ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Mechanism-Based Development of a Low-Potential, Soluble, and Cyclable Multielectron Anolyte for Nonaqueous Redox Flow Batteries

View Author Information
Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
Department of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, Michigan 48109, United States
Cite this: J. Am. Chem. Soc. 2016, 138, 47, 15378–15384
Publication Date (Web):November 15, 2016
https://doi.org/10.1021/jacs.6b07638
Copyright © 2016 American Chemical Society

    Article Views

    4358

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (6)»

    Abstract

    Abstract Image

    The development of nonaqueous redox flow batteries (NRFBs) has been impeded by a lack of electroactive compounds (anolytes and catholytes) with the necessary combination of (1) redox potentials that exceed the potential limits of water, (2) high solubility in nonaqueous media, and (3) high stability toward electrochemical cycling. In addition, ideal materials would maintain all three of these properties over multiple electron transfer events, thereby providing a proportional increase in storage capacity. This paper describes the mechanism-based design of a new class of metal-coordination complexes (MCCs) as anolytes for NRFBs. The tridentate bipyridylimino isoindoline (BPI) ligands of these complexes were designed to enable multielectron redox events. These molecules were optimized using a combination of systematic variation of the BPI ligand and the metal center along with mechanistic investigations of the decomposition pathways that occur during electrochemical cycling. Ultimately, these studies led to the identification of nickel BPI complexes that could undergo stable charge-discharge cycling (<5% capacity loss over 200 cycles) as well as a derivative that possesses the previously unprecedented combination of high solubility (>700 mM in CH3CN), multiple electron transfers at low redox potentials (–1.7 and –1.9 V versus Ag/Ag+), and high stability in the charged state for days at high concentration. Overall, the studies described herein have enabled the identification of a promising anolyte candidate for NRFBs and have also provided key insights into chemical design principles for future classes of MCC-based anolytes.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b07638.

    • Crystallographic data of Fe(L4)2 in CIF format (CIF)

    • Crystallographic data of HL4 in CIF format (CIF)

    • Crystallographic data of Mn(L4)2 in CIF format (CIF)

    • Crystallographic data of Ni(L4)2 in CIF format (CIF)

    • Crystallographic data of Zn(L4)2 in CIF format (CIF)

    • Experimental procedures and characterization of all new compounds, including spectroscopic data and potentiometric data (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 97 publications.

