to numerous methods for the asymmetric reductive coupling of alkenes to carbonyls for relatively activated C–C π-systems, such as electron-deficient alkenes, enynes, dienes, and allenes. (3, 5-7) In contrast, stereoselective catalytic intermolecular reductive coupling of aryl alkenes to carbonyls remains largely undeveloped, likely a consequence of the lower reactivity of these alkenes. (8, 9) Building upon an initial report by Miura, (10) Krische developed a highly efficient Rh-catalyzed coupling of aryl alkenes and anhydride reagents to selectively access branched ketones in a racemic manner (Scheme 1a). (9, 11) We reasoned that using a similar approach, namely, using a carboxylic acid derivative as an aldehyde surrogate, the limitations described above for hydroacylation and reductive coupling could be addressed via copper(I) hydride (CuH) catalysis. We herein report a CuH-catalyzed protocol for the reductive coupling of aryl alkenes to activated carboxylic acids that, depending on the reaction conditions, selectively yields enantioenriched ketones or alcohols (Scheme 1b).

Scheme 1

Scheme 1. (a) Prior Work in Aryl Alkene Reductive Coupling to Acyl Electrophiles; (b) Proposed Access to Chiral Ketones or Alcohols; (c) Proposed Catalytic Cycles

We, as well as Hirano and Miura, have developed enantioselective CuH-catalyzed hydroamination reactions that proceed through catalytically generated chiral organocopper intermediates that are formed from hydrocupration of an alkene substrate. (12, 13) As an expansion of this work, we recently reported methods for the synthesis of enantioenriched carbo- and heterocycles via intramolecular trapping of a putative organocopper intermediate with alkyl bromides and imines. (14) We reasoned that this strategy could be applied to the intermolecular coupling of an alkene to an appropriately activated carboxylic acid derivative to initially yield an α-chiral ketone, constituting a formal hydroacylation process. (15, 16) Subsequent reduction of the ketone would additionally yield an alcohol containing two stereocenters. The proposed catalytic cycle (Scheme 1c) proceeds via asymmetric Markovnikov hydrocupration of aryl alkene 2 followed by electrophilic interception with an acyl electrophile (1) to deliver enantioenriched ketone (3) and L*CuX (7). (17) σ-Bond metathesis of L*CuX (7) with a hydrosilane is required to regenerate L*CuH (5). Under appropriate conditions, reformed L*CuH (5) could perform a highly diastereoselective 1,2-reduction of ketone 3 in the reduction cycle to produce silyl ether 9. Ideally, these two catalytic processes could be performed in the same reaction vessel with a common electrophile, thus providing either enantioenriched ketone or alcohol products, depending upon the reaction conditions employed.

In the presence of a hydrosilane reductant, phosphine-ligated CuH species are typically very active catalysts for the 1,2-reduction of carbonyl functional groups, such as ketones and aldehydes. (18) This propensity for efficient carbonyl reduction presents a major challenge in the development of the proposed methodology (Scheme 1b), as hydrocupration of an alkene must occur in the presence of a carbonyl electrophile. Variation of the electronic, steric, and coordinating properties of the activating group provides an opportunity to achieve the desired chemoselectivity. A highly stereoselective process is further contingent on avoiding ketone racemization.

We began our studies with an examination of the reductive coupling of styrene (2a) to benzoyl electrophiles to yield chiral alcohol product (4a). Based on our catalyst system for enantioselective hydroamination, we initially employed a mixture of Cu(OAc)2 (2 mol %), (S)-DTBM-SEGPHOS phosphine ligand (L1, 2.2 mol %), and dimethoxymethylsilane (DMMS) in THF. (12) Most of the electrophiles examined (1af) failed to react or underwent rapid reduction to form benzyl alcohol (Table 1, entries 1–6). When benzoic anhydride (1g) was used, 25% of the desired product was formed with high selectivity, but benzyl alcohol was still the major product (entry 7). Use of other biaryl-based diphosphine ligands, such as (S)-BINAP (L2), did not yield any product (entry 8), while monoaryl diphoshine (R,R)-Me-DuPhos (L3) increased the yield to 45% with drastically reduced stereoselectivity (entry 9). The trialkyl diphosphine (S,S)-Ph-BPE (L4) proved to be the optimal supporting ligand, increasing the yield to 77% with high selectivity (entry 10). The yield was further increased to 91% when (S,S)-Ph-BPE was used with added PPh3 (2.2 mol %) as a secondary ligand, yielding the desired product in >20:1 dr and 94% ee (entry 11). (19)

Table 1. Optimization of Chiral Alcohol Synthesis via Styrene Reductive Coupling with Benzoyl Electrophilesa
Table a

Yields and dr determined by 1H NMR analysis of crude reaction mixture; enantioselectivity determined of the purified alcohol product after treatment with NH4F in MeOH.

The scope of the optimized coupling process was next explored using symmetrical aryl carboxylic anhydrides (Table 2). Many functional groups, such as esters (4b), nitriles (4c), phenols (4d), substituted alkenes (4e), carbamates (4h), and aryl halides (4k, 4m, and 4n), are compatible with this transformation. With electron-neutral and electron-rich aryl alkenes, alcohol products are typically formed in moderate to good yield (45–88%) with >20:1 dr and >95% ee. However, highly electron-deficient styrenes, such as 4-cyanostyrene (4c), led to products in good yield but with low selectivity, possibly due to racemization of the more acidic ketone intermediate formed upon hydroacylation. ortho- and β-Substitution is tolerated on the aryl alkene component (4i and 4j), but product yields are decreased as direct anhydride reduction competes with hydrocupration of these more encumbered alkene substrates. For the anhydride component, electron-rich (4l), electron-poor (4k), and ortho-substituted (4m) substrates are all competent coupling partners. Furthermore, good yields and selectivities were obtained with a range of substrates containing heterocyclic fragments, including indoles (4f), pyrazoles (4g), piperazines (4h), benzofurans (4o), furans (4p), and thiophenes (4q). Under the current reaction conditions, alkyl carboxylic anhydrides do not engage in the coupling reaction and are instead directly reduced by the CuH catalyst, a current limitation of this system.

Table 2. Alcohol Synthesis Substrate Scopea
Table a

All yields represent average isolated yields of two runs performed with 1 mmol of alkene; dr determined by 1H NMR analysis of crude reaction material.

Table b

Reaction run at ambient temperature.

Table c

2.0 equiv of anhydride used.

Table d

4 mol % catalyst used.

Table e

Bz2O added over 4 h, 1H NMR yield, product isolated and characterized as the acylated alcohol.

A useful feature of this methodology is the ability to selectively access chiral ketones or alcohols by controlling the relative rates of hydroacylation and carbonyl reduction. We have qualitatively observed that 1,2-reduction occurs more slowly than the hydroacylation process, and when the reaction is conducted at a lower temperature, ketone products can be isolated in good yields. (20)Scheme 2a shows several examples of this formal enantioselective hydroacylation protocol. With styrene, ketones are isolated with moderate to good enantioselectivity (77–89% ee) (3a, 3c, and 3d). Employing the more electron-rich 4-acetoxystyrene as a substrate enabled the respective ketone product to be produced with high enantioselectivity (3b, 97% ee).

Scheme 2

Scheme 2. (a) Enantioselective Ketone Synthesis and (b) Reductiona

Scheme aAll yields represent average isolated yields of two runs performed with 1 mmol of alkene.

Scheme bReaction run at ambient temperature.

At the outset of this project, we questioned whether the chirality of the L*CuH catalyst would be matched for both transformations (hydroacylation and 1,2-reduction). To examine this aspect, chiral ketone 3a, which was produced in 89% ee using (S,S)-Ph-BPE ligand, was reduced under the standard reaction conditions using both antipodes of the Ph-BPE ligand. (21) The (S,S)-Ph-BPE system yielded alcohol in 97:3 dr with 97% ee, while the use of (R,R)-Ph-BPE ligand delivered alcohol in 55:45 dr with 78 and 99% ee, respectively. These results indicate that a matched/mismatched case is evident for ketone reduction and that the ligand used is stereomatched for hydroacylation and reduction. This phenomenon provides an opportunity for further enantioenrichment of the final alcohol product, as demonstrated with the typically high levels of enantiopurity (>90% ee) observed for the alcohol products in Table 2. (22)

In summary, we have developed a new protocol for the enantioselective reductive coupling of aryl alkenes with aryl carboxylic anhydrides for selective access to either chiral ketones or alcohols. This process is enabled through dual catalytic cycles wherein a chiral L*CuH catalyst first promotes enantioselective hydroacylation, while a slower diastereoselective ketone reduction process delivers the alcohol product with further enantioenrichment. A wide range of functional groups and heterocycles are tolerated, and ongoing work is aimed at expanding this methodology to less activated alkenes and aliphatic carboxylic acids.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b03086.

  • Experimental procedures and characterization data for all compounds (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Author
    • Stephen L. Buchwald - Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States Email: [email protected]
  • Authors
    • Jeffrey S. Bandar - Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
    • Erhad Ascic - Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
  • Notes
    The authors declare no competing financial interest.

Acknowledgment

ARTICLE SECTIONS
Jump To

Research reported in this publication was supported by the National Institutes of Health (GM46059). We thank the NIH for a postdoctoral fellowship for J.S.B. (GM112197) and the Danish Council for Independent Research, Technology and Production Sciences for a postdoctoral fellowship for E.A. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We also thank Drs. Michael Pirnot and Yiming Wang for advice on the preparation of this manuscript.

References

ARTICLE SECTIONS
Jump To

This article references 22 other publications.

  1. 1
    Corey, E. J.; Kürti, L. Enantioselective Chemical Synthesis: Methods, Logic and Practice; Direct Book Publishing: Dallas, 2010.
  2. 2

    For selected reviews on hydroacylation:

    (a) Yang, L.; Huang, H. Chem. Rev. 2015, 115, 3468 DOI: 10.1021/cr500610p
    (b) Leung, J. C.; Krische, M. J. Chem. Sci. 2012, 3, 2202 DOI: 10.1039/c2sc20350b
    (c) Willis, M. C. Chem. Rev. 2010, 110, 725 DOI: 10.1021/cr900096x
    (d) Park, Y. J.; Park, J.-W.; Jun, C.-H. Acc. Chem. Res. 2008, 41, 222 DOI: 10.1021/ar700133y
  3. 3

    For selected reviews on alkene reductive coupling:

    (a) Ketcham, J. M.; Shin, I.; Montgomery, T. P.; Krische, M. J. Angew. Chem., Int. Ed. 2014, 53, 9142 DOI: 10.1002/anie.201403873
    (b) Dechert-Schmitt, A.-M. R.; Schmitt, D. C.; Gao, X.; Itoh, T.; Krische, M. J. Nat. Prod. Rep. 2014, 31, 504 DOI: 10.1039/c3np70076c
    (c) Bower, J. F.; Kim, I. S.; Patman, R. L.; Krische, M. J. Angew. Chem., Int. Ed. 2009, 48, 34 DOI: 10.1002/anie.200802938
    (d) Ngai, M.-Y.; Kong, J.-R.; Krische, M. J. J. Org. Chem. 2007, 72, 1063 DOI: 10.1021/jo061895m
    (e) Montgomery, J. Organonickel Chemistry. In Organometallics in Synthesis; Lipshutz, B. H., Ed.; John Wiley & Sons, Inc.: Hoboken, 2013; pp 319 428.
    (f) Ng, S.-S.; Ho, C.-Y.; Schleicher, K. D.; Jamison, T. F. Pure Appl. Chem. 2008, 80, 929 DOI: 10.1351/pac200880050929
    (g) Reichard, H. A.; Micalizio, G. C. Chem. Sci. 2011, 2, 573 DOI: 10.1039/C0SC00394H
    (h) Micalizio, G. C.; Hale, S. B. Acc. Chem. Res. 2015, 48, 663 DOI: 10.1021/ar500408e
    (i) Ho, C.-Y.; Schleicher, K. D.; Chan, C.-W.; Jamison, T. F. Synlett 2009, 2565 DOI: 10.1055/s-0029-1217747
    (j) Sato, F.; Urabe, H.; Okamoto, S. Chem. Rev. 2000, 100, 2835 DOI: 10.1021/cr990277l
  4. 4

    For reviews on asymmetric hydroacylation, see:

    (a) Murphy, S. K.; Dong, V. M. Chem. Commun. 2014, 50, 13645 DOI: 10.1039/C4CC02276A
    (b) González-Rodríguez, C.; Willis, M. C. Pure Appl. Chem. 2011, 83, 577 DOI: 10.1351/PAC-CON-10-09-23

    For selected enantioselective intermolecular hydroacylation reactions, see:

    (c) Liu, F.; Bugaut, X.; Schedler, M.; Fröhlich, R.; Glorius, F. Angew. Chem., Int. Ed. 2011, 50, 12626 DOI: 10.1002/anie.201106155
    (d) Stemmler, R. T.; Bolm, C. Adv. Synth. Catal. 2007, 349, 1185 DOI: 10.1002/adsc.200600583
    (e) Shibata, Y.; Tanaka, K. J. Am. Chem. Soc. 2009, 131, 12552 DOI: 10.1021/ja905908z
    (f) Coulter, M. M.; Kou, K. G. M.; Galligan, B.; Dong, V. M. J. Am. Chem. Soc. 2010, 132, 16330 DOI: 10.1021/ja107198e
    (g) Phan, D. H. T.; Kou, K. G. M.; Dong, V. M. J. Am. Chem. Soc. 2010, 132, 16354 DOI: 10.1021/ja107738a
    (h) Osborne, J. D.; Randell-Sly, H. E.; Currie, G. S.; Cowley, A. R.; Willis, M. C. J. Am. Chem. Soc. 2008, 130, 17232 DOI: 10.1021/ja8069133
  5. 5

    For reviews on reductive aldol, Mannich, and Michael reactions:

    (a) Nishiyama, H.; Shiomi, T. Top. Curr. Chem. 2007, 279, 105 DOI: 10.1007/128_2007_126
    (b) Guo, H.-C.; Ma, J.-A. Angew. Chem., Int. Ed. 2006, 45, 354 DOI: 10.1002/anie.200500195
    (c) Jang, H.-Y.; Krische, M. J. Eur. J. Org. Chem. 2004, 3953 DOI: 10.1002/ejoc.200400270

    Selected Cu-catalyzed reductive coupling reactions:

    (d) Lipshutz, B. H.; Amorelli, B.; Unger, J. B. J. Am. Chem. Soc. 2008, 130, 14378 DOI: 10.1021/ja8045475
    (e) Zhao, D.; Oisaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 14440 DOI: 10.1021/ja0652565
    (f) Deschamp, J.; Chuzel, O.; Hannedouche, J.; Riant, O. Angew. Chem., Int. Ed. 2006, 45, 1292 DOI: 10.1002/anie.200503791
  6. 6

    Selected examples of catalytic asymmetric enyne, diene, and allene reductive couplings:

    (a) Zbieg, J. R.; Yamaguchi, E.; McInturff, E. L.; Krische, M. J. Science 2012, 336, 324 DOI: 10.1126/science.1219274
    (b) Han, S. B.; Kim, I. S.; Han, H.; Krische, M. J. J. Am. Chem. Soc. 2009, 131, 6916 DOI: 10.1021/ja902437k
    (c) Geary, L. M.; Woo, S. K.; Leung, J. C.; Krische, M. J. Angew. Chem., Int. Ed. 2012, 51, 2972 DOI: 10.1002/anie.201200239
  7. 7

    Selected reviews on alkyne reductive coupling:

    (a) Tanaka, K.; Tajima, Y. Eur. J. Org. Chem. 2012, 3715 DOI: 10.1002/ejoc.201200098
    (b) Moslin, R. M.; Miller-Moslin, K.; Jamison, T. F. Chem. Commun. 2007, 4441 DOI: 10.1039/b707737h
    (c) Reichard, H. A.; McLaughlin, M.; Chen, M. Z.; Micalizio, G. C. Eur. J. Org. Chem. 2010, 391 DOI: 10.1002/ejoc.200901094
    (d) Jackson, E. P.; Malik, H. A.; Sormunen, G. J.; Baxter, R. D.; Liu, P.; Wang, H.; Shareef, A.-R.; Montgomery, J. Acc. Chem. Res. 2015, 48, 1736 DOI: 10.1021/acs.accounts.5b00096
  8. 8
    (a) Yamaguchi, E.; Mowat, J.; Luong, T.; Krische, M. J. Angew. Chem., Int. Ed. 2013, 52, 8428 DOI: 10.1002/anie.201303552

    For the reductive couplings of electron-deficient azaarene alkenes:

    (b) Best, D.; Lam, H. W. J. Org. Chem. 2014, 79, 831 DOI: 10.1021/jo402414k
    (c) Saxena, A.; Choi, B.; Lam, H. W. J. Am. Chem. Soc. 2012, 134, 8428 DOI: 10.1021/ja3036916
  9. 9
    Hong, Y.-T.; Barchuk, A.; Krische, M. J. Angew. Chem., Int. Ed. 2006, 45, 6885 DOI: 10.1002/anie.200602377
  10. 10
    Kokubo, K.; Miura, M.; Nomura, M. Organometallics 1995, 14, 4521 DOI: 10.1021/om00010a016
  11. 11

    For additional examples using anhydride and acyl chloride reagents in formal hydroacylation processes, see:

    (a) Fujihara, T.; Tatsumi, K.; Terao, J.; Tsuji, Y. Org. Lett. 2013, 15, 2286 DOI: 10.1021/ol400862k
    (b) Fujihara, T.; Hosomi, T.; Cong, C.; Hosoki, T.; Terao, J.; Tsuji, Y. Tetrahedron 2015, 71, 4570 DOI: 10.1016/j.tet.2015.01.066
  12. 12

    For a review:

    (a) Pirnot, M. T.; Wang, Y.-M.; Buchwald, S. L. Angew. Chem., Int. Ed. 2016, 55, 48 DOI: 10.1002/anie.201507594

    For selected individual reports:

    (b) Zhu, S.; Niljianskul, N.; Buchwald, S. L. J. Am. Chem. Soc. 2013, 135, 15746 DOI: 10.1021/ja4092819
    (c) Yang, Y.; Shi, S.-L.; Niu, D.; Liu, P.; Buchwald, S. L. Science 2015, 349, 62 DOI: 10.1126/science.aab3753
  13. 13
    (a) Miki, Y.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2013, 52, 10830 DOI: 10.1002/anie.201304365

    See also:

    (b) Xi, Y.; Butcher, T. W.; Zhang, J.; Hartwig, J. F. Angew. Chem., Int. Ed. 2016, 55, 776 DOI: 10.1002/anie.201509235
  14. 14
    (a) Ascic, E.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 4666 DOI: 10.1021/jacs.5b02316
    (b) Wang, Y.-M.; Bruno, N. C.; Placeres, Á. L.; Zhu, S.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 10524 DOI: 10.1021/jacs.5b07061
  15. 15

    For selected examples of asymmetric carbonyl additions of catalytically generated olefin-derived Cu(I) species, see:

    (a) Meng, F.; Haeffner, F.; Hoveyda, A. H. J. Am. Chem. Soc. 2014, 136, 11304 DOI: 10.1021/ja5071202
    (b) Meng, F.; Jang, H.; Jung, B.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2013, 52, 5046 DOI: 10.1002/anie.201301018
    (c) Chikkade, P. K.; Shimizu, Y.; Kanai, M. Chem. Sci. 2014, 5, 1585 DOI: 10.1039/c3sc52803k
  16. 16

    For examples of acylation reactions with nucleophilic copper(I) species, see:

    (a) Cirriez, V.; Rasson, C.; Riant, O. Adv. Synth. Catal. 2013, 355, 3137 DOI: 10.1002/adsc.201300621
    (b) Herron, J. R.; Ball, Z. T. J. Am. Chem. Soc. 2008, 130, 16486 DOI: 10.1021/ja8070804
  17. 17

    The proposed catalytic cycle (Scheme 1c) shows a stereoretentive reaction of 6 with 1; however, a stereoinvertive process is also possible.

  18. 18

    For a review of CuH-catalyzed reactions:

    Deutsch, C.; Krause, N.; Lipshutz, B. H. Chem. Rev. 2008, 108, 2916 DOI: 10.1021/cr0684321
  19. 19

    Lipshutz initially reported PPh3 as a secondary ligand in CuH-catalyzed reactions:

    (a) Lipshutz, B. H.; Noson, K.; Chrisman, W.; Lower, A. J. Am. Chem. Soc. 2003, 125, 8779 DOI: 10.1021/ja021391f
    (b)

    See also ref 14a

    .
  20. 20

    Krische has reported a similar temperature-dependent control in diene-carbonyl reductive couplings:

    Shibahara, F.; Bower, J. F.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14120 DOI: 10.1021/ja805356j
  21. 21

    Reduction of 3a with LiAlH4 at −78 °C has been shown to yield alcohol in >20:1 dr:

    Lou, S.; Fu, G. C. J. Am. Chem. Soc. 2010, 132, 1264 DOI: 10.1021/ja909689t
  22. 22

    This phenomenon is related to the Horeau Principle and we thank a reviewer for providing this insight. For additional examples of this effect, see:

    (a) Kogure, T.; Eliel, E. L. J. Org. Chem. 1984, 49, 576 DOI: 10.1021/jo00177a047
    (b) Midland, M. M.; Gabriel, J. J. Org. Chem. 1985, 50, 1143 DOI: 10.1021/jo00207a053

Cited By

ARTICLE SECTIONS
Jump To

This article is cited by 90 publications.

  1. Shaozi Sun, Qinglong Zhang, Weiwei Zi. Palladium-Catalyzed Enantioselective Hydrosulfonylation of Vinylarenes. ACS Catalysis 2023, 13 (19) , 12952-12959. https://doi.org/10.1021/acscatal.3c03650
  2. Ge Liu, Yuzhen Gao, Weiping Su. Photocatalytic Decarboxylative Coupling of Arylacetic Acids with Aromatic Aldehydes. The Journal of Organic Chemistry 2023, 88 (10) , 6322-6332. https://doi.org/10.1021/acs.joc.2c01751
  3. Byeongdo Roh, Abdikani Omar Farah, Beomsu Kim, Taisiia Feoktistova, Finn Moeller, Kyeong Do Kim, Paul Ha-Yeon Cheong, Hong Geun Lee. Stereospecific Acylative Suzuki–Miyaura Cross-Coupling: General Access to Optically Active α-Aryl Carbonyl Compounds. Journal of the American Chemical Society 2023, 145 (13) , 7075-7083. https://doi.org/10.1021/jacs.3c00637
  4. Michael C. Haibach, Shashank Shekhar, Tonia S. Ahmed, Andrew R. Ickes. Recent Advances in Nonprecious Metal Catalysis. Organic Process Research & Development 2023, 27 (3) , 423-447. https://doi.org/10.1021/acs.oprd.2c00344
  5. Xiangzhang Tao, Qing Wang, Lingyu Kong, Shengyang Ni, Yi Pan, Yi Wang. Branched-Selective Hydroacylation of Alkenes via Photoredox Cobalt and N-Heterocyclic Carbene Cooperative Triple Catalysis. ACS Catalysis 2022, 12 (24) , 15241-15248. https://doi.org/10.1021/acscatal.2c04970
  6. Xiaoli Jiang, Feng-Tao Sheng, Yao Zhang, Gao Deng, Shaolin Zhu. Ligand Relay Catalysis Enables Asymmetric Migratory Reductive Acylation of Olefins or Alkyl Halides. Journal of the American Chemical Society 2022, 144 (47) , 21448-21456. https://doi.org/10.1021/jacs.2c10785
  7. Fang Xie, Shijie Dong, Yajun Sun, Wenxing Liu, Xiaodan Liu, Lu Liu, Qin Zhao, Jiangli Wang. Synthesis of Chiral β,β-Disubstituted Ketones via CuH-Catalyzed Coupling of Aryl Alkenes and 3-Aryl-2H-azirines. Organic Letters 2022, 24 (44) , 8213-8217. https://doi.org/10.1021/acs.orglett.2c03311
  8. Jihye Kim, Jieun Jang, Yoonho Lee, Kwangmin Shin. Exogenous Ligand-Free NiH-Catalyzed Hydroacylation of Aryl Alkenes with Aroyl Fluorides. Organic Letters 2022, 24 (29) , 5412-5416. https://doi.org/10.1021/acs.orglett.2c02110
  9. Brian J. Spinello, Jessica Wu, Yoon Cho, Michael J. Krische. Conversion of Primary Alcohols and Butadiene to Branched Ketones via Merged Transfer Hydrogenative Carbonyl Addition–Redox Isomerization Catalyzed by Rhodium. Journal of the American Chemical Society 2021, 143 (34) , 13507-13512. https://doi.org/10.1021/jacs.1c07230
  10. Gerald L. Larson, Richard J. Liberatore. Organosilanes in Metal-Catalyzed, Enantioselective Reductions. Organic Process Research & Development 2021, 25 (8) , 1719-1787. https://doi.org/10.1021/acs.oprd.1c00073
  11. Sheng Feng, Stephen L. Buchwald. CuH-Catalyzed Regio- and Enantioselective Hydrocarboxylation of Allenes: Toward Carboxylic Acids with Acyclic Quaternary Centers. Journal of the American Chemical Society 2021, 143 (13) , 4935-4941. https://doi.org/10.1021/jacs.1c01880
  12. Benxiang Zhang, Jiayan He, Yi Li, Tao Song, Yewen Fang, Chaozhong Li. Cobalt-Catalyzed Markovnikov-Selective Radical Hydroacylation of Unactivated Alkenes with Acylphosphonates. Journal of the American Chemical Society 2021, 143 (13) , 4955-4961. https://doi.org/10.1021/jacs.1c02629
  13. Manman Kong, Yaqi Tan, Xiaowei Zhao, Baokun Qiao, Choon-Hong Tan, Shanshan Cao, Zhiyong Jiang. Catalytic Reductive Cross Coupling and Enantioselective Protonation of Olefins to Construct Remote Stereocenters for Azaarenes. Journal of the American Chemical Society 2021, 143 (10) , 4024-4031. https://doi.org/10.1021/jacs.1c01073
  14. Ryan T. Davison, Erin L. Kuker, Vy M. Dong. Teaching Aldehydes New Tricks Using Rhodium- and Cobalt-Hydride Catalysis. Accounts of Chemical Research 2021, 54 (5) , 1236-1250. https://doi.org/10.1021/acs.accounts.0c00771
  15. Yong Ho Lee, Elliott H. Denton, Bill Morandi. Modular Cyclopentenone Synthesis through the Catalytic Molecular Shuffling of Unsaturated Acid Chlorides and Alkynes. Journal of the American Chemical Society 2020, 142 (50) , 20948-20955. https://doi.org/10.1021/jacs.0c10832
  16. Yu-Ting He, Yang-Jie Mao, Hong-Yan Hao, Zhen-Yuan Xu, Shao-Jie Lou, Dan-Qian Xu. Cu-Catalyzed Regioselective C–H Alkylation of Benzimidazoles with Aromatic Alkenes. Organic Letters 2020, 22 (21) , 8250-8255. https://doi.org/10.1021/acs.orglett.0c02864
  17. Juan del Pozo, Shaochen Zhang, Filippo Romiti, Shibo Xu, Ryan P. Conger, Amir H. Hoveyda. Streamlined Catalytic Enantioselective Synthesis of α-Substituted β,γ-Unsaturated Ketones and Either of the Corresponding Tertiary Homoallylic Alcohol Diastereomers. Journal of the American Chemical Society 2020, 142 (42) , 18200-18212. https://doi.org/10.1021/jacs.0c08732
  18. Richard Y. Liu, Stephen L. Buchwald. CuH-Catalyzed Olefin Functionalization: From Hydroamination to Carbonyl Addition. Accounts of Chemical Research 2020, 53 (6) , 1229-1243. https://doi.org/10.1021/acs.accounts.0c00164
  19. Yujing Zhou, Lin Zhou, Luke T. Jesikiewicz, Peng Liu, Stephen L. Buchwald. Synthesis of Pyrroles through the CuH-Catalyzed Coupling of Enynes and Nitriles. Journal of the American Chemical Society 2020, 142 (22) , 9908-9914. https://doi.org/10.1021/jacs.0c03859
  20. Sheng Feng, Hua Hao, Peng Liu, Stephen L. Buchwald. Diastereo- and Enantioselective CuH-Catalyzed Hydroamination of Strained Trisubstituted Alkenes. ACS Catalysis 2020, 10 (1) , 282-291. https://doi.org/10.1021/acscatal.9b04871
  21. Saki Ichikawa, Stephen L. Buchwald. Asymmetric Synthesis of γ-Amino Alcohols by Copper-Catalyzed Hydroamination. Organic Letters 2019, 21 (21) , 8736-8739. https://doi.org/10.1021/acs.orglett.9b03356
  22. Jie Ma, Steven R. Kass. Electrostatically Enhanced Phosphoric Acids and Their Applications in Asymmetric Friedel–Crafts Alkylations. The Journal of Organic Chemistry 2019, 84 (17) , 11125-11134. https://doi.org/10.1021/acs.joc.9b01741
  23. Hui Peng, Jinhui Ma, Lingfei Duan, Guangwen Zhang, Biaolin Yin. CuH-Catalyzed Synthesis of 3-Hydroxyindolines and 2-Aryl-3H-indol-3-ones from o-Alkynylnitroarenes, Using Nitro as Both the Nitrogen and Oxygen Source. Organic Letters 2019, 21 (16) , 6194-6198. https://doi.org/10.1021/acs.orglett.9b01849
  24. Jie Han, Wei Zhou, Pei-Chao Zhang, Huamin Wang, Ronghua Zhang, Hai-Hong Wu, Junliang Zhang. Design and Synthesis of WJ-Phos, and Application in Cu-Catalyzed Enantioselective Boroacylation of 1,1-Disubstituted Allenes. ACS Catalysis 2019, 9 (8) , 6890-6895. https://doi.org/10.1021/acscatal.9b02080
  25. Yuxuan Ye, Seoung-Tae Kim, Jinhoon Jeong, Mu-Hyun Baik, Stephen L. Buchwald. CuH-Catalyzed Enantioselective Alkylation of Indole Derivatives with Ligand-Controlled Regiodivergence. Journal of the American Chemical Society 2019, 141 (9) , 3901-3909. https://doi.org/10.1021/jacs.8b11838
  26. Richard Y. Liu, Yujing Zhou, Yang Yang, Stephen L. Buchwald. Enantioselective Allylation Using Allene, a Petroleum Cracking Byproduct. Journal of the American Chemical Society 2019, 141 (6) , 2251-2256. https://doi.org/10.1021/jacs.8b13907
  27. Fang Xie, Bingxue Shen, Xingwei Li. Enantioselective Copper-Catalyzed Hydroamination of Vinylarenes with Anthranils. Organic Letters 2018, 20 (22) , 7154-7157. https://doi.org/10.1021/acs.orglett.8b03093
  28. Xinxin Shao, Kangnan Li, Steven J. Malcolmson. Enantioselective Synthesis of anti-1,2-Diamines by Cu-Catalyzed Reductive Couplings of Azadienes with Aldimines and Ketimines. Journal of the American Chemical Society 2018, 140 (23) , 7083-7087. https://doi.org/10.1021/jacs.8b04750
  29. Richard Y. Liu, Minwoo Bae, and Stephen L. Buchwald . Mechanistic Insight Facilitates Discovery of a Mild and Efficient Copper-Catalyzed Dehydration of Primary Amides to Nitriles Using Hydrosilanes. Journal of the American Chemical Society 2018, 140 (5) , 1627-1631. https://doi.org/10.1021/jacs.8b00643
  30. Kangnan Li, Xinxin Shao, Luke Tseng, and Steven J. Malcolmson . 2-Azadienes as Reagents for Preparing Chiral Amines: Synthesis of 1,2-Amino Tertiary Alcohols by Cu-Catalyzed Enantioselective Reductive Couplings with Ketones. Journal of the American Chemical Society 2018, 140 (2) , 598-601. https://doi.org/10.1021/jacs.7b12213
  31. Yun-Xuan Tan, Xiao-Qi Tang, Ping Liu, De-Shen Kong, Ya-Li Chen, Ping Tian, and Guo-Qiang Lin . CuH-Catalyzed Asymmetric Intramolecular Reductive Coupling of Allenes to Enones. Organic Letters 2018, 20 (1) , 248-251. https://doi.org/10.1021/acs.orglett.7b03608
  32. Arnaud Boreux, Kiran Indukuri, Fabien Gagosz, and Olivier Riant . Acyl Fluorides as Efficient Electrophiles for the Copper-Catalyzed Boroacylation of Allenes. ACS Catalysis 2017, 7 (12) , 8200-8204. https://doi.org/10.1021/acscatal.7b02938
  33. Hong Zheng, Kazuhiko Semba, Yoshiaki Nakao, and Shigeyoshi Sakaki . How to Control Inversion vs Retention Transmetalation between PdII–Phenyl and CuI–Alkyl Complexes: Theoretical Insight. Journal of the American Chemical Society 2017, 139 (40) , 14065-14076. https://doi.org/10.1021/jacs.7b04383
  34. Thomas J. Coxon, Maitane Fernández, James Barwick-Silk, Alasdair I. McKay, Louisa E. Britton, Andrew S. Weller, and Michael C. Willis . Exploiting Carbonyl Groups to Control Intermolecular Rhodium-Catalyzed Alkene and Alkyne Hydroacylation. Journal of the American Chemical Society 2017, 139 (29) , 10142-10149. https://doi.org/10.1021/jacs.7b05713
  35. Haoxuan Wang, Jeffrey C. Yang, and Stephen L. Buchwald . CuH-Catalyzed Regioselective Intramolecular Hydroamination for the Synthesis of Alkyl-Substituted Chiral Aziridines. Journal of the American Chemical Society 2017, 139 (25) , 8428-8431. https://doi.org/10.1021/jacs.7b04816
  36. Yujing Zhou, Jeffrey S. Bandar, and Stephen L. Buchwald . Enantioselective CuH-Catalyzed Hydroacylation Employing Unsaturated Carboxylic Acids as Aldehyde Surrogates. Journal of the American Chemical Society 2017, 139 (24) , 8126-8129. https://doi.org/10.1021/jacs.7b04937
  37. Michael W. Gribble, Jr., Michael T. Pirnot, Jeffrey S. Bandar, Richard Y. Liu, and Stephen L. Buchwald . Asymmetric Copper Hydride-Catalyzed Markovnikov Hydrosilylation of Vinylarenes and Vinyl Heterocycles. Journal of the American Chemical Society 2017, 139 (6) , 2192-2195. https://doi.org/10.1021/jacs.6b13029
  38. Boyoung Y. Park, Tom Luong, Hiroki Sato, and Michael J. Krische . Osmium(0)-Catalyzed C–C Coupling of Ethylene and α-Olefins with Diols, Ketols, or Hydroxy Esters via Transfer Hydrogenation. The Journal of Organic Chemistry 2016, 81 (18) , 8585-8594. https://doi.org/10.1021/acs.joc.6b01923
  39. Yang Yang, Ian B. Perry, and Stephen L. Buchwald . Copper-Catalyzed Enantioselective Addition of Styrene-Derived Nucleophiles to Imines Enabled by Ligand-Controlled Chemoselective Hydrocupration. Journal of the American Chemical Society 2016, 138 (31) , 9787-9790. https://doi.org/10.1021/jacs.6b06299
  40. Seunghwan Byun, Meemie U. Hwang, Henry R. Wise, Anna V. Bay, Paul H.‐Y. Cheong, Karl A. Scheidt. Light‐Driven Enantioselective Carbene‐Catalyzed Radical‐Radical Coupling. Angewandte Chemie 2023, 135 (49) https://doi.org/10.1002/ange.202312829
  41. Seunghwan Byun, Meemie U. Hwang, Henry R. Wise, Anna V. Bay, Paul H.‐Y. Cheong, Karl A. Scheidt. Light‐Driven Enantioselective Carbene‐Catalyzed Radical‐Radical Coupling. Angewandte Chemie International Edition 2023, 62 (49) https://doi.org/10.1002/anie.202312829
  42. Wenxin Lu, Qinglei Chong, Fanke Meng. Cu‐Catalyzed Enantioselective Reductive Coupling of 1,3‐Dienes and Carboxylic Acid Anhydrides. Asian Journal of Organic Chemistry 2023, 12 (11) https://doi.org/10.1002/ajoc.202300436
  43. Xiaofeng Jie, Yingying Zhao, Qinglei Chong, Fanke Meng. Cu‐Catalyzed Site‐ and Enantioselective Borylcyanation of 1,2‐Disubstituted Aryl Alkenes. Asian Journal of Organic Chemistry 2023, 12 (10) https://doi.org/10.1002/ajoc.202300362
  44. Min Zeng, Fuli Huang, Minghui Zhu, Jichao Ding, Tong Qin, Maoting Xu, Wanqing Liu, Jun Lu, Jicheng Wu, Xurong Qin, Qiao Ren. Expedient assembly of densely functionalized indanones via nickel-catalyzed alkene hydroacylation with methyl esters. Organic Chemistry Frontiers 2023, 10 (12) , 3067-3073. https://doi.org/10.1039/D3QO00403A
  45. Emilie Wheatley, Joseph M. Zanghi, Miles M. Mason, Simon J. Meek. A Catalytic Method for the Enantioselective Synthesis of α‐Quaternary Ketones, α‐Ketoesters and Aldehydes. Angewandte Chemie 2023, 135 (18) https://doi.org/10.1002/ange.202215855
  46. Emilie Wheatley, Joseph M. Zanghi, Miles M. Mason, Simon J. Meek. A Catalytic Method for the Enantioselective Synthesis of α‐Quaternary Ketones, α‐Ketoesters and Aldehydes. Angewandte Chemie International Edition 2023, 62 (18) https://doi.org/10.1002/anie.202215855
  47. Deyun Qian. Asymmetric transformations under copper hydride (CuH) catalysis. 2023, 267-296. https://doi.org/10.1016/B978-0-323-85225-8.00002-2
  48. Gustavo M. Borrajo-Calleja, Achim Link. Recent advances in earth-abundant metal-catalyzed C–C bond formations by enantioselective reductive couplings. 2023, 97-142. https://doi.org/10.1016/bs.acat.2023.07.010
  49. Subin Yoon, Kyeongmin Lee, Telma Kamranifard, Yunmi Lee. Synthesis of β, γ‐unsaturated ketones with quaternary centers through regioselective hydroacylation of allenes with acyl chlorides. Bulletin of the Korean Chemical Society 2022, 43 (12) , 1307-1311. https://doi.org/10.1002/bkcs.12629
  50. Qiao-Lin Wang, Huawen Huang, Guojiang Mao, Guo-Jun Deng. Bromine radical-enhanced HAT activity leading to stoichiometric couplings of methylarenes with acid chlorides. Green Chemistry 2022, 24 (21) , 8324-8329. https://doi.org/10.1039/D2GC02972C
  51. Jie Zhao, Baihua Ye. Hydrometallation of Organometallic Complexes. 2022, 32-74. https://doi.org/10.1016/B978-0-12-820206-7.00121-9
  52. Leitao Huan, Xiaomin Shu, Weisai Zu, De Zhong, Haohua Huo. Asymmetric benzylic C(sp3)−H acylation via dual nickel and photoredox catalysis. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-23887-2
  53. Lin Lu, Zuoliang Zheng, Yongjie Yang, Bo Liu, Biaolin Yin. Access to Polycyclic Indol(en)ines via Base‐Catalyzed Intramolecular Dearomatizing 3‐Alkenylation of Alkynyl Indoles. Chinese Journal of Chemistry 2021, 39 (8) , 2207-2212. https://doi.org/10.1002/cjoc.202100164
  54. Srikrishna Bera, Runze Mao, Xile Hu. Enantioselective C(sp3)–C(sp3) cross-coupling of non-activated alkyl electrophiles via nickel hydride catalysis. Nature Chemistry 2021, 13 (3) , 270-277. https://doi.org/10.1038/s41557-020-00576-z
  55. Timothy B. Boit, Milauni M. Mehta, Junyong Kim, Emma L. Baker, Neil K. Garg. Reductive Arylation of Amides via a Nickel‐Catalyzed Suzuki–Miyaura‐Coupling and Transfer‐Hydrogenation Cascade. Angewandte Chemie 2021, 133 (5) , 2502-2507. https://doi.org/10.1002/ange.202012048
  56. Timothy B. Boit, Milauni M. Mehta, Junyong Kim, Emma L. Baker, Neil K. Garg. Reductive Arylation of Amides via a Nickel‐Catalyzed Suzuki–Miyaura‐Coupling and Transfer‐Hydrogenation Cascade. Angewandte Chemie International Edition 2021, 60 (5) , 2472-2477. https://doi.org/10.1002/anie.202012048
  57. Yuan Yuan, Xue Zhang, Hui Qian, Shengming Ma. Catalytic enantioselective allene–anhydride approach to β,γ-unsaturated enones bearing an α-all-carbon-quarternary center. Chemical Science 2020, 11 (34) , 9115-9121. https://doi.org/10.1039/D0SC03227A
  58. Toolika Agrawal, Joshua D. Sieber. Recent Developments in C–C Bond Formation Using Catalytic Reductive Coupling Strategies. Synthesis 2020, 52 (18) , 2623-2638. https://doi.org/10.1055/s-0040-1707128
  59. Jung Tae Han, Seoung‐Tae Kim, Mu‐Hyun Baik, Jaesook Yun. Direct Stereoconvergent Allylation of Chiral Alkylcopper Nucleophiles with Racemic Allylic Phosphates. Chemistry – A European Journal 2020, 26 (12) , 2592-2596. https://doi.org/10.1002/chem.201905361
  60. Trina M. Perrone, Amy S. Gregory, Steven W. Knowlden, Natalie R. Ziemer, Rabah N. Alsulami, Jeffrey L. Petersen, Brian V. Popp. Beneficial Effect of a Secondary Ligand on the Catalytic Difunctionalization of Vinyl Arenes with Boron and CO 2. ChemCatChem 2019, 11 (23) , 5814-5820. https://doi.org/10.1002/cctc.201901197
  61. Haoxuan Wang, Stephen L. Buchwald. Copper‐Catalyzed, Enantioselective Hydrofunctionalization of Alkenes. 2019, 121-206. https://doi.org/10.1002/0471264180.or100.03
  62. William G. Shuler, Robert A. Swyka, Tabitha T. Schempp, Brian J. Spinello, Michael J. Krische. Vinyl Triflate–Aldehyde Reductive Coupling–Redox Isomerization Mediated by Formate: Rhodium‐Catalyzed Ketone Synthesis in the Absence of Stoichiometric Metals. Chemistry – A European Journal 2019, 25 (54) , 12517-12520. https://doi.org/10.1002/chem.201903668
  63. Yusuke Ueda, Tomohiro Iwai, Masaya Sawamura. Nickel‐Copper‐Catalyzed Hydroacylation of Vinylarenes with Acyl Fluorides and Hydrosilanes. Chemistry – A European Journal 2019, 25 (40) , 9410-9414. https://doi.org/10.1002/chem.201900822
  64. Felix Pape, Lea T. Brechmann, Johannes F. Teichert. Catalytic Generation and Chemoselective Transfer of Nucleophilic Hydrides from Dihydrogen. Chemistry – A European Journal 2019, 25 (4) , 985-988. https://doi.org/10.1002/chem.201805530
  65. Rishikesh Narayan. Enantioselective catalysis using copper(I)–phosphine complexes. 2019, 259-313. https://doi.org/10.1016/B978-0-12-815052-8.00009-9
  66. Jianhui Chen, Jun Guo, Zhan Lu. Recent Advances in Hydrometallation of Alkenes and Alkynes via the First Row Transition Metal Catalysis. Chinese Journal of Chemistry 2018, 36 (11) , 1075-1109. https://doi.org/10.1002/cjoc.201800314
  67. Vy M. Dong, Kevin G. M. Kou, Diane N. Le. Transition‐Metal‐Catalyzed Hydroacylation. 2018, 231-592. https://doi.org/10.1002/0471264180.or096.02
  68. Ayumi Sawada, Tetsuaki Fujihara, Yasushi Tsuji. Copper‐Catalyzed Bora‐Acylation and Bora‐Alkoxyoxalylation of Allenes. Advanced Synthesis & Catalysis 2018, 360 (14) , 2621-2625. https://doi.org/10.1002/adsc.201800311
  69. Lu Wen, Fengchang Cheng, Han Li, Shuoqing Zhang, Xin Hong, Fanke Meng. Copper‐Catalyzed Enantioselective Hydroboration of 1,1‐Disubstituted Alkenes: Method Development, Applications and Mechanistic Studies. Asian Journal of Organic Chemistry 2018, 7 (1) , 103-106. https://doi.org/10.1002/ajoc.201700503
  70. Jaehee Lee, Suttipol Radomkit, Sebastian Torker, Juan del Pozo, Amir H. Hoveyda. Mechanism-based enhancement of scope and enantioselectivity for reactions involving a copper-substituted stereogenic carbon centre. Nature Chemistry 2018, 10 (1) , 99-108. https://doi.org/10.1038/nchem.2861
  71. Jianhui Chen, Zhan Lu. Asymmetric hydrofunctionalization of minimally functionalized alkenes via earth abundant transition metal catalysis. Organic Chemistry Frontiers 2018, 5 (2) , 260-272. https://doi.org/10.1039/C7QO00613F
  72. Fengchang Cheng, Wenxin Lu, Wei Huang, Lu Wen, Mingfeng Li, Fanke Meng. Cu-catalyzed enantioselective synthesis of tertiary benzylic copper complexes and their in situ addition to carbonyl compounds. Chemical Science 2018, 9 (22) , 4992-4998. https://doi.org/10.1039/C8SC00827B
  73. Songjie Yu, Hui Leng Sang, Shaozhong Ge. Enantioselective Copper‐Catalyzed Alkylation of Quinoline N ‐Oxides with Vinylarenes. Angewandte Chemie 2017, 129 (50) , 16112-16116. https://doi.org/10.1002/ange.201709411
  74. Songjie Yu, Hui Leng Sang, Shaozhong Ge. Enantioselective Copper‐Catalyzed Alkylation of Quinoline N ‐Oxides with Vinylarenes. Angewandte Chemie International Edition 2017, 56 (50) , 15896-15900. https://doi.org/10.1002/anie.201709411
  75. Yuan Huang, Kevin B. Smith, M. Kevin Brown. Copper‐Catalyzed Borylacylation of Activated Alkenes with Acid Chlorides. Angewandte Chemie 2017, 129 (43) , 13499-13503. https://doi.org/10.1002/ange.201707323
  76. Yuan Huang, Kevin B. Smith, M. Kevin Brown. Copper‐Catalyzed Borylacylation of Activated Alkenes with Acid Chlorides. Angewandte Chemie International Edition 2017, 56 (43) , 13314-13318. https://doi.org/10.1002/anie.201707323
  77. Xichang Dong, Andreas Weickgenannt, Martin Oestreich. Broad-spectrum kinetic resolution of alcohols enabled by Cu–H-catalysed dehydrogenative coupling with hydrosilanes. Nature Communications 2017, 8 (1) https://doi.org/10.1038/ncomms15547
  78. Jaehee Lee, Sebastian Torker, Amir H. Hoveyda. Versatile Homoallylic Boronates by Chemo‐, S N 2′‐, Diastereo‐ and Enantioselective Catalytic Sequence of Cu−H Addition to Vinyl‐B(pin)/Allylic Substitution. Angewandte Chemie 2017, 129 (3) , 839-844. https://doi.org/10.1002/ange.201611444
  79. Jaehee Lee, Sebastian Torker, Amir H. Hoveyda. Versatile Homoallylic Boronates by Chemo‐, S N 2′‐, Diastereo‐ and Enantioselective Catalytic Sequence of Cu−H Addition to Vinyl‐B(pin)/Allylic Substitution. Angewandte Chemie International Edition 2017, 56 (3) , 821-826. https://doi.org/10.1002/anie.201611444
  80. Tetsuaki Fujihara, Ken Yokota, Jun Terao, Yasushi Tsuji. Copper-catalyzed hydroallylation of allenes employing hydrosilanes and allyl chlorides. Chemical Communications 2017, 53 (56) , 7898-7900. https://doi.org/10.1039/C7CC02816D
  81. Hongde Xiao, Gang Wang, Michael J. Krische. Regioselective Hydrohydroxyalkylation of Styrene with Primary Alcohols or Aldehydes via Ruthenium‐Catalyzed C−C Bond Forming Transfer Hydrogenation. Angewandte Chemie 2016, 128 (52) , 16353-16356. https://doi.org/10.1002/ange.201609056
  82. Hongde Xiao, Gang Wang, Michael J. Krische. Regioselective Hydrohydroxyalkylation of Styrene with Primary Alcohols or Aldehydes via Ruthenium‐Catalyzed C−C Bond Forming Transfer Hydrogenation. Angewandte Chemie International Edition 2016, 55 (52) , 16119-16122. https://doi.org/10.1002/anie.201609056
  83. Richard Y. Liu, Yang Yang, Stephen L. Buchwald. Regiodivergent and Diastereoselective CuH‐Catalyzed Allylation of Imines with Terminal Allenes. Angewandte Chemie 2016, 128 (45) , 14283-14286. https://doi.org/10.1002/ange.201608446
  84. Richard Y. Liu, Yang Yang, Stephen L. Buchwald. Regiodivergent and Diastereoselective CuH‐Catalyzed Allylation of Imines with Terminal Allenes. Angewandte Chemie International Edition 2016, 55 (45) , 14077-14080. https://doi.org/10.1002/anie.201608446
  85. Khoa D. Nguyen, Boyoung Y. Park, Tom Luong, Hiroki Sato, Victoria J. Garza, Michael J. Krische. Metal-catalyzed reductive coupling of olefin-derived nucleophiles: Reinventing carbonyl addition. Science 2016, 354 (6310) , aah5133. https://doi.org/10.1126/science.aah5133
  86. Jie Liu, Haoquan Li, Anke Spannenberg, Robert Franke, Ralf Jackstell, Matthias Beller. Selective Palladium‐Catalyzed Aminocarbonylation of Olefins to Branched Amides. Angewandte Chemie 2016, 128 (43) , 13742-13746. https://doi.org/10.1002/ange.201605104
  87. Jie Liu, Haoquan Li, Anke Spannenberg, Robert Franke, Ralf Jackstell, Matthias Beller. Selective Palladium‐Catalyzed Aminocarbonylation of Olefins to Branched Amides. Angewandte Chemie International Edition 2016, 55 (43) , 13544-13548. https://doi.org/10.1002/anie.201605104
  88. Jeffrey S. Bandar, Erhad Ascic, Stephen L. Buchwald. ChemInform Abstract: Enantioselective CuH‐Catalyzed Reductive Coupling of Aryl Alkenes and Activated Carboxylic Acids.. ChemInform 2016, 47 (44) https://doi.org/10.1002/chin.201644020
  89. Jens Mohr, Martin Oestreich. Ausbalancieren von C=C‐Funktionalisierung und C=O‐Reduktion in der Cu‐H‐Katalyse. Angewandte Chemie 2016, 128 (40) , 12330-12332. https://doi.org/10.1002/ange.201606701
  90. Jens Mohr, Martin Oestreich. Balancing C=C Functionalization and C=O Reduction in Cu−H Catalysis. Angewandte Chemie International Edition 2016, 55 (40) , 12148-12149. https://doi.org/10.1002/anie.201606701
  • Abstract

    Scheme 1

    Scheme 1. (a) Prior Work in Aryl Alkene Reductive Coupling to Acyl Electrophiles; (b) Proposed Access to Chiral Ketones or Alcohols; (c) Proposed Catalytic Cycles

    Scheme 2

    Scheme 2. (a) Enantioselective Ketone Synthesis and (b) Reductiona

    Scheme aAll yields represent average isolated yields of two runs performed with 1 mmol of alkene.

    Scheme bReaction run at ambient temperature.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 22 other publications.

    1. 1
      Corey, E. J.; Kürti, L. Enantioselective Chemical Synthesis: Methods, Logic and Practice; Direct Book Publishing: Dallas, 2010.
    2. 2

      For selected reviews on hydroacylation:

      (a) Yang, L.; Huang, H. Chem. Rev. 2015, 115, 3468 DOI: 10.1021/cr500610p
      (b) Leung, J. C.; Krische, M. J. Chem. Sci. 2012, 3, 2202 DOI: 10.1039/c2sc20350b
      (c) Willis, M. C. Chem. Rev. 2010, 110, 725 DOI: 10.1021/cr900096x
      (d) Park, Y. J.; Park, J.-W.; Jun, C.-H. Acc. Chem. Res. 2008, 41, 222 DOI: 10.1021/ar700133y
    3. 3

      For selected reviews on alkene reductive coupling:

      (a) Ketcham, J. M.; Shin, I.; Montgomery, T. P.; Krische, M. J. Angew. Chem., Int. Ed. 2014, 53, 9142 DOI: 10.1002/anie.201403873
      (b) Dechert-Schmitt, A.-M. R.; Schmitt, D. C.; Gao, X.; Itoh, T.; Krische, M. J. Nat. Prod. Rep. 2014, 31, 504 DOI: 10.1039/c3np70076c
      (c) Bower, J. F.; Kim, I. S.; Patman, R. L.; Krische, M. J. Angew. Chem., Int. Ed. 2009, 48, 34 DOI: 10.1002/anie.200802938
      (d) Ngai, M.-Y.; Kong, J.-R.; Krische, M. J. J. Org. Chem. 2007, 72, 1063 DOI: 10.1021/jo061895m
      (e) Montgomery, J. Organonickel Chemistry. In Organometallics in Synthesis; Lipshutz, B. H., Ed.; John Wiley & Sons, Inc.: Hoboken, 2013; pp 319 428.
      (f) Ng, S.-S.; Ho, C.-Y.; Schleicher, K. D.; Jamison, T. F. Pure Appl. Chem. 2008, 80, 929 DOI: 10.1351/pac200880050929
      (g) Reichard, H. A.; Micalizio, G. C. Chem. Sci. 2011, 2, 573 DOI: 10.1039/C0SC00394H
      (h) Micalizio, G. C.; Hale, S. B. Acc. Chem. Res. 2015, 48, 663 DOI: 10.1021/ar500408e
      (i) Ho, C.-Y.; Schleicher, K. D.; Chan, C.-W.; Jamison, T. F. Synlett 2009, 2565 DOI: 10.1055/s-0029-1217747
      (j) Sato, F.; Urabe, H.; Okamoto, S. Chem. Rev. 2000, 100, 2835 DOI: 10.1021/cr990277l
    4. 4

      For reviews on asymmetric hydroacylation, see:

      (a) Murphy, S. K.; Dong, V. M. Chem. Commun. 2014, 50, 13645 DOI: 10.1039/C4CC02276A
      (b) González-Rodríguez, C.; Willis, M. C. Pure Appl. Chem. 2011, 83, 577 DOI: 10.1351/PAC-CON-10-09-23

      For selected enantioselective intermolecular hydroacylation reactions, see:

      (c) Liu, F.; Bugaut, X.; Schedler, M.; Fröhlich, R.; Glorius, F. Angew. Chem., Int. Ed. 2011, 50, 12626 DOI: 10.1002/anie.201106155
      (d) Stemmler, R. T.; Bolm, C. Adv. Synth. Catal. 2007, 349, 1185 DOI: 10.1002/adsc.200600583
      (e) Shibata, Y.; Tanaka, K. J. Am. Chem. Soc. 2009, 131, 12552 DOI: 10.1021/ja905908z
      (f) Coulter, M. M.; Kou, K. G. M.; Galligan, B.; Dong, V. M. J. Am. Chem. Soc. 2010, 132, 16330 DOI: 10.1021/ja107198e
      (g) Phan, D. H. T.; Kou, K. G. M.; Dong, V. M. J. Am. Chem. Soc. 2010, 132, 16354 DOI: 10.1021/ja107738a
      (h) Osborne, J. D.; Randell-Sly, H. E.; Currie, G. S.; Cowley, A. R.; Willis, M. C. J. Am. Chem. Soc. 2008, 130, 17232 DOI: 10.1021/ja8069133
    5. 5

      For reviews on reductive aldol, Mannich, and Michael reactions:

      (a) Nishiyama, H.; Shiomi, T. Top. Curr. Chem. 2007, 279, 105 DOI: 10.1007/128_2007_126
      (b) Guo, H.-C.; Ma, J.-A. Angew. Chem., Int. Ed. 2006, 45, 354 DOI: 10.1002/anie.200500195
      (c) Jang, H.-Y.; Krische, M. J. Eur. J. Org. Chem. 2004, 3953 DOI: 10.1002/ejoc.200400270

      Selected Cu-catalyzed reductive coupling reactions:

      (d) Lipshutz, B. H.; Amorelli, B.; Unger, J. B. J. Am. Chem. Soc. 2008, 130, 14378 DOI: 10.1021/ja8045475
      (e) Zhao, D.; Oisaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 14440 DOI: 10.1021/ja0652565
      (f) Deschamp, J.; Chuzel, O.; Hannedouche, J.; Riant, O. Angew. Chem., Int. Ed. 2006, 45, 1292 DOI: 10.1002/anie.200503791
    6. 6

      Selected examples of catalytic asymmetric enyne, diene, and allene reductive couplings:

      (a) Zbieg, J. R.; Yamaguchi, E.; McInturff, E. L.; Krische, M. J. Science 2012, 336, 324 DOI: 10.1126/science.1219274
      (b) Han, S. B.; Kim, I. S.; Han, H.; Krische, M. J. J. Am. Chem. Soc. 2009, 131, 6916 DOI: 10.1021/ja902437k
      (c) Geary, L. M.; Woo, S. K.; Leung, J. C.; Krische, M. J. Angew. Chem., Int. Ed. 2012, 51, 2972 DOI: 10.1002/anie.201200239
    7. 7

      Selected reviews on alkyne reductive coupling:

      (a) Tanaka, K.; Tajima, Y. Eur. J. Org. Chem. 2012, 3715 DOI: 10.1002/ejoc.201200098
      (b) Moslin, R. M.; Miller-Moslin, K.; Jamison, T. F. Chem. Commun. 2007, 4441 DOI: 10.1039/b707737h
      (c) Reichard, H. A.; McLaughlin, M.; Chen, M. Z.; Micalizio, G. C. Eur. J. Org. Chem. 2010, 391 DOI: 10.1002/ejoc.200901094
      (d) Jackson, E. P.; Malik, H. A.; Sormunen, G. J.; Baxter, R. D.; Liu, P.; Wang, H.; Shareef, A.-R.; Montgomery, J. Acc. Chem. Res. 2015, 48, 1736 DOI: 10.1021/acs.accounts.5b00096
    8. 8
      (a) Yamaguchi, E.; Mowat, J.; Luong, T.; Krische, M. J. Angew. Chem., Int. Ed. 2013, 52, 8428 DOI: 10.1002/anie.201303552

      For the reductive couplings of electron-deficient azaarene alkenes:

      (b) Best, D.; Lam, H. W. J. Org. Chem. 2014, 79, 831 DOI: 10.1021/jo402414k
      (c) Saxena, A.; Choi, B.; Lam, H. W. J. Am. Chem. Soc. 2012, 134, 8428 DOI: 10.1021/ja3036916
    9. 9
      Hong, Y.-T.; Barchuk, A.; Krische, M. J. Angew. Chem., Int. Ed. 2006, 45, 6885 DOI: 10.1002/anie.200602377
    10. 10
      Kokubo, K.; Miura, M.; Nomura, M. Organometallics 1995, 14, 4521 DOI: 10.1021/om00010a016
    11. 11

      For additional examples using anhydride and acyl chloride reagents in formal hydroacylation processes, see:

      (a) Fujihara, T.; Tatsumi, K.; Terao, J.; Tsuji, Y. Org. Lett. 2013, 15, 2286 DOI: 10.1021/ol400862k
      (b) Fujihara, T.; Hosomi, T.; Cong, C.; Hosoki, T.; Terao, J.; Tsuji, Y. Tetrahedron 2015, 71, 4570 DOI: 10.1016/j.tet.2015.01.066
    12. 12

      For a review:

      (a) Pirnot, M. T.; Wang, Y.-M.; Buchwald, S. L. Angew. Chem., Int. Ed. 2016, 55, 48 DOI: 10.1002/anie.201507594

      For selected individual reports:

      (b) Zhu, S.; Niljianskul, N.; Buchwald, S. L. J. Am. Chem. Soc. 2013, 135, 15746 DOI: 10.1021/ja4092819
      (c) Yang, Y.; Shi, S.-L.; Niu, D.; Liu, P.; Buchwald, S. L. Science 2015, 349, 62 DOI: 10.1126/science.aab3753
    13. 13
      (a) Miki, Y.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2013, 52, 10830 DOI: 10.1002/anie.201304365

      See also:

      (b) Xi, Y.; Butcher, T. W.; Zhang, J.; Hartwig, J. F. Angew. Chem., Int. Ed. 2016, 55, 776 DOI: 10.1002/anie.201509235
    14. 14
      (a) Ascic, E.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 4666 DOI: 10.1021/jacs.5b02316
      (b) Wang, Y.-M.; Bruno, N. C.; Placeres, Á. L.; Zhu, S.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 10524 DOI: 10.1021/jacs.5b07061
    15. 15

      For selected examples of asymmetric carbonyl additions of catalytically generated olefin-derived Cu(I) species, see:

      (a) Meng, F.; Haeffner, F.; Hoveyda, A. H. J. Am. Chem. Soc. 2014, 136, 11304 DOI: 10.1021/ja5071202
      (b) Meng, F.; Jang, H.; Jung, B.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2013, 52, 5046 DOI: 10.1002/anie.201301018
      (c) Chikkade, P. K.; Shimizu, Y.; Kanai, M. Chem. Sci. 2014, 5, 1585 DOI: 10.1039/c3sc52803k
    16. 16

      For examples of acylation reactions with nucleophilic copper(I) species, see:

      (a) Cirriez, V.; Rasson, C.; Riant, O. Adv. Synth. Catal. 2013, 355, 3137 DOI: 10.1002/adsc.201300621
      (b) Herron, J. R.; Ball, Z. T. J. Am. Chem. Soc. 2008, 130, 16486 DOI: 10.1021/ja8070804
    17. 17

      The proposed catalytic cycle (Scheme 1c) shows a stereoretentive reaction of 6 with 1; however, a stereoinvertive process is also possible.

    18. 18

      For a review of CuH-catalyzed reactions:

      Deutsch, C.; Krause, N.; Lipshutz, B. H. Chem. Rev. 2008, 108, 2916 DOI: 10.1021/cr0684321
    19. 19

      Lipshutz initially reported PPh3 as a secondary ligand in CuH-catalyzed reactions:

      (a) Lipshutz, B. H.; Noson, K.; Chrisman, W.; Lower, A. J. Am. Chem. Soc. 2003, 125, 8779 DOI: 10.1021/ja021391f
      (b)

      See also ref 14a

      .
    20. 20

      Krische has reported a similar temperature-dependent control in diene-carbonyl reductive couplings:

      Shibahara, F.; Bower, J. F.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14120 DOI: 10.1021/ja805356j
    21. 21

      Reduction of 3a with LiAlH4 at −78 °C has been shown to yield alcohol in >20:1 dr:

      Lou, S.; Fu, G. C. J. Am. Chem. Soc. 2010, 132, 1264 DOI: 10.1021/ja909689t
    22. 22

      This phenomenon is related to the Horeau Principle and we thank a reviewer for providing this insight. For additional examples of this effect, see:

      (a) Kogure, T.; Eliel, E. L. J. Org. Chem. 1984, 49, 576 DOI: 10.1021/jo00177a047
      (b) Midland, M. M.; Gabriel, J. J. Org. Chem. 1985, 50, 1143 DOI: 10.1021/jo00207a053
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b03086.

    • Experimental procedures and characterization data for all compounds (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect