Mechanism-Based Development of a Low-Potential, Soluble, and Cyclable Multielectron Anolyte for Nonaqueous Redox Flow BatteriesClick to copy article linkArticle link copied!
Abstract

The development of nonaqueous redox flow batteries (NRFBs) has been impeded by a lack of electroactive compounds (anolytes and catholytes) with the necessary combination of (1) redox potentials that exceed the potential limits of water, (2) high solubility in nonaqueous media, and (3) high stability toward electrochemical cycling. In addition, ideal materials would maintain all three of these properties over multiple electron transfer events, thereby providing a proportional increase in storage capacity. This paper describes the mechanism-based design of a new class of metal-coordination complexes (MCCs) as anolytes for NRFBs. The tridentate bipyridylimino isoindoline (BPI) ligands of these complexes were designed to enable multielectron redox events. These molecules were optimized using a combination of systematic variation of the BPI ligand and the metal center along with mechanistic investigations of the decomposition pathways that occur during electrochemical cycling. Ultimately, these studies led to the identification of nickel BPI complexes that could undergo stable charge-discharge cycling (<5% capacity loss over 200 cycles) as well as a derivative that possesses the previously unprecedented combination of high solubility (>700 mM in CH3CN), multiple electron transfers at low redox potentials (–1.7 and –1.9 V versus Ag/Ag+), and high stability in the charged state for days at high concentration. Overall, the studies described herein have enabled the identification of a promising anolyte candidate for NRFBs and have also provided key insights into chemical design principles for future classes of MCC-based anolytes.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 103 publications.
- Stanislava Majerová, Tomáš Chlupatý, Maksim A. Samsonov, Josef Cvačka, Eliška Procházková, Aleš Růžička. Addition of Lithium Silylamides to 1,2-Dicyanobenzene: Isoindoline-1,3-diimine Derivatives Investigated by NMR/XRD/DFT Approach. Inorganic Chemistry 2025, 64
(15)
, 7592-7606. https://doi.org/10.1021/acs.inorgchem.5c00573
- Kate A. Jesse, Sergio Diaz Abad, Chad Studvick, Gabriel A. Andrade, Sandip Maurya, Brian L. Scott, Rangachary Mukundan, Ivan A. Popov, Benjamin L. Davis. Impact of Pendent Ammonium Groups on Solubility and Cycling Charge Carrier Performance in Nonaqueous Redox Flow Batteries. Inorganic Chemistry 2023, 62
(47)
, 19218-19229. https://doi.org/10.1021/acs.inorgchem.3c02396
- Yichao Yan, Leyuan Zhang, Ryan Walser-Kuntz, David B. Vogt, Matthew S. Sigman, Guihua Yu, Melanie S. Sanford. Benzotriazoles as Low-Potential Anolytes for Non-aqueous Redox Flow Batteries. Chemistry of Materials 2022, 34
(23)
, 10594-10605. https://doi.org/10.1021/acs.chemmater.2c02682
- Md. Motiur R. Mazumder, Niharika Dalpati, P. Raj Pokkuluri, Byron H. Farnum. Zinc-Catalyzed Two-Electron Nickel(IV/II) Redox Couple for Multi-Electron Storage in Redox Flow Batteries. Inorganic Chemistry 2022, 61
(48)
, 19039-19048. https://doi.org/10.1021/acs.inorgchem.2c03124
- Yichao Yan, Ryan Walser-Kuntz, Melanie S. Sanford. Targeted Optimization of Phenoxazine Redox Center for Nonaqueous Redox Flow Batteries. ACS Materials Letters 2022, 4
(4)
, 733-739. https://doi.org/10.1021/acsmaterialslett.2c00050
- Xiao Wang, Jingchao Chai, Shu Zhang, Bingbing Chen, Ashwin Chaturvedi, Guanglei Cui, Jianbing Jimmy Jiang. Insights into Indigo K+ Association in a Half-Slurry Flow Battery. ACS Energy Letters 2022, 7
(3)
, 1178-1186. https://doi.org/10.1021/acsenergylett.2c00165
- Jordan L. S. Zackasee, Samir Al Zubaydi, Blaise L. Truesdell, Christo S. Sevov. Synergistic Catalyst–Mediator Pairings for Electroreductive Cross-Electrophile Coupling Reactions. ACS Catalysis 2022, 12
(2)
, 1161-1166. https://doi.org/10.1021/acscatal.1c05144
- Bin Liu, Chun Wai Tang, Fu Kit Sheong, Guochen Jia, Tianshou Zhao. Artificial Bipolar Redox-Active Molecule for Symmetric Nonaqueous Redox Flow Batteries. ACS Sustainable Chemistry & Engineering 2022, 10
(1)
, 613-621. https://doi.org/10.1021/acssuschemeng.1c07190
- Yichao Yan, Sophia G. Robinson, Thomas P. Vaid, Matthew S. Sigman, Melanie S. Sanford. Simultaneously Enhancing the Redox Potential and Stability of Multi-Redox Organic Catholytes by Incorporating Cyclopropenium Substituents. Journal of the American Chemical Society 2021, 143
(33)
, 13450-13459. https://doi.org/10.1021/jacs.1c07237
- Bin Liu, Chun Wai Tang, Haoran Jiang, Guochen Jia, Tianshou Zhao. Carboxyl-Functionalized TEMPO Catholyte Enabling High-Cycling-Stability and High-Energy-Density Aqueous Organic Redox Flow Batteries. ACS Sustainable Chemistry & Engineering 2021, 9
(18)
, 6258-6265. https://doi.org/10.1021/acssuschemeng.0c08946
- Jonghoon Choi, Sun Hee Kim, Yunho Lee. Axial Redox Tuning at a Tetragonal Cobalt Center. Inorganic Chemistry 2021, 60
(8)
, 5647-5659. https://doi.org/10.1021/acs.inorgchem.0c03676
- Curt M. Wong, Christo S. Sevov. All-Organic Storage Solids and Redox Shuttles for Redox-Targeting Flow Batteries. ACS Energy Letters 2021, 6
(4)
, 1271-1279. https://doi.org/10.1021/acsenergylett.1c00143
- Bin Liu, Chun Wai Tang, Cheng Zhang, Guochen Jia, Tianshou Zhao. Cost-Effective, High-Energy-Density, Nonaqueous Nitrobenzene Organic Redox Flow Battery. Chemistry of Materials 2021, 33
(3)
, 978-986. https://doi.org/10.1021/acs.chemmater.0c04118
- Jeremy D. Griffin, Adam R. Pancoast, Matthew S. Sigman. Interrogation of 2,2′-Bipyrimidines as Low-Potential Two-Electron Electrolytes. Journal of the American Chemical Society 2021, 143
(2)
, 992-1004. https://doi.org/10.1021/jacs.0c11267
- Amela Arnold, Ryan J. Dougherty, Cody R. Carr, Lauren C. Reynolds, James C. Fettinger, Anthony Augustin, Louise A. Berben. A Stable Organo-Aluminum Analyte Enables Multielectron Storage for a Nonaqueous Redox Flow Battery. The Journal of Physical Chemistry Letters 2020, 11
(19)
, 8202-8207. https://doi.org/10.1021/acs.jpclett.0c01761
- Jisu Back, Giyun Kwon, Jung Eun Byeon, Hayoung Song, Kisuk Kang, Eunsung Lee. Tunable Redox-Active Triazenyl–Carbene Platforms: A New Class of Anolytes for Non-Aqueous Organic Redox Flow Batteries. ACS Applied Materials & Interfaces 2020, 12
(33)
, 37338-37345. https://doi.org/10.1021/acsami.0c09400
- Blaise L. Truesdell, Taylor B. Hamby, Christo S. Sevov. General C(sp2)–C(sp3) Cross-Electrophile Coupling Reactions Enabled by Overcharge Protection of Homogeneous Electrocatalysts. Journal of the American Chemical Society 2020, 142
(12)
, 5884-5893. https://doi.org/10.1021/jacs.0c01475
- Jingchao Chai Amir Lashgari Jianbing “Jimmy” Jiang . Electroactive Materials for Next-Generation Redox Flow Batteries: From Inorganic to Organic. 2020, 1-47. https://doi.org/10.1021/bk-2020-1364.ch001
- Jian Luo, Bo Hu, Maowei Hu, Yu Zhao, T. Leo Liu. Status and Prospects of Organic Redox Flow Batteries toward Sustainable Energy Storage. ACS Energy Letters 2019, 4
(9)
, 2220-2240. https://doi.org/10.1021/acsenergylett.9b01332
- John L. Barton, Alex I. Wixtrom, Jeffrey A. Kowalski, Elaine A. Qian, Dahee Jung, Fikile R. Brushett, Alexander M. Spokoyny. Perfunctionalized Dodecaborate Clusters as Stable Metal-Free Active Materials for Charge Storage. ACS Applied Energy Materials 2019, 2
(7)
, 4907-4913. https://doi.org/10.1021/acsaem.9b00610
- Jitendrasingh Rajpurohit, Apoorva Upadhyay, Chinmoy Das, Richa Dubey, Shefali Vaidya, Vinoth Krishnan, Ashutosh Kumar, Maheswaran Shanmugam. Unusual Methylenediolate Bridged Hexanuclear Ruthenium(III) Complexes: Syntheses and Their Application. Inorganic Chemistry 2018, 57
(23)
, 14967-14982. https://doi.org/10.1021/acs.inorgchem.8b02780
- Ivan A. Popov, Nada Mehio, Terry Chu, Benjamin L. Davis, Rangachary Mukundan, Ping Yang, Enrique R. Batista. Impact of Ligand Substitutions on Multielectron Redox Properties of Fe Complexes Supported by Nitrogenous Chelates. ACS Omega 2018, 3
(11)
, 14766-14778. https://doi.org/10.1021/acsomega.8b01921
- Raymond
A. Wong, Yasuyuki Yokota, Mitsuru Wakisaka, Junji Inukai, Yousoo Kim. Discerning the Redox-Dependent Electronic and Interfacial Structures in Electroactive Self-Assembled Monolayers. Journal of the American Chemical Society 2018, 140
(42)
, 13672-13679. https://doi.org/10.1021/jacs.8b05885
- Tim Storr, Rabindranath Mukherjee. Preface for the Forum on Applications of Metal Complexes with Ligand-Centered Radicals. Inorganic Chemistry 2018, 57
(16)
, 9577-9579. https://doi.org/10.1021/acs.inorgchem.8b02171
- Hongning Chen, Yucun Zhou, Yi-Chun Lu. Lithium–Organic Nanocomposite Suspension for High-Energy-Density Redox Flow Batteries. ACS Energy Letters 2018, 3
(8)
, 1991-1997. https://doi.org/10.1021/acsenergylett.8b01257
- Anitha S. Gowda, Jeffrey L. Petersen, and Carsten Milsmann . Redox Chemistry of Bis(pyrrolyl)pyridine Chromium and Molybdenum Complexes: An Experimental and Density Functional Theoretical Study. Inorganic Chemistry 2018, 57
(4)
, 1919-1934. https://doi.org/10.1021/acs.inorgchem.7b02809
- Julia M. Stauber, Shiyu Zhang, Nataliya Gvozdik, Yanfeng Jiang, Laura Avena, Keith J. Stevenson, and Christopher C. Cummins . Cobalt and Vanadium Trimetaphosphate Polyanions: Synthesis, Characterization, and Electrochemical Evaluation for Non-aqueous Redox-Flow Battery Applications. Journal of the American Chemical Society 2018, 140
(2)
, 538-541. https://doi.org/10.1021/jacs.7b08751
- Margarita Milton, Qian Cheng, Yuan Yang, Colin Nuckolls, Raúl Hernández Sánchez, and Thomas J. Sisto . Molecular Materials for Nonaqueous Flow Batteries with a High Coulombic Efficiency and Stable Cycling. Nano Letters 2017, 17
(12)
, 7859-7863. https://doi.org/10.1021/acs.nanolett.7b04131
- Christo S. Sevov, Koen H. Hendriks, and Melanie S. Sanford . Low-Potential Pyridinium Anolyte for Aqueous Redox Flow Batteries. The Journal of Physical Chemistry C 2017, 121
(44)
, 24376-24380. https://doi.org/10.1021/acs.jpcc.7b06247
- Koen H. Hendriks, Christo S. Sevov, Monique E. Cook, and Melanie S. Sanford . Multielectron Cycling of a Low-Potential Anolyte in Alkali Metal Electrolytes for Nonaqueous Redox Flow Batteries. ACS Energy Letters 2017, 2
(10)
, 2430-2435. https://doi.org/10.1021/acsenergylett.7b00559
- Xiaoliang Wei, Wenxiao Pan, Wentao Duan, Aaron Hollas, Zheng Yang, Bin Li, Zimin Nie, Jun Liu, David Reed, Wei Wang, and Vincent Sprenkle . Materials and Systems for Organic Redox Flow Batteries: Status and Challenges. ACS Energy Letters 2017, 2
(9)
, 2187-2204. https://doi.org/10.1021/acsenergylett.7b00650
- Safwan Aroua, Tanya K. Todorova, Paul Hommes, Lise-Marie Chamoreau, Hans-Ulrich Reissig, Victor Mougel, and Marc Fontecave . Synthesis, Characterization, and DFT Analysis of Bis-Terpyridyl-Based Molecular Cobalt Complexes. Inorganic Chemistry 2017, 56
(10)
, 5930-5940. https://doi.org/10.1021/acs.inorgchem.7b00595
- Wentao Duan, Jinhua Huang, Jeffrey A. Kowalski, Ilya A. Shkrob, M. Vijayakumar, Eric Walter, Baofei Pan, Zheng Yang, Jarrod D. Milshtein, Bin Li, Chen Liao, Zhengcheng Zhang, Wei Wang, Jun Liu, Jeffery S. Moore, Fikile R. Brushett, Lu Zhang, and Xiaoliang Wei . “Wine-Dark Sea” in an Organic Flow Battery: Storing Negative Charge in 2,1,3-Benzothiadiazole Radicals Leads to Improved Cyclability. ACS Energy Letters 2017, 2
(5)
, 1156-1161. https://doi.org/10.1021/acsenergylett.7b00261
- Ryan B. Gaynor, William E. Shy, Emily B. Williams, Omri O. Parks, Nicole E. Ingram, Sidney E. Creutz. Steric Tuning of Spin States and Redox Potentials in Tris(imidazole) Triazacyclononane Complexes of Fe
2+/3+
and Co
2+/3+. European Journal of Inorganic Chemistry 2025, 28
(11)
https://doi.org/10.1002/ejic.202400739
- Bin Tang, Fan Zhang. Fourier Transform Infrared Spectroscopy. 2025, 419-446. https://doi.org/10.1002/9783527834679.ch17
- Antonio I. Nicasio, Rosie J. Somerville, Pablo Sahagún, Enrique Soto, Joaquín López-Serrano, Jesús Campos. Carbon–carbon bond formation and cleavage at redox active bis(pyridylimino)isoindole (BPI) germylene compounds. Dalton Transactions 2025, 54
(7)
, 3039-3046. https://doi.org/10.1039/D4DT03489A
- Jiahui Yang, Wei Wei, Chengxi Zhou, Hui Yan, Hangxin Che, Leiduan Hao, Xinyi Tan, Alex W. Robertson, Tai‐Sing Wu, Yun‐Liang Soo, Ao Tang, Zhenyu Sun. High‐Stable All‐Iron Redox Flow Battery with Innovative Anolyte based on Steric Hindrance Regulation. Angewandte Chemie 2025, 137
(2)
https://doi.org/10.1002/ange.202414452
- Jiahui Yang, Wei Wei, Chengxi Zhou, Hui Yan, Hangxin Che, Leiduan Hao, Xinyi Tan, Alex W. Robertson, Tai‐Sing Wu, Yun‐Liang Soo, Ao Tang, Zhenyu Sun. High‐Stable All‐Iron Redox Flow Battery with Innovative Anolyte based on Steric Hindrance Regulation. Angewandte Chemie International Edition 2025, 64
(2)
https://doi.org/10.1002/anie.202414452
- Bin Liu, Yiju Li, Guocheng Jia, Tianshou Zhao. Recent Advances in Redox Flow Batteries Employing Metal Coordination Complexes as Redox-Active Species. Electrochemical Energy Reviews 2024, 7
(1)
https://doi.org/10.1007/s41918-023-00205-6
- Long P. Dinh, Hunter F. Starbuck, Taylor B. Hamby, Matthew J. LaLama, Cyndi Q. He, Dipannita Kalyani, Christo S. Sevov. Persistent organonickel complexes as general platforms for Csp2–Csp3 coupling reactions. Nature Chemistry 2024, 16
(9)
, 1515-1522. https://doi.org/10.1038/s41557-024-01528-7
- Arpan Das, Sukanta Saha, Subir Maji, Pallavi Sarkar, Anex Jose, Madhur Mahesh Bhatt, Anup Bhunia, Arnab Dutta, Swapan K. Pati, Swadhin K. Mandal. Highly Stable Self‐Regenerating Organic Multi‐Redox Systems derived from Bicyclic (Alkyl)(amino)carbenes (BICAACs). Chemistry – A European Journal 2024, 30
(26)
https://doi.org/10.1002/chem.202303411
- Muhammad Mansha, Aqsa Anam, Safyan Akram Khan, Atif Saeed Alzahrani, Majad Khan, Aziz Ahmad, Muhammad Arshad, Shahid Ali. Recent Developments on Electroactive Organic Electrolytes for Non‐Aqueous Redox Flow Batteries: Current Status, Challenges, and Prospects. The Chemical Record 2024, 24
(1)
https://doi.org/10.1002/tcr.202300233
- Rajeev K. Gautam, Xiao Wang, Amir Lashgari, Soumalya Sinha, Jack McGrath, Rabin Siwakoti, Jianbing “Jimmy” Jiang. Development of high-voltage and high-energy membrane-free nonaqueous lithium-based organic redox flow batteries. Nature Communications 2023, 14
(1)
https://doi.org/10.1038/s41467-023-40374-y
- Xiao Wang, Amir Lashgari, Rabin Siwakoti, Rajeev K. Gautam, Jack J. McGrath, Prasenjit Sarkar, Grace Naber, Jingchao Chai, Jianbing Jimmy Jiang. Tetrathiafulvalene (TTF) derivatives as catholytes for dual-type redox flow batteries: molecular engineering enables high energy density and cyclability. Journal of Materials Chemistry A 2023, 11
(35)
, 19056-19065. https://doi.org/10.1039/D3TA03606E
- Jonas O. Wenzel, Israel Fernández, Frank Breher. Synthesis and Characterization of Bis(pyridylimino)isoindolide Alkali Metal Complexes in Three Redox States. European Journal of Inorganic Chemistry 2023, 26
(24)
https://doi.org/10.1002/ejic.202300315
- Maite Nößler, René Jäger, David Hunger, Marc Reimann, Tobias Bens, Nicolás I. Neuman, Arijit Singha Hazari, Martin Kaupp, Joris van Slageren, Biprajit Sarkar. Electrochemistry and Spin‐Crossover Behavior of Fluorinated Terpyridine‐Based Co(II) and Fe(II) Complexes. European Journal of Inorganic Chemistry 2023, 26
(19)
https://doi.org/10.1002/ejic.202300091
- Bin Liu, Chun Wai Tang, Wei Wei, Cheng Zhang, Guochen Jia, Tianshou Zhao. Developing terpyridine-based metal complexes for non-aqueous redox flow batteries. Energy Storage Materials 2023, 60 , 102808. https://doi.org/10.1016/j.ensm.2023.102808
- Yang Cheng, Qingqing Yang, Jiang He, Wenjie Zou, Keyu Liao, Xiaoyong Chang, Chao Zou, Wei Lu. The energy gap law for NIR-phosphorescent Cr(
iii
) complexes. Dalton Transactions 2023, 52
(9)
, 2561-2565. https://doi.org/10.1039/D2DT02872G
- Hayoung Song, Eunsung Lee. Design strategy for redox-active organic materials derived from N-heterocyclic carbenes. Trends in Chemistry 2023, 5
(2)
, 112-115. https://doi.org/10.1016/j.trechm.2022.10.010
- Benjamin D. Silcox, Curt M. Wong, Xiaoliang Wei, Christo Sevov, Levi T. Thompson. Metal Coordination Complexes for Flow Batteries. 2023, 923-949. https://doi.org/10.1002/9783527832767.ch41
- Luana Cardinale, Shannon S. Stahl, Dipannita Kalyani, Dan Lehnherr. Overview of outer-sphere electron transfer mediators for electrosynthesis. 2023, 57-102. https://doi.org/10.1016/bs.acat.2023.07.009
- Leyuan Zhang, Ruozhu Feng, Wei Wang, Guihua Yu. Emerging chemistries and molecular designs for flow batteries. Nature Reviews Chemistry 2022, 6
(8)
, 524-543. https://doi.org/10.1038/s41570-022-00394-6
- Tao Liu, Jiashu Yuan, Yihan Zhen, Cuijuan Zhang, Yongdan Li. Porous poly(vinylidene fluoride) (PVDF) membrane with 2D vermiculite nanosheets modification for non-aqueous redox flow batteries. Journal of Membrane Science 2022, 651 , 120468. https://doi.org/10.1016/j.memsci.2022.120468
- Lina Qiu, Jin Tian, Weiwei Zhang, Aijun Gong, Weiyu Zhao. Study on enzyme activity inhibition mechanism of
Thiobacillus denitrification
intracellular enzyme to sulfate-reducing bacteria intracellular enzyme. Anti-Corrosion Methods and Materials 2022, 69
(3)
, 312-330. https://doi.org/10.1108/ACMM-01-2021-2425
- Ziming Zhao, Changkun Zhang, Xianfeng Li. Opportunities and challenges of organic flow battery for electrochemical energy storage technology. Journal of Energy Chemistry 2022, 67 , 621-639. https://doi.org/10.1016/j.jechem.2021.10.037
- Claudina X. Kolesnichenko, Harry D. Pratt, Leo J. Small, Travis M. Anderson. Elucidating Instabilities Contributing to Capacity Fade in Bipyridine‐Based Materials for Non‐aqueous Flow Batteries. ChemElectroChem 2022, 9
(6)
https://doi.org/10.1002/celc.202101490
- Grzegorz Lota, Małgorzata Graś-Ligocka, Łukasz Kolanowski, Katarzyna Lota. Flow Batteries: Recent Advancement and Challenges. 2022, 1-21. https://doi.org/10.1007/978-981-16-4480-1_50-1
- Bertrand J. Neyhouse, Fikile R. Brushett. From the Synthesis Vial to the Full Cell: Electrochemical Methods for Characterizing Active Materials for Redox Flow Batteries. 2022, 453-465. https://doi.org/10.1016/B978-0-12-819723-3.00058-5
- Yichao Yan, David B. Vogt, Thomas P. Vaid, Matthew S. Sigman, Melanie S. Sanford. Development of High Energy Density Diaminocyclopropenium‐Phenothiazine Hybrid Catholytes for Non‐Aqueous Redox Flow Batteries. Angewandte Chemie 2021, 133
(52)
, 27245-27251. https://doi.org/10.1002/ange.202111939
- Yichao Yan, David B. Vogt, Thomas P. Vaid, Matthew S. Sigman, Melanie S. Sanford. Development of High Energy Density Diaminocyclopropenium‐Phenothiazine Hybrid Catholytes for Non‐Aqueous Redox Flow Batteries. Angewandte Chemie International Edition 2021, 60
(52)
, 27039-27045. https://doi.org/10.1002/anie.202111939
- Abhiroop Mishra, Zachary T. Gossage, Dipobrato Sarbapalli, Yuanya Zhao, Joaquín Rodríguez‐López. Methods and Instrumentation in Energy Storage. 2021, 1-47. https://doi.org/10.1002/9783527610426.bard030111
- Benjoe Rey B. Visayas, Shyam K. Pahari, Tugba Ceren Gokoglan, James A. Golen, Ertan Agar, Patrick J. Cappillino, Maricris L. Mayes. Computational and experimental investigation of the effect of cation structure on the solubility of anionic flow battery active-materials. Chemical Science 2021, 12
(48)
, 15892-15907. https://doi.org/10.1039/D1SC04990A
- Xiang Li, Peiyuan Gao, Yun-Yu Lai, J. David Bazak, Aaron Hollas, Heng-Yi Lin, Vijayakumar Murugesan, Shuyuan Zhang, Chung-Fu Cheng, Wei-Yao Tung, Yueh-Ting Lai, Ruozhu Feng, Jin Wang, Chien-Lung Wang, Wei Wang, Yu Zhu. Symmetry-breaking design of an organic iron complex catholyte for a long cyclability aqueous organic redox flow battery. Nature Energy 2021, 6
(9)
, 873-881. https://doi.org/10.1038/s41560-021-00879-6
- Igor Iwakiri, Tiago Antunes, Helena Almeida, João P. Sousa, Rita Bacelar Figueira, Adélio Mendes. Redox Flow Batteries: Materials, Design and Prospects. Energies 2021, 14
(18)
, 5643. https://doi.org/10.3390/en14185643
- Yuyue Zhao, Jingjing Zhang, Garvit Agarwal, Zhou Yu, Rebecca E. Corman, Yilin Wang, Lily A. Robertson, Zhangxing Shi, Hieu A. Doan, Randy H. Ewoldt, Ilya A. Shkrob, Rajeev S. Assary, Lei Cheng, Venkat Srinivasan, Susan J. Babinec, Lu Zhang. TEMPO allegro: liquid catholyte redoxmers for nonaqueous redox flow batteries. Journal of Materials Chemistry A 2021, 9
(31)
, 16769-16775. https://doi.org/10.1039/D1TA04297A
- Shikha Sharma, Gabriel A. Andrade, Sandip Maurya, Ivan A. Popov, Enrique R. Batista, Benjamin L. Davis, Rangachary Mukundan, Nathan C. Smythe, Aaron M. Tondreau, Ping Yang, John C. Gordon. Iron-iminopyridine complexes as charge carriers for non-aqueous redox flow battery applications. Energy Storage Materials 2021, 37 , 576-586. https://doi.org/10.1016/j.ensm.2021.01.035
- Bertrand J. Neyhouse, Alexis M. Fenton, Fikile R. Brushett. Too Much of a Good Thing? Assessing Performance Tradeoffs of Two-Electron Compounds for Redox Flow Batteries. Journal of The Electrochemical Society 2021, 168
(5)
, 050501. https://doi.org/10.1149/1945-7111/abeea3
- Travis C. Palmer, Andrew Beamer, Tristan Pitt, Ivan A. Popov, Claudina X. Cammack, Harry D. Pratt, Travis M. Anderson, Enrique R. Batista, Ping Yang, Benjamin L. Davis. A Comparative Review of Metal‐Based Charge Carriers in Nonaqueous Flow Batteries. ChemSusChem 2021, 14
(5)
, 1214-1228. https://doi.org/10.1002/cssc.202002354
- G. Muthuraman, P. Silambarasan, K. Bae, I. S. Moon. Combination of Acid-Base Electrolyte at Each Half-Cell with a Single Zeolite Membrane for Crossover Free and Possible Increased Energy Density in an All Aqueous Redox Flow Battery. Journal of The Electrochemical Society 2021, 168
(2)
, 020531. https://doi.org/10.1149/1945-7111/abe39f
- Soumen Saha, Sha Tamanna Sahil, Md. Motiur R. Mazumder, Alexander M. Stephens, Bryan Cronin, Evert C. Duin, Jonah W. Jurss, Byron H. Farnum. Synthesis, characterization, and electrocatalytic activity of bis(pyridylimino)isoindoline Cu(
ii
) and Ni(
ii
) complexes. Dalton Transactions 2021, 50
(3)
, 926-935. https://doi.org/10.1039/D0DT03030A
- Claudina X. Cammack, Harry D. Pratt, Leo J. Small, Travis M. Anderson. A higher voltage Fe(
ii
) bipyridine complex for non-aqueous redox flow batteries. Dalton Transactions 2021, 50
(3)
, 858-868. https://doi.org/10.1039/D0DT03927F
- Jason D. Braun, Paul A. Gray, Baldeep K. Sidhu, Dion B. Nemez, David E. Herbert. Zn-Templated synthesis of substituted (2,6-diimine)pyridine proligands and evaluation of their iron complexes as anolytes for flow battery applications. Dalton Transactions 2020, 49
(45)
, 16175-16183. https://doi.org/10.1039/D0DT00543F
- Bin Liu, Chun Wai Tang, Haoran Jiang, Guocheng Jia, Tianshou Zhao. An aqueous organic redox flow battery employing a trifunctional electroactive compound as anolyte, catholyte and supporting electrolyte. Journal of Power Sources 2020, 477 , 228985. https://doi.org/10.1016/j.jpowsour.2020.228985
- Adama Sy, Asif Iqbal Bhatti, Fahim Hamidouche, Olivier Le Bacq, Lauréline Lecarme, Jean-Claude Leprêtre. Correlation of electrochemical and
ab initio
investigations of iron poly-bipyridine coordination complexes for battery applications: impact of the anionic environment and the local geometries of the redox complexes on the electrochemical response. Physical Chemistry Chemical Physics 2020, 22
(41)
, 24077-24085. https://doi.org/10.1039/D0CP01576H
- Franklin A. Schultz, Richard L. Lord, Mu-Hyun Baik. Multifaceted examination of multielectron transfer reactions. Inorganica Chimica Acta 2020, 510 , 119746. https://doi.org/10.1016/j.ica.2020.119746
- Gabriel A. Andrade, Ivan A. Popov, Celia R. Federico, Ping Yang, Enrique R. Batista, Rangachary Mukundan, Benjamin L. Davis. Expanding the potential of redox carriers for flow battery applications. Journal of Materials Chemistry A 2020, 8
(34)
, 17808-17816. https://doi.org/10.1039/D0TA04511J
- Yuyue Zhao, Zhou Yu, Lily A. Robertson, Jingjing Zhang, Zhangxing Shi, Sambasiva R. Bheemireddy, Ilya A. Shkrob, Y Z, Tao Li, Zhengcheng Zhang, Lei Cheng, Lu Zhang. Unexpected electrochemical behavior of an anolyte redoxmer in flow battery electrolytes: solvating cations help to fight against the thermodynamic–kinetic dilemma. Journal of Materials Chemistry A 2020, 8
(27)
, 13470-13479. https://doi.org/10.1039/D0TA02214D
- Fangfang Zhong, Minghui Yang, Mei Ding, Chuankun Jia. Organic Electroactive Molecule-Based Electrolytes for Redox Flow Batteries: Status and Challenges of Molecular Design. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.00451
- Ross W. Hogue, Kathryn E. Toghill. Metal coordination complexes in nonaqueous redox flow batteries. Current Opinion in Electrochemistry 2019, 18 , 37-45. https://doi.org/10.1016/j.coelec.2019.08.006
- Lauren E. VanGelder, Eric Schreiber, Marie‐Louise Wind, Christian Limberg, Ellen M. Matson. Investigation of Cubic Fe
4
M
4
Frameworks for Application in Nonaqueous Energy Storage. Chemistry – A European Journal 2019, 25
(63)
, 14421-14429. https://doi.org/10.1002/chem.201903360
- Lauren E. VanGelder, Harry D. Pratt, Travis M. Anderson, Ellen M. Matson. Surface functionalization of polyoxovanadium clusters: generation of highly soluble charge carriers for nonaqueous energy storage. Chemical Communications 2019, 55
(81)
, 12247-12250. https://doi.org/10.1039/C9CC05380H
- Yite Wang, Kyle C. Smith. Numerical investigation of convective transport in redox flow battery tanks: Using baffles to increase utilization. Journal of Energy Storage 2019, 25 , 100840. https://doi.org/10.1016/j.est.2019.100840
- Terry Chu, Ivan A. Popov, Gabriel A. Andrade, Sandip Maurya, Ping Yang, Enrique R. Batista, Brian L. Scott, Rangachary Mukundan, Benjamin L. Davis. Linked Picolinamide Nickel Complexes as Redox Carriers for Nonaqueous Flow Batteries. ChemSusChem 2019, 12
(7)
, 1304-1309. https://doi.org/10.1002/cssc.201802985
- Lauren E. VanGelder, Timothy R. Cook, Ellen M. Matson. Progress in the Design of Polyoxovanadate-Alkoxides as Charge Carriers for Nonaqueous Redox Flow Batteries. Comments on Inorganic Chemistry 2019, 39
(2)
, 51-89. https://doi.org/10.1080/02603594.2019.1587612
- Lauren E. VanGelder, Eric Schreiber, Ellen M. Matson. Physicochemical implications of alkoxide “mixing” in polyoxovanadium clusters for nonaqueous energy storage. Journal of Materials Chemistry A 2019, 7
(9)
, 4893-4902. https://doi.org/10.1039/C8TA12306C
- Christian Modrzynski, Peter Burger. Energy storage inspired by nature – ionic liquid iron–sulfur clusters as electrolytes for redox flow batteries. Dalton Transactions 2019, 48
(6)
, 1941-1946. https://doi.org/10.1039/C8DT03776K
- Ivan A. Popov, Benjamin L. Davis, Rangachary Mukundan, Enrique R. Batista, Ping Yang. Catalyst-Inspired Charge Carriers for High Energy Density Redox Flow Batteries. Frontiers in Physics 2019, 6 https://doi.org/10.3389/fphy.2018.00141
- Tugba Ceren Gokoglan, Shyam K. Pahari, Andrew Hamel, Rachael Howland, Patrick J. Cappillino, Ertan Agar. Operando Spectroelectrochemical Characterization of a Highly Stable Bioinspired Redox Flow Battery Active Material. Journal of The Electrochemical Society 2019, 166
(10)
, A1745-A1751. https://doi.org/10.1149/2.0271910jes
- Leo J. Small, Harry D. Pratt, Travis M. Anderson. Crossover in Membranes for Aqueous Soluble Organic Redox Flow Batteries. Journal of The Electrochemical Society 2019, 166
(12)
, A2536-A2542. https://doi.org/10.1149/2.0681912jes
- Lauren E. VanGelder, Brittney E. Petel, Olaf Nachtigall, Gabriel Martinez, William W. Brennessel, Ellen M. Matson. Organic Functionalization of Polyoxovanadate–Alkoxide Clusters: Improving the Solubility of Multimetallic Charge Carriers for Nonaqueous Redox Flow Batteries. ChemSusChem 2018, 11
(23)
, 4139-4149. https://doi.org/10.1002/cssc.201802029
- Changkun Zhang, Leyuan Zhang, Yu Ding, Sangshan Peng, Xuelin Guo, Yu Zhao, Gaohong He, Guihua Yu. Progress and prospects of next-generation redox flow batteries. Energy Storage Materials 2018, 15 , 324-350. https://doi.org/10.1016/j.ensm.2018.06.008
- Hongning Chen, Guangtao Cong, Yi-Chun Lu. Recent progress in organic redox flow batteries: Active materials, electrolytes and membranes. Journal of Energy Chemistry 2018, 27
(5)
, 1304-1325. https://doi.org/10.1016/j.jechem.2018.02.009
- Ting Ma, Zeng Pan, Licheng Miao, Chengcheng Chen, Mo Han, Zhenfeng Shang, Jun Chen. Porphyrin‐Based Symmetric Redox‐Flow Batteries towards Cold‐Climate Energy Storage. Angewandte Chemie 2018, 130
(12)
, 3212-3216. https://doi.org/10.1002/ange.201713423
- Ting Ma, Zeng Pan, Licheng Miao, Chengcheng Chen, Mo Han, Zhenfeng Shang, Jun Chen. Porphyrin‐Based Symmetric Redox‐Flow Batteries towards Cold‐Climate Energy Storage. Angewandte Chemie International Edition 2018, 57
(12)
, 3158-3162. https://doi.org/10.1002/anie.201713423
- Jinhua Huang, Zheng Yang, Murugesan Vijayakumar, Wentao Duan, Aaron Hollas, Baofei Pan, Wei Wang, Xiaoliang Wei, Lu Zhang. A Two‐Electron Storage Nonaqueous Organic Redox Flow Battery. Advanced Sustainable Systems 2018, 2
(3)
https://doi.org/10.1002/adsu.201700131
- Anjula M. Kosswattaarachchi, Timothy R. Cook. Concentration-dependent charge-discharge characteristics of non-aqueous redox flow battery electrolyte combinations. Electrochimica Acta 2018, 261 , 296-306. https://doi.org/10.1016/j.electacta.2017.12.131
- Yu Ding, Changkun Zhang, Leyuan Zhang, Yangen Zhou, Guihua Yu. Molecular engineering of organic electroactive materials for redox flow batteries. Chemical Society Reviews 2018, 47
(1)
, 69-103. https://doi.org/10.1039/C7CS00569E
- L. E. VanGelder, A. M. Kosswattaarachchi, P. L. Forrestel, T. R. Cook, E. M. Matson. Polyoxovanadate-alkoxide clusters as multi-electron charge carriers for symmetric non-aqueous redox flow batteries. Chemical Science 2018, 9
(6)
, 1692-1699. https://doi.org/10.1039/C7SC05295B
- Lauren E. VanGelder, Ellen M. Matson. Heterometal functionalization yields improved energy density for charge carriers in nonaqueous redox flow batteries. Journal of Materials Chemistry A 2018, 6
(28)
, 13874-13882. https://doi.org/10.1039/C8TA03312A
- Anjula M. Kosswattaarachchi, Timothy R. Cook. Mixed-Component Catholyte and Anolyte Solutions for High-Energy Density Non-Aqueous Redox Flow Batteries. Journal of The Electrochemical Society 2018, 165
(2)
, A194-A200. https://doi.org/10.1149/2.0751802jes
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.