    1. Kate A. Jesse, Sergio Diaz Abad, Chad Studvick, Gabriel A. Andrade, Sandip Maurya, Brian L. Scott, Rangachary Mukundan, Ivan A. Popov, Benjamin L. Davis. Impact of Pendent Ammonium Groups on Solubility and Cycling Charge Carrier Performance in Nonaqueous Redox Flow Batteries. Inorganic Chemistry 2023, 62 (47) , 19218-19229. https://doi.org/10.1021/acs.inorgchem.3c02396
    2. Yichao Yan, Leyuan Zhang, Ryan Walser-Kuntz, David B. Vogt, Matthew S. Sigman, Guihua Yu, Melanie S. Sanford. Benzotriazoles as Low-Potential Anolytes for Non-aqueous Redox Flow Batteries. Chemistry of Materials 2022, 34 (23) , 10594-10605. https://doi.org/10.1021/acs.chemmater.2c02682
    3. Md. Motiur R. Mazumder, Niharika Dalpati, P. Raj Pokkuluri, Byron H. Farnum. Zinc-Catalyzed Two-Electron Nickel(IV/II) Redox Couple for Multi-Electron Storage in Redox Flow Batteries. Inorganic Chemistry 2022, 61 (48) , 19039-19048. https://doi.org/10.1021/acs.inorgchem.2c03124
    4. Yichao Yan, Ryan Walser-Kuntz, Melanie S. Sanford. Targeted Optimization of Phenoxazine Redox Center for Nonaqueous Redox Flow Batteries. ACS Materials Letters 2022, 4 (4) , 733-739. https://doi.org/10.1021/acsmaterialslett.2c00050
    5. Xiao Wang, Jingchao Chai, Shu Zhang, Bingbing Chen, Ashwin Chaturvedi, Guanglei Cui, Jianbing Jimmy Jiang. Insights into Indigo K+ Association in a Half-Slurry Flow Battery. ACS Energy Letters 2022, 7 (3) , 1178-1186. https://doi.org/10.1021/acsenergylett.2c00165
    6. Jordan L. S. Zackasee, Samir Al Zubaydi, Blaise L. Truesdell, Christo S. Sevov. Synergistic Catalyst–Mediator Pairings for Electroreductive Cross-Electrophile Coupling Reactions. ACS Catalysis 2022, 12 (2) , 1161-1166. https://doi.org/10.1021/acscatal.1c05144
    7. Bin Liu, Chun Wai Tang, Fu Kit Sheong, Guochen Jia, Tianshou Zhao. Artificial Bipolar Redox-Active Molecule for Symmetric Nonaqueous Redox Flow Batteries. ACS Sustainable Chemistry & Engineering 2022, 10 (1) , 613-621. https://doi.org/10.1021/acssuschemeng.1c07190
    8. Yichao Yan, Sophia G. Robinson, Thomas P. Vaid, Matthew S. Sigman, Melanie S. Sanford. Simultaneously Enhancing the Redox Potential and Stability of Multi-Redox Organic Catholytes by Incorporating Cyclopropenium Substituents. Journal of the American Chemical Society 2021, 143 (33) , 13450-13459. https://doi.org/10.1021/jacs.1c07237
    9. Bin Liu, Chun Wai Tang, Haoran Jiang, Guochen Jia, Tianshou Zhao. Carboxyl-Functionalized TEMPO Catholyte Enabling High-Cycling-Stability and High-Energy-Density Aqueous Organic Redox Flow Batteries. ACS Sustainable Chemistry & Engineering 2021, 9 (18) , 6258-6265. https://doi.org/10.1021/acssuschemeng.0c08946
    10. Jonghoon Choi, Sun Hee Kim, Yunho Lee. Axial Redox Tuning at a Tetragonal Cobalt Center. Inorganic Chemistry 2021, 60 (8) , 5647-5659. https://doi.org/10.1021/acs.inorgchem.0c03676
    11. Curt M. Wong, Christo S. Sevov. All-Organic Storage Solids and Redox Shuttles for Redox-Targeting Flow Batteries. ACS Energy Letters 2021, 6 (4) , 1271-1279. https://doi.org/10.1021/acsenergylett.1c00143
    12. Bin Liu, Chun Wai Tang, Cheng Zhang, Guochen Jia, Tianshou Zhao. Cost-Effective, High-Energy-Density, Nonaqueous Nitrobenzene Organic Redox Flow Battery. Chemistry of Materials 2021, 33 (3) , 978-986. https://doi.org/10.1021/acs.chemmater.0c04118
    13. Jeremy D. Griffin, Adam R. Pancoast, Matthew S. Sigman. Interrogation of 2,2′-Bipyrimidines as Low-Potential Two-Electron Electrolytes. Journal of the American Chemical Society 2021, 143 (2) , 992-1004. https://doi.org/10.1021/jacs.0c11267
    14. Amela Arnold, Ryan J. Dougherty, Cody R. Carr, Lauren C. Reynolds, James C. Fettinger, Anthony Augustin, Louise A. Berben. A Stable Organo-Aluminum Analyte Enables Multielectron Storage for a Nonaqueous Redox Flow Battery. The Journal of Physical Chemistry Letters 2020, 11 (19) , 8202-8207. https://doi.org/10.1021/acs.jpclett.0c01761
    15. Jisu Back, Giyun Kwon, Jung Eun Byeon, Hayoung Song, Kisuk Kang, Eunsung Lee. Tunable Redox-Active Triazenyl–Carbene Platforms: A New Class of Anolytes for Non-Aqueous Organic Redox Flow Batteries. ACS Applied Materials & Interfaces 2020, 12 (33) , 37338-37345. https://doi.org/10.1021/acsami.0c09400
    16. Blaise L. Truesdell, Taylor B. Hamby, Christo S. Sevov. General C(sp2)–C(sp3) Cross-Electrophile Coupling Reactions Enabled by Overcharge Protection of Homogeneous Electrocatalysts. Journal of the American Chemical Society 2020, 142 (12) , 5884-5893. https://doi.org/10.1021/jacs.0c01475
    17. Jingchao Chai Amir Lashgari Jianbing “Jimmy” Jiang . Electroactive Materials for Next-Generation Redox Flow Batteries: From Inorganic to Organic. 2020, 1-47. https://doi.org/10.1021/bk-2020-1364.ch001
    18. Jian Luo, Bo Hu, Maowei Hu, Yu Zhao, T. Leo Liu. Status and Prospects of Organic Redox Flow Batteries toward Sustainable Energy Storage. ACS Energy Letters 2019, 4 (9) , 2220-2240. https://doi.org/10.1021/acsenergylett.9b01332
    19. John L. Barton, Alex I. Wixtrom, Jeffrey A. Kowalski, Elaine A. Qian, Dahee Jung, Fikile R. Brushett, Alexander M. Spokoyny. Perfunctionalized Dodecaborate Clusters as Stable Metal-Free Active Materials for Charge Storage. ACS Applied Energy Materials 2019, 2 (7) , 4907-4913. https://doi.org/10.1021/acsaem.9b00610
    20. Jitendrasingh Rajpurohit, Apoorva Upadhyay, Chinmoy Das, Richa Dubey, Shefali Vaidya, Vinoth Krishnan, Ashutosh Kumar, Maheswaran Shanmugam. Unusual Methylenediolate Bridged Hexanuclear Ruthenium(III) Complexes: Syntheses and Their Application. Inorganic Chemistry 2018, 57 (23) , 14967-14982. https://doi.org/10.1021/acs.inorgchem.8b02780
    21. Ivan A. Popov, Nada Mehio, Terry Chu, Benjamin L. Davis, Rangachary Mukundan, Ping Yang, Enrique R. Batista. Impact of Ligand Substitutions on Multielectron Redox Properties of Fe Complexes Supported by Nitrogenous Chelates. ACS Omega 2018, 3 (11) , 14766-14778. https://doi.org/10.1021/acsomega.8b01921
    22. Raymond A. Wong, Yasuyuki Yokota, Mitsuru Wakisaka, Junji Inukai, Yousoo Kim. Discerning the Redox-Dependent Electronic and Interfacial Structures in Electroactive Self-Assembled Monolayers. Journal of the American Chemical Society 2018, 140 (42) , 13672-13679. https://doi.org/10.1021/jacs.8b05885
    23. Tim Storr, Rabindranath Mukherjee. Preface for the Forum on Applications of Metal Complexes with Ligand-Centered Radicals. Inorganic Chemistry 2018, 57 (16) , 9577-9579. https://doi.org/10.1021/acs.inorgchem.8b02171
    24. Hongning Chen, Yucun Zhou, Yi-Chun Lu. Lithium–Organic Nanocomposite Suspension for High-Energy-Density Redox Flow Batteries. ACS Energy Letters 2018, 3 (8) , 1991-1997. https://doi.org/10.1021/acsenergylett.8b01257
    25. Anitha S. Gowda, Jeffrey L. Petersen, and Carsten Milsmann . Redox Chemistry of Bis(pyrrolyl)pyridine Chromium and Molybdenum Complexes: An Experimental and Density Functional Theoretical Study. Inorganic Chemistry 2018, 57 (4) , 1919-1934. https://doi.org/10.1021/acs.inorgchem.7b02809
    26. Julia M. Stauber, Shiyu Zhang, Nataliya Gvozdik, Yanfeng Jiang, Laura Avena, Keith J. Stevenson, and Christopher C. Cummins . Cobalt and Vanadium Trimetaphosphate Polyanions: Synthesis, Characterization, and Electrochemical Evaluation for Non-aqueous Redox-Flow Battery Applications. Journal of the American Chemical Society 2018, 140 (2) , 538-541. https://doi.org/10.1021/jacs.7b08751
    27. Margarita Milton, Qian Cheng, Yuan Yang, Colin Nuckolls, Raúl Hernández Sánchez, and Thomas J. Sisto . Molecular Materials for Nonaqueous Flow Batteries with a High Coulombic Efficiency and Stable Cycling. Nano Letters 2017, 17 (12) , 7859-7863. https://doi.org/10.1021/acs.nanolett.7b04131
    28. Christo S. Sevov, Koen H. Hendriks, and Melanie S. Sanford . Low-Potential Pyridinium Anolyte for Aqueous Redox Flow Batteries. The Journal of Physical Chemistry C 2017, 121 (44) , 24376-24380. https://doi.org/10.1021/acs.jpcc.7b06247
    29. Koen H. Hendriks, Christo S. Sevov, Monique E. Cook, and Melanie S. Sanford . Multielectron Cycling of a Low-Potential Anolyte in Alkali Metal Electrolytes for Nonaqueous Redox Flow Batteries. ACS Energy Letters 2017, 2 (10) , 2430-2435. https://doi.org/10.1021/acsenergylett.7b00559
    30. Xiaoliang Wei, Wenxiao Pan, Wentao Duan, Aaron Hollas, Zheng Yang, Bin Li, Zimin Nie, Jun Liu, David Reed, Wei Wang, and Vincent Sprenkle . Materials and Systems for Organic Redox Flow Batteries: Status and Challenges. ACS Energy Letters 2017, 2 (9) , 2187-2204. https://doi.org/10.1021/acsenergylett.7b00650
    31. Safwan Aroua, Tanya K. Todorova, Paul Hommes, Lise-Marie Chamoreau, Hans-Ulrich Reissig, Victor Mougel, and Marc Fontecave . Synthesis, Characterization, and DFT Analysis of Bis-Terpyridyl-Based Molecular Cobalt Complexes. Inorganic Chemistry 2017, 56 (10) , 5930-5940. https://doi.org/10.1021/acs.inorgchem.7b00595
    32. Wentao Duan, Jinhua Huang, Jeffrey A. Kowalski, Ilya A. Shkrob, M. Vijayakumar, Eric Walter, Baofei Pan, Zheng Yang, Jarrod D. Milshtein, Bin Li, Chen Liao, Zhengcheng Zhang, Wei Wang, Jun Liu, Jeffery S. Moore, Fikile R. Brushett, Lu Zhang, and Xiaoliang Wei . “Wine-Dark Sea” in an Organic Flow Battery: Storing Negative Charge in 2,1,3-Benzothiadiazole Radicals Leads to Improved Cyclability. ACS Energy Letters 2017, 2 (5) , 1156-1161. https://doi.org/10.1021/acsenergylett.7b00261
    33. Bin Liu, Yiju Li, Guocheng Jia, Tianshou Zhao. Recent Advances in Redox Flow Batteries Employing Metal Coordination Complexes as Redox-Active Species. Electrochemical Energy Reviews 2024, 7 (1) https://doi.org/10.1007/s41918-023-00205-6
    34. Arpan Das, Sukanta Saha, Subir Maji, Pallavi Sarkar, Anex Jose, Madhur Mahesh Bhatt, Anup Bhunia, Arnab Dutta, Swapan K. Pati, Swadhin K. Mandal. Highly Stable Self‐Regenerating Organic Multi‐Redox Systems derived from Bicyclic (Alkyl)(amino)carbenes (BICAACs). Chemistry – A European Journal 2024, 30 (26) https://doi.org/10.1002/chem.202303411
    35. Long P. Dinh, Hunter F. Starbuck, Taylor B. Hamby, Matthew J. LaLama, Cyndi Q. He, Dipannita Kalyani, Christo S. Sevov. Persistent organonickel complexes as general platforms for Csp2–Csp3 coupling reactions. Nature Chemistry 2024, 11 https://doi.org/10.1038/s41557-024-01528-7
    36. Muhammad Mansha, Aqsa Anam, Safyan Akram Khan, Atif Saeed Alzahrani, Majad Khan, Aziz Ahmad, Muhammad Arshad, Shahid Ali. Recent Developments on Electroactive Organic Electrolytes for Non‐Aqueous Redox Flow Batteries: Current Status, Challenges, and Prospects. The Chemical Record 2024, 24 (1) https://doi.org/10.1002/tcr.202300233
    37. Rajeev K. Gautam, Xiao Wang, Amir Lashgari, Soumalya Sinha, Jack McGrath, Rabin Siwakoti, Jianbing “Jimmy” Jiang. Development of high-voltage and high-energy membrane-free nonaqueous lithium-based organic redox flow batteries. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-40374-y
    38. Xiao Wang, Amir Lashgari, Rabin Siwakoti, Rajeev K. Gautam, Jack J. McGrath, Prasenjit Sarkar, Grace Naber, Jingchao Chai, Jianbing Jimmy Jiang. Tetrathiafulvalene (TTF) derivatives as catholytes for dual-type redox flow batteries: molecular engineering enables high energy density and cyclability. Journal of Materials Chemistry A 2023, 11 (35) , 19056-19065. https://doi.org/10.1039/D3TA03606E
    39. Jonas O. Wenzel, Israel Fernández, Frank Breher. Synthesis and Characterization of Bis(pyridylimino)isoindolide Alkali Metal Complexes in Three Redox States. European Journal of Inorganic Chemistry 2023, 26 (24) https://doi.org/10.1002/ejic.202300315
    40. Maite Nößler, René Jäger, David Hunger, Marc Reimann, Tobias Bens, Nicolás I. Neuman, Arijit Singha Hazari, Martin Kaupp, Joris van Slageren, Biprajit Sarkar. Electrochemistry and Spin‐Crossover Behavior of Fluorinated Terpyridine‐Based Co(II) and Fe(II) Complexes. European Journal of Inorganic Chemistry 2023, 26 (19) https://doi.org/10.1002/ejic.202300091
    41. Bin Liu, Chun Wai Tang, Wei Wei, Cheng Zhang, Guochen Jia, Tianshou Zhao. Developing terpyridine-based metal complexes for non-aqueous redox flow batteries. Energy Storage Materials 2023, 60 , 102808. https://doi.org/10.1016/j.ensm.2023.102808
    42. Yang Cheng, Qingqing Yang, Jiang He, Wenjie Zou, Keyu Liao, Xiaoyong Chang, Chao Zou, Wei Lu. The energy gap law for NIR-phosphorescent Cr( iii ) complexes. Dalton Transactions 2023, 52 (9) , 2561-2565. https://doi.org/10.1039/D2DT02872G
    43. Hayoung Song, Eunsung Lee. Design strategy for redox-active organic materials derived from N-heterocyclic carbenes. Trends in Chemistry 2023, 5 (2) , 112-115. https://doi.org/10.1016/j.trechm.2022.10.010
    44. Benjamin D. Silcox, Curt M. Wong, Xiaoliang Wei, Christo Sevov, Levi T. Thompson. Metal Coordination Complexes for Flow Batteries. 2023, 923-949. https://doi.org/10.1002/9783527832767.ch41
    45. Luana Cardinale, Shannon S. Stahl, Dipannita Kalyani, Dan Lehnherr. Overview of outer-sphere electron transfer mediators for electrosynthesis. 2023, 57-102. https://doi.org/10.1016/bs.acat.2023.07.009
    46. Leyuan Zhang, Ruozhu Feng, Wei Wang, Guihua Yu. Emerging chemistries and molecular designs for flow batteries. Nature Reviews Chemistry 2022, 6 (8) , 524-543. https://doi.org/10.1038/s41570-022-00394-6
    47. Tao Liu, Jiashu Yuan, Yihan Zhen, Cuijuan Zhang, Yongdan Li. Porous poly(vinylidene fluoride) (PVDF) membrane with 2D vermiculite nanosheets modification for non-aqueous redox flow batteries. Journal of Membrane Science 2022, 651 , 120468. https://doi.org/10.1016/j.memsci.2022.120468
    48. Lina Qiu, Jin Tian, Weiwei Zhang, Aijun Gong, Weiyu Zhao. Study on enzyme activity inhibition mechanism of Thiobacillus denitrification intracellular enzyme to sulfate-reducing bacteria intracellular enzyme. Anti-Corrosion Methods and Materials 2022, 69 (3) , 312-330. https://doi.org/10.1108/ACMM-01-2021-2425
    49. Ziming Zhao, Changkun Zhang, Xianfeng Li. Opportunities and challenges of organic flow battery for electrochemical energy storage technology. Journal of Energy Chemistry 2022, 67 , 621-639. https://doi.org/10.1016/j.jechem.2021.10.037
    50. Claudina X. Kolesnichenko, Harry D. Pratt, Leo J. Small, Travis M. Anderson. Elucidating Instabilities Contributing to Capacity Fade in Bipyridine‐Based Materials for Non‐aqueous Flow Batteries. ChemElectroChem 2022, 9 (6) https://doi.org/10.1002/celc.202101490
    51. Grzegorz Lota, Małgorzata Graś-Ligocka, Łukasz Kolanowski, Katarzyna Lota. Flow Batteries: Recent Advancement and Challenges. 2022, 1-21. https://doi.org/10.1007/978-981-16-4480-1_50-1
    52. Bertrand J. Neyhouse, Fikile R. Brushett. From the Synthesis Vial to the Full Cell: Electrochemical Methods for Characterizing Active Materials for Redox Flow Batteries. 2022, 453-465. https://doi.org/10.1016/B978-0-12-819723-3.00058-5
    53. Yichao Yan, David B. Vogt, Thomas P. Vaid, Matthew S. Sigman, Melanie S. Sanford. Development of High Energy Density Diaminocyclopropenium‐Phenothiazine Hybrid Catholytes for Non‐Aqueous Redox Flow Batteries. Angewandte Chemie 2021, 133 (52) , 27245-27251. https://doi.org/10.1002/ange.202111939
    54. Yichao Yan, David B. Vogt, Thomas P. Vaid, Matthew S. Sigman, Melanie S. Sanford. Development of High Energy Density Diaminocyclopropenium‐Phenothiazine Hybrid Catholytes for Non‐Aqueous Redox Flow Batteries. Angewandte Chemie International Edition 2021, 60 (52) , 27039-27045. https://doi.org/10.1002/anie.202111939
    55. Abhiroop Mishra, Zachary T. Gossage, Dipobrato Sarbapalli, Yuanya Zhao, Joaquín Rodríguez‐López. Methods and Instrumentation in Energy Storage. 2021, 1-47. https://doi.org/10.1002/9783527610426.bard030111
    56. Benjoe Rey B. Visayas, Shyam K. Pahari, Tugba Ceren Gokoglan, James A. Golen, Ertan Agar, Patrick J. Cappillino, Maricris L. Mayes. Computational and experimental investigation of the effect of cation structure on the solubility of anionic flow battery active-materials. Chemical Science 2021, 12 (48) , 15892-15907. https://doi.org/10.1039/D1SC04990A
    57. Xiang Li, Peiyuan Gao, Yun-Yu Lai, J. David Bazak, Aaron Hollas, Heng-Yi Lin, Vijayakumar Murugesan, Shuyuan Zhang, Chung-Fu Cheng, Wei-Yao Tung, Yueh-Ting Lai, Ruozhu Feng, Jin Wang, Chien-Lung Wang, Wei Wang, Yu Zhu. Symmetry-breaking design of an organic iron complex catholyte for a long cyclability aqueous organic redox flow battery. Nature Energy 2021, 6 (9) , 873-881. https://doi.org/10.1038/s41560-021-00879-6
    58. Igor Iwakiri, Tiago Antunes, Helena Almeida, João P. Sousa, Rita Bacelar Figueira, Adélio Mendes. Redox Flow Batteries: Materials, Design and Prospects. Energies 2021, 14 (18) , 5643. https://doi.org/10.3390/en14185643
    59. Yuyue Zhao, Jingjing Zhang, Garvit Agarwal, Zhou Yu, Rebecca E. Corman, Yilin Wang, Lily A. Robertson, Zhangxing Shi, Hieu A. Doan, Randy H. Ewoldt, Ilya A. Shkrob, Rajeev S. Assary, Lei Cheng, Venkat Srinivasan, Susan J. Babinec, Lu Zhang. TEMPO allegro: liquid catholyte redoxmers for nonaqueous redox flow batteries. Journal of Materials Chemistry A 2021, 9 (31) , 16769-16775. https://doi.org/10.1039/D1TA04297A
    60. Bertrand J. Neyhouse, Alexis M. Fenton, Fikile R. Brushett. Too Much of a Good Thing? Assessing Performance Tradeoffs of Two-Electron Compounds for Redox Flow Batteries. Journal of The Electrochemical Society 2021, 168 (5) , 050501. https://doi.org/10.1149/1945-7111/abeea3
    61. Shikha Sharma, Gabriel A. Andrade, Sandip Maurya, Ivan A. Popov, Enrique R. Batista, Benjamin L. Davis, Rangachary Mukundan, Nathan C. Smythe, Aaron M. Tondreau, Ping Yang, John C. Gordon. Iron-iminopyridine complexes as charge carriers for non-aqueous redox flow battery applications. Energy Storage Materials 2021, 37 , 576-586. https://doi.org/10.1016/j.ensm.2021.01.035
    62. Travis C. Palmer, Andrew Beamer, Tristan Pitt, Ivan A. Popov, Claudina X. Cammack, Harry D. Pratt, Travis M. Anderson, Enrique R. Batista, Ping Yang, Benjamin L. Davis. A Comparative Review of Metal‐Based Charge Carriers in Nonaqueous Flow Batteries. ChemSusChem 2021, 14 (5) , 1214-1228. https://doi.org/10.1002/cssc.202002354
    63. G. Muthuraman, P. Silambarasan, K. Bae, I. S. Moon. Combination of Acid-Base Electrolyte at Each Half-Cell with a Single Zeolite Membrane for Crossover Free and Possible Increased Energy Density in an All Aqueous Redox Flow Battery. Journal of The Electrochemical Society 2021, 168 (2) , 020531. https://doi.org/10.1149/1945-7111/abe39f
    64. Soumen Saha, Sha Tamanna Sahil, Md. Motiur R. Mazumder, Alexander M. Stephens, Bryan Cronin, Evert C. Duin, Jonah W. Jurss, Byron H. Farnum. Synthesis, characterization, and electrocatalytic activity of bis(pyridylimino)isoindoline Cu( ii ) and Ni( ii ) complexes. Dalton Transactions 2021, 50 (3) , 926-935. https://doi.org/10.1039/D0DT03030A
    65. Claudina X. Cammack, Harry D. Pratt, Leo J. Small, Travis M. Anderson. A higher voltage Fe( ii ) bipyridine complex for non-aqueous redox flow batteries. Dalton Transactions 2021, 50 (3) , 858-868. https://doi.org/10.1039/D0DT03927F
    66. Jason D. Braun, Paul A. Gray, Baldeep K. Sidhu, Dion B. Nemez, David E. Herbert. Zn-Templated synthesis of substituted (2,6-diimine)pyridine proligands and evaluation of their iron complexes as anolytes for flow battery applications. Dalton Transactions 2020, 49 (45) , 16175-16183. https://doi.org/10.1039/D0DT00543F
    67. Bin Liu, Chun Wai Tang, Haoran Jiang, Guocheng Jia, Tianshou Zhao. An aqueous organic redox flow battery employing a trifunctional electroactive compound as anolyte, catholyte and supporting electrolyte. Journal of Power Sources 2020, 477 , 228985. https://doi.org/10.1016/j.jpowsour.2020.228985
    68. Adama Sy, Asif Iqbal Bhatti, Fahim Hamidouche, Olivier Le Bacq, Lauréline Lecarme, Jean-Claude Leprêtre. Correlation of electrochemical and ab initio investigations of iron poly-bipyridine coordination complexes for battery applications: impact of the anionic environment and the local geometries of the redox complexes on the electrochemical response. Physical Chemistry Chemical Physics 2020, 22 (41) , 24077-24085. https://doi.org/10.1039/D0CP01576H
    69. Franklin A. Schultz, Richard L. Lord, Mu-Hyun Baik. Multifaceted examination of multielectron transfer reactions. Inorganica Chimica Acta 2020, 510 , 119746. https://doi.org/10.1016/j.ica.2020.119746
    70. Gabriel A. Andrade, Ivan A. Popov, Celia R. Federico, Ping Yang, Enrique R. Batista, Rangachary Mukundan, Benjamin L. Davis. Expanding the potential of redox carriers for flow battery applications. Journal of Materials Chemistry A 2020, 8 (34) , 17808-17816. https://doi.org/10.1039/D0TA04511J
    71. Yuyue Zhao, Zhou Yu, Lily A. Robertson, Jingjing Zhang, Zhangxing Shi, Sambasiva R. Bheemireddy, Ilya A. Shkrob, Y Z, Tao Li, Zhengcheng Zhang, Lei Cheng, Lu Zhang. Unexpected electrochemical behavior of an anolyte redoxmer in flow battery electrolytes: solvating cations help to fight against the thermodynamic–kinetic dilemma. Journal of Materials Chemistry A 2020, 8 (27) , 13470-13479. https://doi.org/10.1039/D0TA02214D
    72. Fangfang Zhong, Minghui Yang, Mei Ding, Chuankun Jia. Organic Electroactive Molecule-Based Electrolytes for Redox Flow Batteries: Status and Challenges of Molecular Design. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.00451
    73. Ross W. Hogue, Kathryn E. Toghill. Metal coordination complexes in nonaqueous redox flow batteries. Current Opinion in Electrochemistry 2019, 18 , 37-45. https://doi.org/10.1016/j.coelec.2019.08.006
    74. Lauren E. VanGelder, Eric Schreiber, Marie‐Louise Wind, Christian Limberg, Ellen M. Matson. Investigation of Cubic Fe 4 M 4 Frameworks for Application in Nonaqueous Energy Storage. Chemistry – A European Journal 2019, 25 (63) , 14421-14429. https://doi.org/10.1002/chem.201903360
    75. Lauren E. VanGelder, Harry D. Pratt, Travis M. Anderson, Ellen M. Matson. Surface functionalization of polyoxovanadium clusters: generation of highly soluble charge carriers for nonaqueous energy storage. Chemical Communications 2019, 55 (81) , 12247-12250. https://doi.org/10.1039/C9CC05380H
    76. Yite Wang, Kyle C. Smith. Numerical investigation of convective transport in redox flow battery tanks: Using baffles to increase utilization. Journal of Energy Storage 2019, 25 , 100840. https://doi.org/10.1016/j.est.2019.100840
    77. Terry Chu, Ivan A. Popov, Gabriel A. Andrade, Sandip Maurya, Ping Yang, Enrique R. Batista, Brian L. Scott, Rangachary Mukundan, Benjamin L. Davis. Linked Picolinamide Nickel Complexes as Redox Carriers for Nonaqueous Flow Batteries. ChemSusChem 2019, 12 (7) , 1304-1309. https://doi.org/10.1002/cssc.201802985
    78. Lauren E. VanGelder, Timothy R. Cook, Ellen M. Matson. Progress in the Design of Polyoxovanadate-Alkoxides as Charge Carriers for Nonaqueous Redox Flow Batteries. Comments on Inorganic Chemistry 2019, 39 (2) , 51-89. https://doi.org/10.1080/02603594.2019.1587612
    79. Lauren E. VanGelder, Eric Schreiber, Ellen M. Matson. Physicochemical implications of alkoxide “mixing” in polyoxovanadium clusters for nonaqueous energy storage. Journal of Materials Chemistry A 2019, 7 (9) , 4893-4902. https://doi.org/10.1039/C8TA12306C
    80. Christian Modrzynski, Peter Burger. Energy storage inspired by nature – ionic liquid iron–sulfur clusters as electrolytes for redox flow batteries. Dalton Transactions 2019, 48 (6) , 1941-1946. https://doi.org/10.1039/C8DT03776K
    81. Ivan A. Popov, Benjamin L. Davis, Rangachary Mukundan, Enrique R. Batista, Ping Yang. Catalyst-Inspired Charge Carriers for High Energy Density Redox Flow Batteries. Frontiers in Physics 2019, 6 https://doi.org/10.3389/fphy.2018.00141
    82. Tugba Ceren Gokoglan, Shyam K. Pahari, Andrew Hamel, Rachael Howland, Patrick J. Cappillino, Ertan Agar. Operando Spectroelectrochemical Characterization of a Highly Stable Bioinspired Redox Flow Battery Active Material. Journal of The Electrochemical Society 2019, 166 (10) , A1745-A1751. https://doi.org/10.1149/2.0271910jes
    83. Leo J. Small, Harry D. Pratt, Travis M. Anderson. Crossover in Membranes for Aqueous Soluble Organic Redox Flow Batteries. Journal of The Electrochemical Society 2019, 166 (12) , A2536-A2542. https://doi.org/10.1149/2.0681912jes
    84. Lauren E. VanGelder, Brittney E. Petel, Olaf Nachtigall, Gabriel Martinez, William W. Brennessel, Ellen M. Matson. Organic Functionalization of Polyoxovanadate–Alkoxide Clusters: Improving the Solubility of Multimetallic Charge Carriers for Nonaqueous Redox Flow Batteries. ChemSusChem 2018, 11 (23) , 4139-4149. https://doi.org/10.1002/cssc.201802029
    85. Changkun Zhang, Leyuan Zhang, Yu Ding, Sangshan Peng, Xuelin Guo, Yu Zhao, Gaohong He, Guihua Yu. Progress and prospects of next-generation redox flow batteries. Energy Storage Materials 2018, 15 , 324-350. https://doi.org/10.1016/j.ensm.2018.06.008
    86. Hongning Chen, Guangtao Cong, Yi-Chun Lu. Recent progress in organic redox flow batteries: Active materials, electrolytes and membranes. Journal of Energy Chemistry 2018, 27 (5) , 1304-1325. https://doi.org/10.1016/j.jechem.2018.02.009
    87. Ting Ma, Zeng Pan, Licheng Miao, Chengcheng Chen, Mo Han, Zhenfeng Shang, Jun Chen. Porphyrin‐Based Symmetric Redox‐Flow Batteries towards Cold‐Climate Energy Storage. Angewandte Chemie 2018, 130 (12) , 3212-3216. https://doi.org/10.1002/ange.201713423
    88. Ting Ma, Zeng Pan, Licheng Miao, Chengcheng Chen, Mo Han, Zhenfeng Shang, Jun Chen. Porphyrin‐Based Symmetric Redox‐Flow Batteries towards Cold‐Climate Energy Storage. Angewandte Chemie International Edition 2018, 57 (12) , 3158-3162. https://doi.org/10.1002/anie.201713423
    89. Jinhua Huang, Zheng Yang, Murugesan Vijayakumar, Wentao Duan, Aaron Hollas, Baofei Pan, Wei Wang, Xiaoliang Wei, Lu Zhang. A Two‐Electron Storage Nonaqueous Organic Redox Flow Battery. Advanced Sustainable Systems 2018, 2 (3) https://doi.org/10.1002/adsu.201700131
    90. Anjula M. Kosswattaarachchi, Timothy R. Cook. Concentration-dependent charge-discharge characteristics of non-aqueous redox flow battery electrolyte combinations. Electrochimica Acta 2018, 261 , 296-306. https://doi.org/10.1016/j.electacta.2017.12.131
    91. Yu Ding, Changkun Zhang, Leyuan Zhang, Yangen Zhou, Guihua Yu. Molecular engineering of organic electroactive materials for redox flow batteries. Chemical Society Reviews 2018, 47 (1) , 69-103. https://doi.org/10.1039/C7CS00569E
    92. L. E. VanGelder, A. M. Kosswattaarachchi, P. L. Forrestel, T. R. Cook, E. M. Matson. Polyoxovanadate-alkoxide clusters as multi-electron charge carriers for symmetric non-aqueous redox flow batteries. Chemical Science 2018, 9 (6) , 1692-1699. https://doi.org/10.1039/C7SC05295B
    93. Lauren E. VanGelder, Ellen M. Matson. Heterometal functionalization yields improved energy density for charge carriers in nonaqueous redox flow batteries. Journal of Materials Chemistry A 2018, 6 (28) , 13874-13882. https://doi.org/10.1039/C8TA03312A
    94. Anjula M. Kosswattaarachchi, Timothy R. Cook. Mixed-Component Catholyte and Anolyte Solutions for High-Energy Density Non-Aqueous Redox Flow Batteries. Journal of The Electrochemical Society 2018, 165 (2) , A194-A200. https://doi.org/10.1149/2.0751802jes
    95. Leo J. Small, Harry D. Pratt, Chad L. Staiger, Travis M. Anderson. MetILs 3 : A Strategy for High Density Energy Storage Using Redox‐Active Ionic Liquids. Advanced Sustainable Systems 2017, 1 (9) https://doi.org/10.1002/adsu.201700066
    96. Gabriel M. Duarte, Jason D. Braun, Patrick K. Giesbrecht, David E. Herbert. Redox non-innocent bis(2,6-diimine-pyridine) ligand–iron complexes as anolytes for flow battery applications. Dalton Transactions 2017, 46 (47) , 16439-16445. https://doi.org/10.1039/C7DT03915H
    97. Jarrod D. Milshtein, John L. Barton, Thomas J. Carney, Jeffrey A. Kowalski, Robert M. Darling, Fikile R. Brushett. Towards Low Resistance Nonaqueous Redox Flow Batteries. Journal of The Electrochemical Society 2017, 164 (12) , A2487-A2499. https://doi.org/10.1149/2.0741712jes

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect