ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Figure 1Loading Img

Programming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials

View Author Information
Wallance H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
§ SKKU Advanced Institute of Nanotechnology & School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
Wyss Institute for Biologically Inspired Engineering and Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, Massachusetts 02115, United States
Cite this: J. Am. Chem. Soc. 2016, 138, 24, 7733–7740
Publication Date (Web):May 25, 2016
https://doi.org/10.1021/jacs.6b03966
Copyright © 2016 American Chemical Society
Article Views
6199
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (9 MB)
Supporting Info (2)»

Abstract

Abstract Image

Scaffolded DNA origami has proven to be a versatile method for generating functional nanostructures with prescribed sub-100 nm shapes. Programming DNA-origami tiles to form large-scale 2D lattices that span hundreds of nanometers to the micrometer scale could provide an enabling platform for diverse applications ranging from metamaterials to surface-based biophysical assays. Toward this end, here we design a family of hexagonal DNA-origami tiles using computer-aided design and demonstrate successful self-assembly of micrometer-scale 2D honeycomb lattices and tubes by controlling their geometric and mechanical properties including their interconnecting strands. Our results offer insight into programmed self-assembly of low-defect supra-molecular DNA-origami 2D lattices and tubes. In addition, we demonstrate that these DNA-origami hexagon tiles and honeycomb lattices are versatile platforms for assembling optical metamaterials via programmable spatial arrangement of gold nanoparticles (AuNPs) into cluster and superlattice geometries.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b03966.

  • Summary figure, methods and materials, unsuccessful star motif designs, strand diagrams of hexagonal tiles and connection designs, structure modeling of hexagonal tiles and lattices, TEM images of tubes and 2D lattices, AuNP clusters and superlattices (PDF)

  • Sequences of the p7560 scaffold, staples, and thiolated DNA strands (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 135 publications.

  1. Andrea Scotti, M. Friederike Schulte, Carlos G. Lopez, Jérôme J. Crassous, Steffen Bochenek, Walter Richtering. How Softness Matters in Soft Nanogels and Nanogel Assemblies. Chemical Reviews 2022, 122 (13) , 11675-11700. https://doi.org/10.1021/acs.chemrev.2c00035
  2. Yuxiang Dong, Jiliang Liu, Xuanzhao Lu, Jialin Duan, Liqi Zhou, Lizhi Dai, Min Ji, Ningning Ma, Yong Wang, Peng Wang, Jun-Jie Zhu, Qianhao Min, Oleg Gang, Ye Tian. Two-Stage Assembly of Nanoparticle Superlattices with Multiscale Organization. Nano Letters 2022, 22 (9) , 3809-3817. https://doi.org/10.1021/acs.nanolett.2c00942
  3. Yanjuan Li, Lei Song, Chengjun Wang, Pengcheng Lei, Zhaoxiang Deng. Decoupled Roles of DNA–Surfactant Interactions: Instant Charge Inversion, Enhanced Colloidal and Chemical Stabilities, and Fully Tunable DNA Conjugation of Shaped Plasmonic Nanocrystals. Nano Letters 2022, 22 (8) , 3385-3391. https://doi.org/10.1021/acs.nanolett.2c00656
  4. Xiaoliang Chen, Yue Wang, Xinpei Dai, Longjiang Ding, Jielin Chen, Guangbao Yao, Xiaoguo Liu, Shihua Luo, Jiye Shi, Lihua Wang, Rachel Nechushtai, Eli Pikarsky, Itamar Willner, Chunhai Fan, Jiang Li. Single-Stranded DNA-Encoded Gold Nanoparticle Clusters as Programmable Enzyme Equivalents. Journal of the American Chemical Society 2022, 144 (14) , 6311-6320. https://doi.org/10.1021/jacs.1c13116
  5. Xiao Wang, Hyungmin Jun, Mark Bathe. Programming 2D Supramolecular Assemblies with Wireframe DNA Origami. Journal of the American Chemical Society 2022, 144 (10) , 4403-4409. https://doi.org/10.1021/jacs.1c11332
  6. Jae Young Lee, Myoungseok Kim, Chanseok Lee, Do-Nyun Kim. Characterizing and Harnessing the Mechanical Properties of Short Single-Stranded DNA in Structured Assemblies. ACS Nano 2021, 15 (12) , 20430-20441. https://doi.org/10.1021/acsnano.1c08861
  7. Yan Liu, Li Ma, Shuoxing Jiang, Cong Han, Pan Tang, Hao Yang, Xiaoyang Duan, Na Liu, Hao Yan, Xiang Lan. DNA Programmable Self-Assembly of Planar, Thin-Layered Chiral Nanoparticle Superstructures with Complex Two-Dimensional Patterns. ACS Nano 2021, 15 (10) , 16664-16672. https://doi.org/10.1021/acsnano.1c06639
  8. Ningning Ma, Lizhi Dai, Zhi Chen, Min Ji, Yong Wang, Ye Tian. Environment-Resistant DNA Origami Crystals Bridged by Rigid DNA Rods with Adjustable Unit Cells. Nano Letters 2021, 21 (8) , 3581-3587. https://doi.org/10.1021/acs.nanolett.1c00607
  9. Mark Bathe, Rigoberto Hernandez, Takaki Komiyama, Raghu Machiraju, Sanghamitra Neogi. Autonomous Computing Materials. ACS Nano 2021, 15 (3) , 3586-3592. https://doi.org/10.1021/acsnano.0c09556
  10. Aaron Michelson, Honghu Zhang, Shuting Xiang, Oleg Gang. Engineered Silicon Carbide Three-Dimensional Frameworks through DNA-Prescribed Assembly. Nano Letters 2021, 21 (4) , 1863-1870. https://doi.org/10.1021/acs.nanolett.0c05023
  11. Min Ji, Jiliang Liu, Lizhi Dai, Lei Wang, Ye Tian. Programmable Cocrystallization of DNA Origami Shapes. Journal of the American Chemical Society 2020, 142 (51) , 21336-21343. https://doi.org/10.1021/jacs.0c08525
  12. Jonathan F. Berengut, Chak Kui Wong, Julian C. Berengut, Jonathan P. K. Doye, Thomas E. Ouldridge, Lawrence K. Lee. Self-Limiting Polymerization of DNA Origami Subunits with Strain Accumulation. ACS Nano 2020, 14 (12) , 17428-17441. https://doi.org/10.1021/acsnano.0c07696
  13. Dongfang Wang, Lei Yu, Bin Ji, Shuai Chang, Jie Song, Yonggang Ke. Programming the Curvatures in Reconfigurable DNA Domino Origami by Using Asymmetric Units. Nano Letters 2020, 20 (11) , 8236-8241. https://doi.org/10.1021/acs.nanolett.0c03348
  14. Liwei Hui, Rachel Nixon, Nathan Tolman, Jason Mukai, Ruobing Bai, Risheng Wang, Haitao Liu. Area-Selective Atomic Layer Deposition of Metal Oxides on DNA Nanostructures and Its Applications. ACS Nano 2020, 14 (10) , 13047-13055. https://doi.org/10.1021/acsnano.0c04493
  15. Zhiwei Lin, Hamed Emamy, Brian Minevich, Yan Xiong, Shuting Xiang, Sanat Kumar, Yonggang Ke, Oleg Gang. Engineering Organization of DNA Nano-Chambers through Dimensionally Controlled and Multi-Sequence Encoded Differentiated Bonds. Journal of the American Chemical Society 2020, 142 (41) , 17531-17542. https://doi.org/10.1021/jacs.0c07263
  16. Tzung-Ying Yang, Li Yu, Yoshitsugu Akiyama, Tohru Takarada, Mizuo Maeda. DNA-Programmed Bimodal 2D Assembly of Differently Sized Nanoparticles via Folding of Precursory Circular Chains. Langmuir 2020, 36 (20) , 5588-5595. https://doi.org/10.1021/acs.langmuir.0c00765
  17. Yahong Chen, Wei Sun, Chaoyong Yang, Zhi Zhu. Scaling Up DNA Self-Assembly. ACS Applied Bio Materials 2020, 3 (5) , 2805-2815. https://doi.org/10.1021/acsabm.0c00035
  18. Xue Li, Donglei Yang, Bo Kou, Luyao Shen, Haofei Li, Pengfei Wang. Designer Structures Assembled from Modular DNA Superbricks. ACS Applied Bio Materials 2020, 3 (5) , 2850-2853. https://doi.org/10.1021/acsabm.9b01046
  19. Chunyang Zhou, Yanjun Yang, Haofei Li, Fei Gao, Chunyuan Song, Donglei Yang, Fan Xu, Na Liu, Yonggang Ke, Shao Su, Pengfei Wang. Programming Surface-Enhanced Raman Scattering of DNA Origami-templated Metamolecules. Nano Letters 2020, 20 (5) , 3155-3159. https://doi.org/10.1021/acs.nanolett.9b05161
  20. Weina Fang, Mo Xie, Xiaoling Hou, Xiaoguo Liu, Xiaolei Zuo, Jie Chao, Lianhui Wang, Chunhai Fan, Huajie Liu, Lihua Wang. DNA Origami Radiometers for Measuring Ultraviolet Exposure. Journal of the American Chemical Society 2020, 142 (19) , 8782-8789. https://doi.org/10.1021/jacs.0c01254
  21. Travis A. Meyer, Chuan Zhang, Gang Bao, Yonggang Ke. Programmable Assembly of Iron Oxide Nanoparticles Using DNA Origami. Nano Letters 2020, 20 (4) , 2799-2805. https://doi.org/10.1021/acs.nanolett.0c00484
  22. Sha Sun, Yuxuan Yang, Dongmin Li, Jin Zhu. Large Chiral Nanotubes Self-Assembled by DNA Bricks. Journal of the American Chemical Society 2019, 141 (50) , 19524-19528. https://doi.org/10.1021/jacs.9b08737
  23. Xiang Lan, Xu Zhou, Lauren A. McCarthy, Alexander O. Govorov, Yan Liu, Stephan Link. DNA-Enabled Chiral Gold Nanoparticle–Chromophore Hybrid Structure with Resonant Plasmon–Exciton Coupling Gives Unusual and Strong Circular Dichroism. Journal of the American Chemical Society 2019, 141 (49) , 19336-19341. https://doi.org/10.1021/jacs.9b08797
  24. Young-Joo Kim, Chanseok Lee, Jae Gyung Lee, Do-Nyun Kim. Configurational Design of Mechanical Perturbation for Fine Control of Twisted DNA Origami Structures. ACS Nano 2019, 13 (6) , 6348-6355. https://doi.org/10.1021/acsnano.9b01561
  25. Li Yu, Shota Shiraishi, Guoqing Wang, Yoshitsugu Akiyama, Tohru Takarada, Mizuo Maeda. Connecting Nanoparticles with Different Colloidal Stability by DNA for Programmed Anisotropic Self-Assembly. The Journal of Physical Chemistry C 2019, 123 (24) , 15293-15300. https://doi.org/10.1021/acs.jpcc.9b02863
  26. Mikael Madsen, Kurt V. Gothelf. Chemistries for DNA Nanotechnology. Chemical Reviews 2019, 119 (10) , 6384-6458. https://doi.org/10.1021/acs.chemrev.8b00570
  27. Jingjing Ye, Seham Helmi, Josephine Teske, Ralf Seidel. Fabrication of Metal Nanostructures with Programmable Length and Patterns Using a Modular DNA Platform. Nano Letters 2019, 19 (4) , 2707-2714. https://doi.org/10.1021/acs.nanolett.9b00740
  28. Guanyi Hou, Xiuyang Xia, Jun Liu, Wencai Wang, Mengjie Dong, Liqun Zhang. Designing Superlattice Structure via Self-Assembly of One-Component Polymer-Grafted Nanoparticles. The Journal of Physical Chemistry B 2019, 123 (9) , 2157-2168. https://doi.org/10.1021/acs.jpcb.8b11118
  29. Hyungmin Jun, Tyson R. Shepherd, Kaiming Zhang, William P. Bricker, Shanshan Li, Wah Chiu, Mark Bathe. Automated Sequence Design of 3D Polyhedral Wireframe DNA Origami with Honeycomb Edges. ACS Nano 2019, 13 (2) , 2083-2093. https://doi.org/10.1021/acsnano.8b08671
  30. Grigory Tikhomirov, Philip Petersen, Lulu Qian. Triangular DNA Origami Tilings. Journal of the American Chemical Society 2018, 140 (50) , 17361-17364. https://doi.org/10.1021/jacs.8b10609
  31. Baoqing Liu, Xuefei Lu, Ze Qiao, Liping Song, Qian Cheng, Jiawei Zhang, Afang Zhang, Youju Huang, Tao Chen. pH and Temperature Dual-Responsive Plasmonic Switches of Gold Nanoparticle Monolayer Film for Multiple Anticounterfeiting. Langmuir 2018, 34 (43) , 13047-13056. https://doi.org/10.1021/acs.langmuir.8b02989
  32. Yahong Chen, Guoliang Ke, Yanli Ma, Zhi Zhu, Minghui Liu, Yan Liu, Hao Yan, Chaoyong James Yang. A Synthetic Light-Driven Substrate Channeling System for Precise Regulation of Enzyme Cascade Activity Based on DNA Origami. Journal of the American Chemical Society 2018, 140 (28) , 8990-8996. https://doi.org/10.1021/jacs.8b05429
  33. Caroline D. Bösch, Jovana Jevric, Nutcha Bürki, Markus Probst, Simon M. Langenegger, Robert Häner. Supramolecular Assembly of DNA-Phenanthrene Conjugates into Vesicles with Light-Harvesting Properties. Bioconjugate Chemistry 2018, 29 (5) , 1505-1509. https://doi.org/10.1021/acs.bioconjchem.8b00263
  34. Fan Hong, Fei Zhang, Yan Liu, and Hao Yan . DNA Origami: Scaffolds for Creating Higher Order Structures. Chemical Reviews 2017, 117 (20) , 12584-12640. https://doi.org/10.1021/acs.chemrev.6b00825
  35. Ilenia Manuguerra, Guido Grossi, Rasmus P. Thomsen, Jeppe Lyngsø, Jan S. Pedersen, Jørgen Kjems, Ebbe S. Andersen, and Kurt V. Gothelf . Construction of a Polyhedral DNA 12-Arm Junction for Self-Assembly of Wireframe DNA Lattices. ACS Nano 2017, 11 (9) , 9041-9047. https://doi.org/10.1021/acsnano.7b03538
  36. Cheng Tian, Marco Aurelio L. Cordeiro, Julien Lhermitte, Huolin L. Xin, Lior Shani, Mingzhao Liu, Chunli Ma, Yosef Yeshurun, Donald DiMarzio, and Oleg Gang . Supra-Nanoparticle Functional Assemblies through Programmable Stacking. ACS Nano 2017, 11 (7) , 7036-7048. https://doi.org/10.1021/acsnano.7b02671
  37. Divita Mathur and Igor L. Medintz . Analyzing DNA Nanotechnology: A Call to Arms For The Analytical Chemistry Community. Analytical Chemistry 2017, 89 (5) , 2646-2663. https://doi.org/10.1021/acs.analchem.6b04033
  38. Pengfei Zhan, Palash K. Dutta, Pengfei Wang, Gang Song, Mingjie Dai, Shu-Xia Zhao, Zhen-Gang Wang, Peng Yin, Wei Zhang, Baoquan Ding, and Yonggang Ke . Reconfigurable Three-Dimensional Gold Nanorod Plasmonic Nanostructures Organized on DNA Origami Tripod. ACS Nano 2017, 11 (2) , 1172-1179. https://doi.org/10.1021/acsnano.6b06861
  39. Victoria E. Paluzzi, Cuizheng Zhang, Chengde Mao. Assembly of Two‐Dimensional DNA Arrays Could Influence the Formation of Their Component Tiles. ChemBioChem 2022, 20 https://doi.org/10.1002/cbic.202200306
  40. Rafał Kowerdziej, Antonio Ferraro, Dimitrios C. Zografopoulos, Roberto Caputo. Soft‐Matter‐Based Hybrid and Active Metamaterials. Advanced Optical Materials 2022, 2021 , 2200750. https://doi.org/10.1002/adom.202200750
  41. Judith Elizabeth Houston, Lisa Fruhner, Alexis de la Cotte, Javier Rojo González, Alexander Valerievich Petrunin, Urs Gasser, Ralf Schweins, Jürgen Allgaier, Walter Richtering, Alberto Fernandez-Nieves, Andrea Scotti. Resolving the different bulk moduli within individual soft nanogels using small-angle neutron scattering. Science Advances 2022, 8 (26) https://doi.org/10.1126/sciadv.abn6129
  42. Mo Xie, Yang Hu, Jue Yin, Ziwei Zhao, Jing Chen, Jie Chao. DNA Nanotechnology-Enabled Fabrication of Metal Nanomorphology. Research 2022, 2022 , 1-16. https://doi.org/10.34133/2022/9840131
  43. Xiao Wang, Shanshan Li, Hyungmin Jun, Torsten John, Kaiming Zhang, Hannah Fowler, Jonathan P.K. Doye, Wah Chiu, Mark Bathe. Planar 2D wireframe DNA origami. Science Advances 2022, 8 (20) https://doi.org/10.1126/sciadv.abn0039
  44. Pan‐Pan Sun, Bao‐Liang Han, Hong‐Guang Li, Cheng‐Kai Zhang, Xia Xin, Jian‐Min Dou, Zhi‐Yong Gao, Di Sun. Real‐Time Fluorescent Monitoring of Kinetically Controlled Supramolecular Self‐Assembly of Atom‐Precise Cu 8 Nanocluster. Angewandte Chemie 2022, 134 (20) https://doi.org/10.1002/ange.202200180
  45. Pan‐Pan Sun, Bao‐Liang Han, Hong‐Guang Li, Cheng‐Kai Zhang, Xia Xin, Jian‐Min Dou, Zhi‐Yong Gao, Di Sun. Real‐Time Fluorescent Monitoring of Kinetically Controlled Supramolecular Self‐Assembly of Atom‐Precise Cu 8 Nanocluster. Angewandte Chemie International Edition 2022, 61 (20) https://doi.org/10.1002/anie.202200180
  46. Yuki Suzuki. Capturing Structural Switching and Self‐Assembly Events Using High‐Speed Atomic Force Microscopy. 2022,,, 59-73. https://doi.org/10.1002/9781119682561.ch3
  47. Ignacio Insua, Julian Bergueiro, Alejandro Méndez-Ardoy, Irene Lostalé-Seijo, Javier Montenegro. Bottom-up supramolecular assembly in two dimensions. Chemical Science 2022, 13 (11) , 3057-3068. https://doi.org/10.1039/D1SC05667K
  48. Anivind Kaur Bindra, Sivaramapanicker Sreejith, Rajendra Prasad, Mahadeo Gorain, Rijil Thomas, Deblin Jana, Mui Hoon Nai, Dongdong Wang, Abhimanyu Tharayil, Gopal C. Kundu, Rohit Srivastava, Sabu Thomas, Chwee Teck Lim, Yanli Zhao. A Plasmonic Supramolecular Nanohybrid as a Contrast Agent for Site‐Selective Computed Tomography Imaging of Tumor. Advanced Functional Materials 2022, 32 (12) , 2110575. https://doi.org/10.1002/adfm.202110575
  49. Fengyu Liu, Xiaoming Liu, Qiang Huang, Tatsuo Arai. Recent Progress of Magnetically Actuated DNA Micro/Nanorobots. Cyborg and Bionic Systems 2022, 2022 , 1-12. https://doi.org/10.34133/2022/9758460
  50. Seungwoo Lee. Nanoparticle-on-mirror cavity: a historical view across nanophotonics and nanochemistry. Journal of the Korean Physical Society 2022, 82 https://doi.org/10.1007/s40042-022-00407-z
  51. Jason S. Kahn, Oleg Gang. Designer Nanomaterials through Programmable Assembly. Angewandte Chemie International Edition 2022, 61 (3) https://doi.org/10.1002/anie.202105678
  52. Jason S. Kahn, Oleg Gang. Designer Nanomaterials through Programmable Assembly. Angewandte Chemie 2022, 134 (3) https://doi.org/10.1002/ange.202105678
  53. Zhi Zhao, Yutao Han, Yan Liu. DNA origami enabled assembly of nanophotonic structures and their applications [Invited]. Optical Materials Express 2022, 12 (1) , 284. https://doi.org/10.1364/OME.446697
  54. Di Gao, Ningning Ma, Xuehui Yan, Min Ji, Jun-Jie Zhu, Qianhao Min, Ye Tian. Low-entropy lattices engineered through bridged DNA origami frames. Chemical Science 2021, 13 (1) , 283-289. https://doi.org/10.1039/D1SC05060E
  55. Aparna Murali, Giriraj Lokhande, Kaivalya A. Deo, Anna Brokesh, Akhilesh K. Gaharwar. Emerging 2D nanomaterials for biomedical applications. Materials Today 2021, 50 , 276-302. https://doi.org/10.1016/j.mattod.2021.04.020
  56. Ting-Uei Lee, Yan Chen, Michael T. Heitzmann, Joseph M. Gattas. Compliant curved-crease origami-inspired metamaterials with a programmable force-displacement response. Materials & Design 2021, 207 , 109859. https://doi.org/10.1016/j.matdes.2021.109859
  57. Tiantian Wei, Jingjing Wu, Xiran Shen, Zhifeng Qiu, Li Guo. Self-Assembled Membrane-like Nanomaterials from Sequence-Defined Peptoid Block Copolymers. Polymers 2021, 13 (15) , 2389. https://doi.org/10.3390/polym13152389
  58. Hanbin Xie. Dynamic Tunable Plasma-Induced Transparency of Periodic Images Of Graphene Nanoribbons. Journal of Physics: Conference Series 2021, 1986 (1) , 012006. https://doi.org/10.1088/1742-6596/1986/1/012006
  59. Lifeng Zhou, Arun Richard Chandrasekaran, Mengwen Yan, Vibhav A. Valsangkar, Jeremy I. Feldblyum, Jia Sheng, Ken Halvorsen. A mini DNA–RNA hybrid origami nanobrick. Nanoscale Advances 2021, 3 (14) , 4048-4051. https://doi.org/10.1039/D1NA00026H
  60. Renjie Niu, Chunyuan Song, Fei Gao, Weina Fang, Xinyu Jiang, Shaokang Ren, Dan Zhu, Shao Su, Jie Chao, Shufen Chen, Chunhai Fan, Lianhui Wang. DNA Origami‐Based Nanoprinting for the Assembly of Plasmonic Nanostructures with Single‐Molecule Surface‐Enhanced Raman Scattering. Angewandte Chemie International Edition 2021, 60 (21) , 11695-11701. https://doi.org/10.1002/anie.202016014
  61. Renjie Niu, Chunyuan Song, Fei Gao, Weina Fang, Xinyu Jiang, Shaokang Ren, Dan Zhu, Shao Su, Jie Chao, Shufen Chen, Chunhai Fan, Lianhui Wang. DNA Origami‐Based Nanoprinting for the Assembly of Plasmonic Nanostructures with Single‐Molecule Surface‐Enhanced Raman Scattering. Angewandte Chemie 2021, 133 (21) , 11801-11807. https://doi.org/10.1002/ange.202016014
  62. Jing-Ting Wu, Ran Liu, Yan-Ru Chen, Xiao-Qi Zheng, Zai-Sheng Wu. The hierarchical assembly of a multi-level DNA ring-based nanostructure in a precise order and its application for screening tumor cells. Biomaterials Science 2021, 9 (6) , 2262-2270. https://doi.org/10.1039/D0BM00085J
  63. Lizhi Dai, Peng Liu, Xiaoxue Hu, Xiaozhi Zhao, Guoqiang Shao, Ye Tian. DNA origami: an outstanding platform for functions in nanophotonics and cancer therapy. The Analyst 2021, 146 (6) , 1807-1819. https://doi.org/10.1039/D0AN02160A
  64. Ke Wang, Seong Hun Park, Jintao Zhu, Jung Kyu Kim, Lianbin Zhang, Gi‐Ra Yi. Self‐Assembled Colloidal Nanopatterns toward Unnatural Optical Meta‐Materials. Advanced Functional Materials 2021, 31 (12) , 2008246. https://doi.org/10.1002/adfm.202008246
  65. Daniel Fu, John Reif. 3D DNA Nanostructures: The Nanoscale Architect. Applied Sciences 2021, 11 (6) , 2624. https://doi.org/10.3390/app11062624
  66. Johannes M. Parikka, Karolina Sokołowska, Nemanja Markešević, J. Jussi Toppari. Constructing Large 2D Lattices Out of DNA-Tiles. Molecules 2021, 26 (6) , 1502. https://doi.org/10.3390/molecules26061502
  67. Mirza Muhammad Faran Ashraf Baig, Ting Zou, Prasanna Neelakantan, Chengfei Zhang. Development and functionalization of DNA nanostructures for biomedical applications. Journal of the Chinese Chemical Society 2021, 68 (2) , 228-238. https://doi.org/10.1002/jccs.202000373
  68. Joshua Bush, Chih-Hsiang Hu, Remi Veneziano. Mechanical Properties of DNA Hydrogels: Towards Highly Programmable Biomaterials. Applied Sciences 2021, 11 (4) , 1885. https://doi.org/10.3390/app11041885
  69. Yun Zeng, Rachel L. Nixon, Wenyan Liu, Risheng Wang. The applications of functionalized DNA nanostructures in bioimaging and cancer therapy. Biomaterials 2021, 268 , 120560. https://doi.org/10.1016/j.biomaterials.2020.120560
  70. Wei-Hung Jung, Enze Chen, Remi Veneziano, Stavros Gaitanaros, Yun Chen. Stretching DNA origami: effect of nicks and Holliday junctions on the axial stiffness. Nucleic Acids Research 2020, 48 (21) , 12407-12414. https://doi.org/10.1093/nar/gkaa985
  71. Ji‐Hyeok Huh, Kwangjin Kim, Eunji Im, Jaewon Lee, YongDeok Cho, Seungwoo Lee. Exploiting Colloidal Metamaterials for Achieving Unnatural Optical Refractions. Advanced Materials 2020, 32 (51) , 2001806. https://doi.org/10.1002/adma.202001806
  72. Yixin Chen, Bin Ai, Zi Jing Wong. Soft optical metamaterials. Nano Convergence 2020, 7 (1) https://doi.org/10.1186/s40580-020-00226-7
  73. Carina Karner, Felix Müller, Emanuela Bianchi. A Matter of Size and Placement: Varying the Patch Size of Anisotropic Patchy Colloids. International Journal of Molecular Sciences 2020, 21 (22) , 8621. https://doi.org/10.3390/ijms21228621
  74. Shiyun Liu, Satoshi Murata, Ibuki Kawamata. DNA Ring Motif with Flexible Joints. Micromachines 2020, 11 (11) , 987. https://doi.org/10.3390/mi11110987
  75. Guangbao Yao, Fei Zhang, Fei Wang, Tianhuan Peng, Hao Liu, Erik Poppleton, Petr Šulc, Shuoxing Jiang, Lan Liu, Chen Gong, Xinxin Jing, Xiaoguo Liu, Lihua Wang, Yan Liu, Chunhai Fan, Hao Yan. Meta-DNA structures. Nature Chemistry 2020, 12 (11) , 1067-1075. https://doi.org/10.1038/s41557-020-0539-8
  76. Xuehui Yan, Shujing Huang, Yong Wang, Yuanyuan Tang, Ye Tian. Bottom-Up Self-Assembly Based on DNA Nanotechnology. Nanomaterials 2020, 10 (10) , 2047. https://doi.org/10.3390/nano10102047
  77. Kosti Tapio, Ilko Bald. The potential of DNA origami to build multifunctional materials. Multifunctional Materials 2020, 3 (3) , 032001. https://doi.org/10.1088/2399-7532/ab80d5
  78. Luyao Shen, Victor Pan, Haofei Li, Yunlong Zhang, Pengfei Wang, Yonggang Ke. Programmable assembly of gold nanoparticle nanoclusters and lattices. Journal of Materials Chemistry B 2020, 8 (31) , 6810-6813. https://doi.org/10.1039/D0TB00807A
  79. Mirza Muhammad Faran Ashraf Baig, Wing-Fu Lai, Muhammad Furqan Akhtar, Ammara Saleem, Saud Asif Ahmed, Xing-Hua Xia. DNA nanotechnology as a tool to develop molecular tension probes for bio-sensing and bio-imaging applications: An up-to-date review. Nano-Structures & Nano-Objects 2020, 23 , 100523. https://doi.org/10.1016/j.nanoso.2020.100523
  80. Shuoxing Jiang, Fei Zhang, Hao Yan. Complex assemblies and crystals guided by DNA. Nature Materials 2020, 19 (7) , 694-700. https://doi.org/10.1038/s41563-020-0719-3
  81. Young-Youb Kim, Yongbin Bang, Dayoung Lee, Mingyu Kang, Yoon-Kyu Song. Step-growth polymerization of traptavidin-DNA conjugates for plasmonic nanostructures. Chinese Chemical Letters 2020, 31 (5) , 1137-1140. https://doi.org/10.1016/j.cclet.2019.07.008
  82. Mingyang Wang, Lizhi Dai, Jialin Duan, Zhiyuan Ding, Peng Wang, Zheng Li, Hang Xing, Ye Tian. Programmable Assembly of Nano‐architectures through Designing Anisotropic DNA Origami Patches. Angewandte Chemie 2020, 132 (16) , 6451-6458. https://doi.org/10.1002/ange.201913958
  83. Mingyang Wang, Lizhi Dai, Jialin Duan, Zhiyuan Ding, Peng Wang, Zheng Li, Hang Xing, Ye Tian. Programmable Assembly of Nano‐architectures through Designing Anisotropic DNA Origami Patches. Angewandte Chemie International Edition 2020, 59 (16) , 6389-6396. https://doi.org/10.1002/anie.201913958
  84. Xue Li, Donglei Yang, Luyao Shen, Fan Xu, Pengfei Wang. Programmable Assembly of DNA-protein Hybrid Structures. Chemical Research in Chinese Universities 2020, 36 (2) , 211-218. https://doi.org/10.1007/s40242-019-0038-x
  85. Yang Yang, Rui Zhang, Chunhai Fan. Shaping Functional Materials with DNA Frameworks. Trends in Chemistry 2020, 2 (2) , 137-147. https://doi.org/10.1016/j.trechm.2019.11.005
  86. Jie Gao, Jie Zhan, Zhimou Yang. Enzyme‐Instructed Self‐Assembly (EISA) and Hydrogelation of Peptides. Advanced Materials 2020, 32 (3) , 1805798. https://doi.org/10.1002/adma.201805798
  87. Laure‐Elie Carloni, C. Grazia Bezzu, Davide Bonifazi. Patterning Porous Networks through Self‐Assembly of Programmed Biomacromolecules. Chemistry – A European Journal 2019, 25 (71) , 16179-16200. https://doi.org/10.1002/chem.201902576
  88. Amelie Heuer-Jungemann, Tim Liedl. From DNA Tiles to Functional DNA Materials. Trends in Chemistry 2019, 1 (9) , 799-814. https://doi.org/10.1016/j.trechm.2019.07.006
  89. Xiaoyuan Zhang, Coucong Gong, Ozioma Udochukwu Akakuru, Zhiqiang Su, Aiguo Wu, Gang Wei. The design and biomedical applications of self-assembled two-dimensional organic biomaterials. Chemical Society Reviews 2019, 48 (23) , 5564-5595. https://doi.org/10.1039/C8CS01003J
  90. Shuo Yang, Wenyan Liu, Risheng Wang. Control of the stepwise assembly–disassembly of DNA origami nanoclusters by pH stimuli-responsive DNA triplexes. Nanoscale 2019, 11 (39) , 18026-18030. https://doi.org/10.1039/C9NR05047G
  91. Andrea D. Merg, Gavin Touponse, Eric van Genderen, Xiaobing Zuo, Alisina Bazrafshan, Thorsten Blum, Spencer Hughes, Khalid Salaita, Jan Pieter Abrahams, Vincent P. Conticello. 2D Crystal Engineering of Nanosheets Assembled from Helical Peptide Building Blocks. Angewandte Chemie 2019, 131 (38) , 13641-13646. https://doi.org/10.1002/ange.201906214
  92. Andrea D. Merg, Gavin Touponse, Eric van Genderen, Xiaobing Zuo, Alisina Bazrafshan, Thorsten Blum, Spencer Hughes, Khalid Salaita, Jan Pieter Abrahams, Vincent P. Conticello. 2D Crystal Engineering of Nanosheets Assembled from Helical Peptide Building Blocks. Angewandte Chemie International Edition 2019, 58 (38) , 13507-13512. https://doi.org/10.1002/anie.201906214
  93. Shaokang Ren, Jun Wang, Chunyuan Song, Qian Li, Yanjun Yang, Nan Teng, Shao Su, Dan Zhu, Wei Huang, Jie Chao, Lianhui Wang, Chunhai Fan. Single-Step Organization of Plasmonic Gold Metamaterials with Self-Assembled DNA Nanostructures. Research 2019, 2019 , 1-10. https://doi.org/10.34133/2019/7403580
  94. Pengfei Wang, Ji‐Hyeok Huh, Jaewon Lee, Kwangjin Kim, Kyung Jin Park, Seungwoo Lee, Yonggang Ke. Magnetic Plasmon Networks Programmed by Molecular Self‐Assembly. Advanced Materials 2019, 31 (29) , 1901364. https://doi.org/10.1002/adma.201901364
  95. Xiaoguo Liu, Yan Zhao, Pi Liu, Lihua Wang, Jianping Lin, Chunhai Fan. Biomimetische DNA‐Nanoröhren: Gezielte Synthese und Anwendung nanoskopischer Kanäle. Angewandte Chemie 2019, 131 (27) , 9092-9108. https://doi.org/10.1002/ange.201807779
  96. Xiaoguo Liu, Yan Zhao, Pi Liu, Lihua Wang, Jianping Lin, Chunhai Fan. Biomimetic DNA Nanotubes: Nanoscale Channel Design and Applications. Angewandte Chemie International Edition 2019, 58 (27) , 8996-9011. https://doi.org/10.1002/anie.201807779
  97. Yan Zhao, Xinpei Dai, Fei Wang, Xueli Zhang, Chunhai Fan, Xiaoguo Liu. Nanofabrication based on DNA nanotechnology. Nano Today 2019, 26 , 123-148. https://doi.org/10.1016/j.nantod.2019.03.004
  98. Qingkun Liu, Anton Kuzyk, Masayuki Endo, Ivan I. Smalyukh. Colloidal plasmonic DNA-origami with photo-switchable chirality in liquid crystals. Optics Letters 2019, 44 (11) , 2831. https://doi.org/10.1364/OL.44.002831
  99. Makoto Naruse, Satoshi Ishii, Jean-Francois Motte, Aurélien Drezet, Serge Huant, Hirokazu Hori. Unidirectional light transmiission by two-layer nanostructures interacting via optical near-fields. Applied Physics Express 2019, 12 (2) , 022007. https://doi.org/10.7567/1882-0786/aafca0
  100. SeokJae Yoo, Q-Han Park. Metamaterials and chiral sensing: a review of fundamentals and applications. Nanophotonics 2019, 8 (2) , 249-261. https://doi.org/10.1515/nanoph-2018-0167
Load all citations

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE