ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Hydrogen Sulfide Oxidation by Myoglobin

View Author Information
Department of Biological Chemistry and Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
§ Department of Pharmaceutical Science, Wayne State University, Detroit, Michigan 48201-2417, United States
Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
University of Bordeaux, IBGC, and CNRS, IBGC, UMR 5095, F-33077 Bordeaux, France
Cite this: J. Am. Chem. Soc. 2016, 138, 27, 8476–8488
Publication Date (Web):June 16, 2016
https://doi.org/10.1021/jacs.6b03456
Copyright © 2016 American Chemical Society

    Article Views

    3666

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Enzymes in the sulfur network generate the signaling molecule, hydrogen sulfide (H2S), from the amino acids cysteine and homocysteine. Since it is toxic at elevated concentrations, cells are equipped to clear H2S. A canonical sulfide oxidation pathway operates in mitochondria, converting H2S to thiosulfate and sulfate. We have recently discovered the ability of ferric hemoglobin to oxidize sulfide to thiosulfate and iron-bound hydropolysulfides. In this study, we report that myoglobin exhibits a similar capacity for sulfide oxidation. We have trapped and characterized iron-bound sulfur intermediates using cryo-mass spectrometry and X-ray absorption spectroscopy. Further support for the postulated intermediates in the chemically challenging conversion of H2S to thiosulfate and iron-bound catenated sulfur products is provided by EPR and resonance Raman spectroscopy in addition to density functional theory computational results. We speculate that the unusual sensitivity of skeletal muscle cytochrome c oxidase to sulfide poisoning in ethylmalonic encephalopathy, resulting from the deficiency in a mitochondrial sulfide oxidation enzyme, might be due to the concentration of H2S by myoglobin in this tissue.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 126 publications.

    1. Marek Freindorf, Juliana Antonio, Elfi Kraka. Hydrogen Sulfide Ligation in Hemoglobin I of Lucina pectinata─A QM/MM and Local Mode Study. The Journal of Physical Chemistry A 2023, 127 (40) , 8316-8329. https://doi.org/10.1021/acs.jpca.3c04399
    2. Juliana J. Antonio, Elfi Kraka. Noncovalent π Interactions in Mutated Aquomet-Myoglobin Proteins: A QM/MM and Local Vibrational Mode Study. Biochemistry 2023, 62 (15) , 2325-2337. https://doi.org/10.1021/acs.biochem.3c00192
    3. Juan Cruz Palermo, Melisa Carllinni Colombo, Jonathan A. Semelak, Magalí F. Scocozza, Fernando M. Boubeta, Daniel H. Murgida, Darío A. Estrin, Sara E. Bari. Autocatalytic Mechanism in the Anaerobic Reduction of Metmyoglobin by Sulfide Species. Inorganic Chemistry 2023, 62 (29) , 11304-11317. https://doi.org/10.1021/acs.inorgchem.3c00593
    4. W.T. Michael Seo, Moises Ballesteros II, Emily Y. Tsui. Sulfane Decreases the Nucleophilic Reactivity of Zinc Thiolates: Implications for Biological Reactive Sulfur Species. Journal of the American Chemical Society 2022, 144 (45) , 20630-20640. https://doi.org/10.1021/jacs.2c07380
    5. Ranjith Ramanathan, Surendranath P. Suman, Cameron Faustman. Biomolecular Interactions Governing Fresh Meat Color in Post-mortem Skeletal Muscle: A Review. Journal of Agricultural and Food Chemistry 2020, 68 (46) , 12779-12787. https://doi.org/10.1021/acs.jafc.9b08098
    6. Tobias J. Sherbow, Lev N. Zakharov, Darren W. Johnson, Michael D. Pluth. Hydrosulfide Oxidation at a Molybdenum Tetrasulfido Complex. Inorganic Chemistry 2020, 59 (21) , 15574-15578. https://doi.org/10.1021/acs.inorgchem.0c02622
    7. Micah T. Nelp, Vincent Zheng, Katherine M. Davis, Wren K. J. Stiefel, John T. Groves. Potent Activation of Indoleamine 2,3-Dioxygenase by Polysulfides. Journal of the American Chemical Society 2019, 141 (38) , 15288-15300. https://doi.org/10.1021/jacs.9b07338
    8. Jinxing Mi, Fujian Liu, Wei Chen, Xiaoping Chen, Lijuan Shen, Yanning Cao, Chaktong Au, Kuan Huang, Anmin Zheng, Lilong Jiang. Design of Efficient, Hierarchical Porous Polymers Endowed with Tunable Structural Base Sites for Direct Catalytic Elimination of COS and H2S. ACS Applied Materials & Interfaces 2019, 11 (33) , 29950-29959. https://doi.org/10.1021/acsami.9b09149
    9. Matthew W. Wolf, Kimberly Rizzolo, Sean J. Elliott, Nicolai Lehnert. Resonance Raman, Electron Paramagnetic Resonance, and Magnetic Circular Dichroism Spectroscopic Investigation of Diheme Cytochrome c Peroxidases from Nitrosomonas europaea and Shewanella oneidensis. Biochemistry 2018, 57 (45) , 6416-6433. https://doi.org/10.1021/acs.biochem.8b00732
    10. Xiao-Xiao Zheng, Li-Juan Shen, Xiao-Ping Chen, Xiao-Hai Zheng, Chak-Tong Au, Li-Long Jiang. Amino-Modified Fe-Terephthalate Metal–Organic Framework as an Efficient Catalyst for the Selective Oxidation of H2S. Inorganic Chemistry 2018, 57 (16) , 10081-10089. https://doi.org/10.1021/acs.inorgchem.8b01232
    11. Victor Vitvitsky, Jan Lj. Miljkovic, Trever Bostelaar, Bikash Adhikari, Pramod K. Yadav, Andrea K. Steiger, Roberta Torregrossa, Michael D. Pluth, Matthew Whiteman, Ruma Banerjee, Milos R. Filipovic. Cytochrome c Reduction by H2S Potentiates Sulfide Signaling. ACS Chemical Biology 2018, 13 (8) , 2300-2307. https://doi.org/10.1021/acschembio.8b00463
    12. Fernando M. Boubeta, Silvina A. Bieza, Mauro Bringas, Darío A. Estrin, Leonardo Boechi, Sara E. Bari. Mechanism of Sulfide Binding by Ferric Hemeproteins. Inorganic Chemistry 2018, 57 (13) , 7591-7600. https://doi.org/10.1021/acs.inorgchem.8b00478
    13. Milos R. Filipovic, Jasmina Zivanovic, Beatriz Alvarez, and Ruma Banerjee . Chemical Biology of H2S Signaling through Persulfidation. Chemical Reviews 2018, 118 (3) , 1253-1337. https://doi.org/10.1021/acs.chemrev.7b00205
    14. Kaustuv Mittra, Asmita Singha, and Abhishek Dey . Mechanism of Reduction of Ferric Porphyrins by Sulfide: Identification of a Low Spin FeIII–SH Intermediate. Inorganic Chemistry 2017, 56 (7) , 3916-3925. https://doi.org/10.1021/acs.inorgchem.6b02878
    15. Shiyan Li, Hongquan Fu, Xingshuai Zhang, Xu Liu, Giulia Tuci, Giuliano Giambastiani, Cuong Pham-Huu, Yuefeng Liu. Hierarchically porous, N-defect enriched C-nanosheets boost the H2S selective oxidation to elemental sulfur. Applied Catalysis B: Environmental 2024, 343 , 123505. https://doi.org/10.1016/j.apcatb.2023.123505
    16. David A. Hanna, Jutta Diessl, Arkajit Guha, Roshan Kumar, Anthony Andren, Costas Lyssiotis, Ruma Banerjee. H 2 S preconditioning induces long-lived perturbations in O 2 metabolism. Proceedings of the National Academy of Sciences 2024, 121 (12) https://doi.org/10.1073/pnas.2319473121
    17. Kexin Tan, Huizhen Ma, Xiaoyu Mu, Zhidong Wang, Qi Wang, Hao Wang, Xiao-Dong Zhang. Application of gold nanoclusters in fluorescence sensing and biological detection. Analytical and Bioanalytical Chemistry 2024, 12 https://doi.org/10.1007/s00216-024-05220-0
    18. W. T. Michael Seo, Emily Y. Tsui. Structural and Redox Interconversions of Sulfur Ligands of Transition Metal Complexes. Comments on Inorganic Chemistry 2024, 44 (2) , 55-97. https://doi.org/10.1080/02603594.2023.2200174
    19. Kemper Young, Setsuko Yamane, Elmira Abbasi GharehTapeh, Shingo Kasamatsu, Hideshi Ihara, Urara Hasegawa. Manganese Porphyrin‐Containing Polymeric Micelles: A Novel Approach for Intracellular Catalytic Formation of Per/Polysulfide Species from a Hydrogen Sulfide Donor. Advanced Healthcare Materials 2024, 13 (4) https://doi.org/10.1002/adhm.202302429
    20. Hideo Kimura. Hydrogen Sulfide (H2S)/Polysulfides (H2Sn) Signalling and TRPA1 Channels Modification on Sulfur Metabolism. Biomolecules 2024, 14 (1) , 129. https://doi.org/10.3390/biom14010129
    21. GuiJuan ZHOU, XiaoQing TANG. Functional and molecular insights of hydrogen sulfide in the major central nervous system disorders. SCIENTIA SINICA Vitae 2023, 53 (10) , 1397-1423. https://doi.org/10.1360/SSV-2023-0093
    22. Jonathan Alexis Córdova, Juan Cruz Palermo, Darío A. Estrin, Sara E. Bari, Luciana Capece. Binding mechanism of disulfide species to ferric hemeproteins: The case of metmyoglobin. Journal of Inorganic Biochemistry 2023, 247 , 112313. https://doi.org/10.1016/j.jinorgbio.2023.112313
    23. Robert Winkler, Miguel Ciria, Margaret Ahmad, Harald Plank, Carlos Marcuello. A Review of the Current State of Magnetic Force Microscopy to Unravel the Magnetic Properties of Nanomaterials Applied in Biological Systems and Future Directions for Quantum Technologies. Nanomaterials 2023, 13 (18) , 2585. https://doi.org/10.3390/nano13182585
    24. Juan Cruz Palermo, Melisa Carllinni Colombo, Magalí F. Scocozza, Daniel H. Murgida, Darío A. Estrin, Sara E. Bari. Reduction of metmyoglobin by inorganic disulfide species. Journal of Inorganic Biochemistry 2023, 245 , 112256. https://doi.org/10.1016/j.jinorgbio.2023.112256
    25. Thibaut Vignane, Milos R. Filipovic. Emerging Chemical Biology of Protein Persulfidation. Antioxidants & Redox Signaling 2023, 39 (1-3) , 19-39. https://doi.org/10.1089/ars.2023.0352
    26. Yimei Zuo, Sisi Wang, Ruizhi Lin, Gelei Xiao, Shu Chen, Rongjin Zeng, Hui Gu. A portable electrochemical microsensor for in-site measurement of dissolved oxygen and hydrogen sulfide in natural water. Talanta 2023, 256 , 124269. https://doi.org/10.1016/j.talanta.2023.124269
    27. Andrea Domán, Éva Dóka, Dorottya Garai, Virág Bogdándi, György Balla, József Balla, Péter Nagy. Interactions of reactive sulfur species with metalloproteins. Redox Biology 2023, 60 , 102617. https://doi.org/10.1016/j.redox.2023.102617
    28. , A. O. Mykytenko, O. Ye. Akimov, , G. A. Yeroshenko, , K. S. Neporada, . Influence of NF-κB on the development of oxidative-nitrosative stress in the liver of rats under conditions of chronic alcohol intoxication. The Ukrainian Biochemical Journal 2023, 94 (6) , 57-66. https://doi.org/10.15407/ubj94.06.057
    29. Renbin Zhou, Hao Xu, Junle Qu, Tymish Y. Ohulchanskyy. Hemoglobin Nanocrystals for Drugs Free, Synergistic Theranostics of Colon Tumor. Small 2023, 19 (8) https://doi.org/10.1002/smll.202205165
    30. Zainab Hafideddine, Tim Loier, Niels Van Brempt, Sasha De Henau, H.Y. Vincent Ching, Sander Neukermans, Saskia Defossé, Herald Berghmans, Roberta Sgammato, Roy Aerts, Dietmar Hammerschmid, Rani Moons, Tom Breugelmans, Frank Sobott, Christian Johannessen, Wouter Herrebout, Bart P. Braeckman, Luc Moens, Sylvia Dewilde, Sabine Van Doorslaer. GLB-3: A resilient, cysteine-rich, membrane-tethered globin expressed in the reproductive and nervous system of Caenorhabditis elegans. Journal of Inorganic Biochemistry 2023, 238 , 112063. https://doi.org/10.1016/j.jinorgbio.2022.112063
    31. David Hanna, Roshan Kumar, Ruma Banerjee. A Metabolic Paradigm for Hydrogen Sulfide Signaling via Electron Transport Chain Plasticity. Antioxidants & Redox Signaling 2023, 38 (1-3) , 57-67. https://doi.org/10.1089/ars.2022.0067
    32. Giuseppe Cirino, Csaba Szabo, Andreas Papapetropoulos. Physiological roles of hydrogen sulfide in mammalian cells, tissues, and organs. Physiological Reviews 2023, 103 (1) , 31-276. https://doi.org/10.1152/physrev.00028.2021
    33. Yongxin Li, Zijing Ren, Yushu Ge, Cuixia Di, Jiang Zhou, Jiang Wu, Lei Jia. A novel peptide fluorescent probe based on different fluorescence responses for detection of mercury species and hydrogen sulfide. Microchemical Journal 2023, 184 , 108160. https://doi.org/10.1016/j.microc.2022.108160
    34. Juan Cruz Palermo, Jonathan A Córdova, Jonathan A Semelak, Luciana Capece, Sara E Bari, Darío A Estrin. Computational evaluation of relevant species in inorganic sulfur biochemistry. Electronic Structure 2022, 4 (4) , 044006. https://doi.org/10.1088/2516-1075/aca945
    35. Jon M. Fukuto. Fundamental and Biologically Relevant Chemistry of H 2 S and Related Species. 2022, 1-26. https://doi.org/10.1002/9781119799900.ch1
    36. Dayana Benchoam, Ernesto Cuevasanta, Matías N. Möller, Beatriz Alvarez. Persulfides and Their Reactions in Biological Contexts. 2022, 49-76. https://doi.org/10.1002/9781119799900.ch3
    37. Zachary J. Tonzetich. H 2 S and Bioinorganic Metal Complexes. 2022, 103-141. https://doi.org/10.1002/9781119799900.ch5
    38. Maria Strianese, Claudio Pellecchia. Fluorescent Probes for H 2 S Detection: Metal‐Based Approaches. 2022, 203-233. https://doi.org/10.1002/9781119799900.ch9
    39. Ruili Wang, Zheyu Fan, Zhiwen Wei, Lele Wang, Tao Wang, Wenyue Li, Dong Ma, Zhongyuan Guo, Keming Yun. Decomposition kinetics and postmortem production of hydrogen sulfide and its metabolites. Forensic Science International 2022, 340 , 111426. https://doi.org/10.1016/j.forsciint.2022.111426
    40. Xianghui Li, Kaixin Jiang, Yantian Ruan, Siyuan Zhao, Yiming Zhao, Yuhua He, Zhili Wang, Jiacun Wei, Qiming Li, Changyong Yang, Yanzhang Li, Tieshan Teng. Hydrogen Sulfide and Its Donors: Keys to Unlock the Chains of Nonalcoholic Fatty Liver Disease. International Journal of Molecular Sciences 2022, 23 (20) , 12202. https://doi.org/10.3390/ijms232012202
    41. Devin Mantle, Guangdong Yang. Hydrogen sulfide and metal interaction: the pathophysiological implications. Molecular and Cellular Biochemistry 2022, 477 (9) , 2235-2248. https://doi.org/10.1007/s11010-022-04443-y
    42. Jan Lj. Miljkovic, Nils Burger, Justyna M. Gawel, John F. Mulvey, Abigail A.I. Norman, Takanori Nishimura, Yoshiyuki Tsujihata, Angela Logan, Olga Sauchanka, Stuart T. Caldwell, Jordan L. Morris, Tracy A. Prime, Stefan Warrington, Julien Prudent, Georgina R. Bates, Dunja Aksentijević, Hiran A. Prag, Andrew M. James, Thomas Krieg, Richard C. Hartley, Michael P. Murphy. Rapid and selective generation of H2S within mitochondria protects against cardiac ischemia-reperfusion injury. Redox Biology 2022, 55 , 102429. https://doi.org/10.1016/j.redox.2022.102429
    43. Ruma Banerjee, Roshan Kumar. Gas regulation of complex II reversal via electron shunting to fumarate in the mammalian ETC. Trends in Biochemical Sciences 2022, 47 (8) , 689-698. https://doi.org/10.1016/j.tibs.2022.03.011
    44. Tobias J. Sherbow, Wen Fu, Lizhi Tao, Lev N. Zakharov, R. David Britt, Michael D. Pluth. Thionitrite (SNO − ) and Perthionitrite (SSNO − ) are Simple Synthons for Nitrosylated Iron Sulfur Clusters. Angewandte Chemie 2022, 134 (30) https://doi.org/10.1002/ange.202204570
    45. Tobias J. Sherbow, Wen Fu, Lizhi Tao, Lev N. Zakharov, R. David Britt, Michael D. Pluth. Thionitrite (SNO − ) and Perthionitrite (SSNO − ) are Simple Synthons for Nitrosylated Iron Sulfur Clusters. Angewandte Chemie International Edition 2022, 61 (30) https://doi.org/10.1002/anie.202204570
    46. Yali Shi, Qianyuan Chen, Yuejun Liu, Guoqing Wang. Capability of Au nano-rhombic dodecahedra in a label-free colorimetric assay: application in the determination of S 2− and Hg 2+. The Analyst 2022, 147 (15) , 3578-3584. https://doi.org/10.1039/D2AN00852A
    47. Zhengnan Yuan, Ladie Kimberly De La Cruz, Xiaoxiao Yang, Binghe Wang, . Carbon Monoxide Signaling: Examining Its Engagement with Various Molecular Targets in the Context of Binding Affinity, Concentration, and Biologic Response. Pharmacological Reviews 2022, 74 (3) , 825-875. https://doi.org/10.1124/pharmrev.121.000564
    48. Ritesh R. Sevalkar, Joel N. Glasgow, Martín Pettinati, Marcelo A. Marti, Vineel P. Reddy, Swati Basu, Elmira Alipour, Daniel B. Kim-Shapiro, Dario A. Estrin, Jack R. Lancaster, Adrie J.C. Steyn. Mycobacterium tuberculosis DosS binds H2S through its Fe3+ heme iron to regulate the DosR dormancy regulon. Redox Biology 2022, 52 , 102316. https://doi.org/10.1016/j.redox.2022.102316
    49. Dengfeng Lu, Lingling Wang, Guangjie Liu, Shixin Wang, Yi Wang, Yu Wu, Jing Wang, Xiaoou Sun. Role of hydrogen sulfide in subarachnoid hemorrhage. CNS Neuroscience & Therapeutics 2022, 28 (6) , 805-817. https://doi.org/10.1111/cns.13828
    50. Chengyi Hong, Dandan Li, Ziyue Wang, Boyuan Liu, Wenmin Zhang, Kailong Zhang, Zhiyong Huang. A sensitive colorimetric hydrogen sulfide detection approach based on copper-metal–organic frameworks and a smartphone. Analytical Methods 2022, 14 (12) , 1239-1245. https://doi.org/10.1039/D2AY00151A
    51. Hazel A. Fargher, Tobias J. Sherbow, Michael M. Haley, Darren W. Johnson, Michael D. Pluth. C–H⋯S hydrogen bonding interactions. Chemical Society Reviews 2022, 51 (4) , 1454-1469. https://doi.org/10.1039/D1CS00838B
    52. Xiurong Zhai, Shuai Li, Yukun Wang, Siyu Cao, Wen Sun, Mingzhu Liu, Guojiang Mao, Bingqiang Cao, Hua Wang. A magnet-renewable electroanalysis strategy for hydrogen sulfide in aquaculture freshwater using magnetic silver metal-organic frameworks. Analytica Chimica Acta 2022, 1195 , 339450. https://doi.org/10.1016/j.aca.2022.339450
    53. Biplab K. Maiti, Luisa B. Maia, José J.G. Moura. Sulfide and transition metals - A partnership for life. Journal of Inorganic Biochemistry 2022, 227 , 111687. https://doi.org/10.1016/j.jinorgbio.2021.111687
    54. Yingying Wang, Xiang Ni, Rahuljeet Chadha, Caitlin McCartney, Yannie Lam, Brock Brummett, Geat Ramush, Ming Xian. Methods for Suppressing Hydrogen Sulfide in Biological Systems. Antioxidants & Redox Signaling 2022, 36 (4-6) , 294-308. https://doi.org/10.1089/ars.2021.0088
    55. Ernesto Cuevasanta, Dayana Benchoam, Matías N. Möller, Sebastián Carballal, Ruma Banerjee, Beatriz Alvarez. Hydrogen sulfide and persulfides. 2022, 451-486. https://doi.org/10.1016/B978-0-323-90219-9.00011-X
    56. Roshan Kumar, Aaron P. Landry, Arkajit Guha, Victor Vitvitsky, Ho Joon Lee, Keisuke Seike, Pavan Reddy, Costas A. Lyssiotis, Ruma Banerjee. A redox cycle with complex II prioritizes sulfide quinone oxidoreductase-dependent H2S oxidation. Journal of Biological Chemistry 2022, 298 (1) , 101435. https://doi.org/10.1016/j.jbc.2021.101435
    57. Yongxin Li, Zijing Ren, Yushu Ge, Cuixia Di, Jiang Zhou, jiang wu, Lei Jia. A Novel Peptide Fluorescent Probe Based on Different Fluorescence Responses for Detection of Mercury Species and Hydrogen Sulfide. SSRN Electronic Journal 2022, 52 https://doi.org/10.2139/ssrn.4115284
    58. Yifei Wang, Shuting Li, Jing Chen, Haining Zhu, Bailey N. Harsh, Dustin D. Boler, Anna C. Dilger, Daniel W. Shike, Surendranath P. Suman. Supranutritional Supplementation of Vitamin E Influences Myoglobin Post-Translational Modifications in Postmortem Beef Longissimus Lumborum Muscle. Meat and Muscle Biology 2022, 6 (1) https://doi.org/10.22175/mmb.13541
    59. Kenneth R. Olson. A Case for Hydrogen Sulfide Metabolism as an Oxygen Sensing Mechanism. Antioxidants 2021, 10 (11) , 1650. https://doi.org/10.3390/antiox10111650
    60. Stephen E. Wilkie, Gillian Borland, Roderick N. Carter, Nicholas M. Morton, Colin Selman. Hydrogen sulfide in ageing, longevity and disease. Biochemical Journal 2021, 478 (19) , 3485-3504. https://doi.org/10.1042/BCJ20210517
    61. Virginia Diz, Silvina A. Bieza, Santiago Oviedo Rouco, Darío A. Estrin, Daniel H. Murgida, Sara E. Bari. Reactivity of inorganic sulfide species towards a pentacoordinated heme model system. Journal of Inorganic Biochemistry 2021, 220 , 111459. https://doi.org/10.1016/j.jinorgbio.2021.111459
    62. Maria Strianese, Daniela Pappalardo, Mina Mazzeo, Marina Lamberti, Claudio Pellecchia. The contribution of metalloporphyrin complexes in molecular sensing and in sustainable polymerization processes: a new and unique perspective. Dalton Transactions 2021, 50 (23) , 7898-7916. https://doi.org/10.1039/D1DT00841B
    63. Peter Rose, Philip Keith Moore, Matthew Whiteman, Charlotte Kirk, Yi-Zhun Zhu. Diet and Hydrogen Sulfide Production in Mammals. Antioxidants & Redox Signaling 2021, 34 (17) , 1378-1393. https://doi.org/10.1089/ars.2020.8217
    64. Lijuan Shen, Ganchang Lei, Yong Zheng, Shijing Liang, Fujian Liu, Shuai Wang, Yanning Cao, Yihong Xiao, Lilong Jiang. Electronic Regulation of Bromophenyl Grafted Metal‐Free Carbon Nitride Catalysts for Enhanced Utilization of H 2 S. ChemCatChem 2021, 13 (10) , 2386-2392. https://doi.org/10.1002/cctc.202100105
    65. Subhash Chand, Sriparna Ray, Poonam Yadav, Susruta Samanta, Brad S. Pierce, Roshan Perera. Abiological catalysis by myoglobin mutant with a genetically incorporated unnatural amino acid. Biochemical Journal 2021, 478 (9) , 1795-1808. https://doi.org/10.1042/BCJ20210091
    66. Roshan Kumar, Ruma Banerjee. Regulation of the redox metabolome and thiol proteome by hydrogen sulfide. Critical Reviews in Biochemistry and Molecular Biology 2021, 56 (3) , 221-235. https://doi.org/10.1080/10409238.2021.1893641
    67. Jitong Wang, Chengyu Ke, Xianfeng Jia, Cheng Ma, Xiaojun Liu, Wenming Qiao, Licheng Ling. Polyethyleneimine-functionalized mesoporous carbon nanosheets as metal-free catalysts for the selective oxidation of H2S at room temperature. Applied Catalysis B: Environmental 2021, 283 , 119650. https://doi.org/10.1016/j.apcatb.2020.119650
    68. Joshua J. Woods, Justin J. Wilson. Bioinorganic Chemistry of Hydrogen Sulfide: Detection, Delivery, and Interactions with Metalloproteins. 2021, 1-22. https://doi.org/10.1002/9781119951438.eibc2764
    69. Abhrajit Ganguly, Gaston Ofman, Peter F Vitiello. Hydrogen Sulfide—Clues from Evolution and Implication for Neonatal Respiratory Diseases. Children 2021, 8 (3) , 213. https://doi.org/10.3390/children8030213
    70. Karim Zuhra, Catarina S. Tomé, Elena Forte, João B. Vicente, Alessandro Giuffrè. The multifaceted roles of sulfane sulfur species in cancer-associated processes. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2021, 1862 (2) , 148338. https://doi.org/10.1016/j.bbabio.2020.148338
    71. Anca Ungurianu, George Mihai Nitulescu, Denisa Margina. Hydrogen sulfide: a shifting paradigm. 2021, 415-426. https://doi.org/10.1016/B978-0-323-85215-9.00018-0
    72. Junpeng Li, Rui Wang, Shuaiyong Dou. Electrolytic cell–assisted polyoxometalate based redox mediator for H2S conversion to elemental sulphur and hydrogen. Chemical Engineering Journal 2021, 404 , 127090. https://doi.org/10.1016/j.cej.2020.127090
    73. Yifei Wang, Shuting Li, Gregg Rentfrow, Jing Chen, Haining Zhu, Surendranath P. Suman. Myoglobin Post-Translational Modifications Influence Color Stability of Beef Longissimus Lumborum. Meat and Muscle Biology 2021, 5 (1) https://doi.org/10.22175/mmb.11689
    74. Eizo Marutani, Fumito Ichinose. Emerging pharmacological tools to control hydrogen sulfide signaling in critical illness. Intensive Care Medicine Experimental 2020, 8 (1) https://doi.org/10.1186/s40635-020-0296-4
    75. Marisa W. Friederich, Abdallah F. Elias, Alice Kuster, Lucia Laugwitz, Austin A. Larson, Aaron P. Landry, Logan Ellwood‐Digel, David M. Mirsky, David Dimmock, Jaclyn Haven, Hua Jiang, Kenneth N. MacLean, Katie Styren, Jonathan Schoof, Louise Goujon, Thomas Lefrancois, Maike Friederich, Curtis R. Coughlin, Ruma Banerjee, Tobias B. Haack, Johan L. K. Van Hove. Pathogenic variants in SQOR encoding sulfide:quinone oxidoreductase are a potentially treatable cause of Leigh disease. Journal of Inherited Metabolic Disease 2020, 43 (5) , 1024-1036. https://doi.org/10.1002/jimd.12232
    76. Brenna J.C. Walsh, David P. Giedroc. H2S and reactive sulfur signaling at the host-bacterial pathogen interface. Journal of Biological Chemistry 2020, 295 (38) , 13150-13168. https://doi.org/10.1074/jbc.REV120.011304
    77. Qiang Liu, Bingsi Liu, Qinze Liu, Qiuyue Zhang, Rongnian Xu, Xuanyue Wu, Hong Xia. Walnut wood-derived hierarchically 3D self-assembly of (a%Ce–Mn)yAl2−yOx and rapid diffusion character of straight micron channel during hot coal gas desulfurization. Chemical Engineering Journal 2020, 393 , 124761. https://doi.org/10.1016/j.cej.2020.124761
    78. Michael D. Pluth, Zachary J. Tonzetich. Hydrosulfide complexes of the transition elements: diverse roles in bioinorganic, cluster, coordination, and organometallic chemistry. Chemical Society Reviews 2020, 49 (12) , 4070-4134. https://doi.org/10.1039/C9CS00570F
    79. Chun-Yin Lau, Jianyu Guan, Ho-Yin TSE, Chi Shun Yeung, Chiu Wing Shum, Shao-Yuan Leu. Enhancement of Elemental Sulfur Recovery from Wastewater Biogas Using Nickel (II)-(5,10,15,20)-tetrakis-phenylcarboxylporphyrin. KSCE Journal of Civil Engineering 2020, 24 (5) , 1424-1429. https://doi.org/10.1007/s12205-020-2204-6
    80. B.D. Ostojić, P. Schwerdtfeger, A. Nakayama, J. Hasegawa, D.S. Đorđević. A detailed analysis of the spin-crossover reaction of H2S binding to heme and the six-coordinated FeP(Im)-HS− porphyrin complex. Journal of Inorganic Biochemistry 2020, 206 , 111049. https://doi.org/10.1016/j.jinorgbio.2020.111049
    81. Jon M. Fukuto, Valeria Suarez Vega, Carmen Works, Joseph Lin. The chemical biology of hydrogen sulfide and related hydropersulfides: interactions with biologically relevant metals and metalloproteins. Current Opinion in Chemical Biology 2020, 55 , 52-58. https://doi.org/10.1016/j.cbpa.2019.11.013
    82. Nadzeya Marozkina, Benjamin Gaston. An Update on Thiol Signaling: S-Nitrosothiols, Hydrogen Sulfide and a Putative Role for Thionitrous Acid. Antioxidants 2020, 9 (3) , 225. https://doi.org/10.3390/antiox9030225
    83. Birgitte Jensen, Angela Fago. A Novel Possible Role for Met Hemoglobin as Carrier of Hydrogen Sulfide in the Blood. Antioxidants & Redox Signaling 2020, 32 (4) , 258-265. https://doi.org/10.1089/ars.2019.7877
    84. Fernando Martín Boubeta, Silvina Andrea Bieza, Mauro Bringas, Juan Cruz Palermo, Leonardo Boechi, Darío Ariel Estrin, Sara Elizabeth Bari. Hemeproteins as Targets for Sulfide Species. Antioxidants & Redox Signaling 2020, 32 (4) , 247-257. https://doi.org/10.1089/ars.2019.7878
    85. Hideo Kimura. Signalling by hydrogen sulfide and polysulfides via protein S ‐sulfuration. British Journal of Pharmacology 2020, 177 (4) , 720-733. https://doi.org/10.1111/bph.14579
    86. Akhilesh K. Pandey, Arti Gautam. Stress responsive gene regulation in relation to hydrogen sulfide in plants under abiotic stress. Physiologia Plantarum 2020, 168 (2) , 511-525. https://doi.org/10.1111/ppl.13064
    87. Brenna J.C. Walsh, Jose A. Brito, David P. Giedroc. Hydrogen Sulfide Signaling and Enzymology. 2020, 430-473. https://doi.org/10.1016/B978-0-12-409547-2.14699-2
    88. Angel D. Rodriguez-Mackenzie, Hector D. Arbelo-Lopez, Troy Wymore, Juan Lopez-Garriga. A reaction pathway to compound 0 intermediates in oxy-myoglobin through interactions with hydrogen sulfide and His64. Journal of Molecular Graphics and Modelling 2020, 94 , 107465. https://doi.org/10.1016/j.jmgm.2019.107465
    89. Ganchang Lei, Zhaojin Dai, Zhangjia Fan, Xiaohai Zheng, Yanning Cao, Lijuan Shen, Yihong Xiao, Chaktong Au, Lilong Jiang. Porous nanosheets of carbon-conjugated graphitic carbon nitride for the oxidation of H2S to elemental sulfur. Carbon 2019, 155 , 204-214. https://doi.org/10.1016/j.carbon.2019.08.052
    90. Brennah Murphy, Resham Bhattacharya, Priyabrata Mukherjee. Hydrogen sulfide signaling in mitochondria and disease. The FASEB Journal 2019, 33 (12) , 13098-13125. https://doi.org/10.1096/fj.201901304R
    91. Xu Cao, Lei Ding, Zhi-zhong Xie, Yong Yang, Matthew Whiteman, Philip K. Moore, Jin-Song Bian. A Review of Hydrogen Sulfide Synthesis, Metabolism, and Measurement: Is Modulation of Hydrogen Sulfide a Novel Therapeutic for Cancer?. Antioxidants & Redox Signaling 2019, 31 (1) , 1-38. https://doi.org/10.1089/ars.2017.7058
    92. Ralf Steudel, Tristram Chivers. The role of polysulfide dianions and radical anions in the chemical, physical and biological sciences, including sulfur-based batteries. Chemical Society Reviews 2019, 48 (12) , 3279-3319. https://doi.org/10.1039/C8CS00826D
    93. Mike Lange, Kiwon Ok, Geoffrey D. Shimberg, Biljana Bursac, Lajos Markó, Ivana Ivanović‐Burmazović, Sarah L. J. Michel, Milos R. Filipovic. Direct Zinc Finger Protein Persulfidation by H 2 S Is Facilitated by Zn 2+. Angewandte Chemie 2019, 131 (24) , 8081-8085. https://doi.org/10.1002/ange.201900823
    94. Mike Lange, Kiwon Ok, Geoffrey D. Shimberg, Biljana Bursac, Lajos Markó, Ivana Ivanović‐Burmazović, Sarah L. J. Michel, Milos R. Filipovic. Direct Zinc Finger Protein Persulfidation by H 2 S Is Facilitated by Zn 2+. Angewandte Chemie International Edition 2019, 58 (24) , 7997-8001. https://doi.org/10.1002/anie.201900823
    95. Hideo Kimura. Signaling by hydrogen sulfide (H2S) and polysulfides (H2Sn) in the central nervous system. Neurochemistry International 2019, 126 , 118-125. https://doi.org/10.1016/j.neuint.2019.01.027
    96. Nabhendu Pal, Amit Majumdar. Transfer of hydrosulfide from thiols to iron( ii ): a convenient synthetic route to nonheme diiron( ii )–hydrosulfide complexes. Dalton Transactions 2019, 48 (18) , 5903-5908. https://doi.org/10.1039/C8DT04092C
    97. JeeEun Kim, Yohta Fukuda, Tsuyoshi Inoue. Crystal structure of Kumaglobin: a hexacoordinated heme protein from an anhydrobiotic tardigrade, Ramazzottius varieornatus. The FEBS Journal 2019, 286 (7) , 1287-1304. https://doi.org/10.1111/febs.14713
    98. Maria Strianese, Gottfried J. Palm, David Kohlhause, Lionel A. Ndamba, Leandro C. Tabares, Claudio Pellecchia. Azurin and HS – : Towards Implementation of a Sensor for HS – Detection. European Journal of Inorganic Chemistry 2019, 2019 (6) , 885-891. https://doi.org/10.1002/ejic.201801399
    99. Virág Bogdándi, Tomoaki Ida, Thomas R Sutton, Christopher Bianco, Tamás Ditrói, Grielof Koster, Hillary A Henthorn, Magda Minnion, John P Toscano, Albert van der Vliet, Michael D Pluth, Martin Feelisch, Jon M Fukuto, Takaaki Akaike, Péter Nagy. Speciation of reactive sulfur species and their reactions with alkylating agents: do we have any clue about what is present inside the cell?. British Journal of Pharmacology 2019, 176 (4) , 646-670. https://doi.org/10.1111/bph.14394
    100. Dayana Benchoam, Ernesto Cuevasanta, Matías Möller, Beatriz Alvarez. Hydrogen Sulfide and Persulfides Oxidation by Biologically Relevant Oxidizing Species. Antioxidants 2019, 8 (2) , 48. https://doi.org/10.3390/antiox8020048
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect