ACS Publications. Most Trusted. Most Cited. Most Read
Magnetic Circular Dichroism Evidence for an Unusual Electronic Structure of a Tetracarbene–Oxoiron(IV) Complex
My Activity

Figure 1Loading Img
    Article

    Magnetic Circular Dichroism Evidence for an Unusual Electronic Structure of a Tetracarbene–Oxoiron(IV) Complex
    Click to copy article linkArticle link copied!

    View Author Information
    Max-Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
    Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany
    § Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Praha 2, Czech Republic
    Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2016, 138, 43, 14312–14325
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.6b07708
    Published September 28, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    In biology, high valent oxo–iron(IV) species have been shown to be pivotal intermediates for functionalization of C–H bonds in the catalytic cycles of a range of O2-activating iron enzymes. This work details an electronic-structure investigation of [FeIV(O)(LNHC)(NCMe)]2+ (LNHC = 3,9,14,20-tetraaza-1,6,12,17-tetraazoniapenta-cyclohexacosane-1(23),4,6(26),10,12(25),15,17(24),21-octaene, complex 1) using helium tagging infrared photodissociation (IRPD), absorption, and magnetic circular dichroism (MCD) spectroscopy, coupled with DFT and highly correlated wave function based multireference calculations. The IRPD spectrum of complex 1 reveals the Fe–O stretching vibration at 832 ± 3 cm–1. By analyzing the Franck–Condon progression, we can determine the same vibration occurring at 616 ± 10 cm–1 in the E(dxy → dxz,yz) excited state. Both values are similar to those measured for [FeIV(O)(TMC)(NCMe)]2+ (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane). The low-temperature MCD spectra of complex 1 exhibit three pseudo A-term signals around 12 500, 17 000, and 24 300 cm–1. We can unequivocally assign them to the ligand field transitions of dxy → dxz,yz, dxz,yz → dz2, and dxz,yz → dx2-y2, respectively, through direct calculations of MCD spectra and independent determination of the MCD C-term signs from the corresponding electron donating and accepting orbitals. In comparison with the corresponding transitions observed for [FeIV(O) (SR-TPA)(NCMe)]2+ (SR-TPA = tris(3,5-dimethyl-4-methoxypyridyl-2-methy)amine), the excitations within the (FeO)2+ core of complex 1 have similar transition energies, whereas the excitation energy for dxz,yz → dx2-y2 is significantly higher (∼12 000 cm–1 for [FeIV(O)(SR-TPA)(NCMe)]2+). Our results thus substantiate that the tetracarbene ligand (LNHC) of complex 1 does not significantly affect the bonding in the (FeO)2+ unit but strongly destabilizes the dx2-y2 orbital to eventually lift it above dz2. As a consequence, this unusual electron configuration leads to an unprecedentedly larger quintet–triplet energy separation for complex 1, which largely rules out the possibility that the H atom transfer reaction may take place on the quintet surface and hence quenches two-state reactivity. The resulting mechanistic implications are discussed.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b07708.

    • Details on experimental analysis; CASSCF/NEVPT2 calculations and ligand field analysis; Cartesian coordinates of all optimized structures (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 57 publications.

    1. Xianghui Zhang, Yongjun Liu. Computational Insights into the Catalysis of the pH Dependence of Bromite Decomposition Catalyzed by Chlorite Dismutase from Dechloromonas aromatica (DaCld). Inorganic Chemistry 2024, 63 (15) , 6776-6786. https://doi.org/10.1021/acs.inorgchem.4c00126
    2. Claudia Cordes (née Kupper), Iris Klawitter, Isabelle Rüter, Sebastian Dechert, Serhiy Demeshko, Shengfa Ye, Franc Meyer. Organometallic μ-Nitridodiiron Complexes in Oxidation States Ranging from (III/III) to (IV/IV). Inorganic Chemistry 2022, 61 (18) , 7153-7164. https://doi.org/10.1021/acs.inorgchem.2c00685
    3. Alexander Yu. Kostyukovich, Julia V. Burykina, Dmitry B. Eremin, Valentine P. Ananikov. Detection and Structural Investigation of Elusive Palladium Hydride Intermediates Formed from Simple Metal Salts. Inorganic Chemistry 2021, 60 (10) , 7128-7142. https://doi.org/10.1021/acs.inorgchem.1c00173
    4. Allyssa A. Massie, Claudia Schremmer, Isabelle Rüter, Sebastian Dechert, Inke Siewert, Franc Meyer. Selective Electrocatalytic CO2 Reduction to CO by an NHC-Based Organometallic Heme Analogue. ACS Catalysis 2021, 11 (6) , 3257-3267. https://doi.org/10.1021/acscatal.0c04518
    5. Yuya Tanaka, Kohei Ohmura, Shintaro Fujii, Tomofumi Tada, Manabu Kiguchi, Munetaka Akita. Single-Molecule Junction of a Cationic Rh(III) Polyyne Molecular Wire. Inorganic Chemistry 2020, 59 (18) , 13254-13261. https://doi.org/10.1021/acs.inorgchem.0c01609
    6. Hao-Ching Chang, Bhaskar Mondal, Huayi Fang, Frank Neese, Eckhard Bill, Shengfa Ye. Electron Paramagnetic Resonance Signature of Tetragonal Low Spin Iron(V)-Nitrido and -Oxo Complexes Derived from the Electronic Structure Analysis of Heme and Non-Heme Archetypes. Journal of the American Chemical Society 2019, 141 (6) , 2421-2434. https://doi.org/10.1021/jacs.8b11429
    7. Reena Singh, Gaurab Ganguly, Sergey O. Malinkin, Serhiy Demeshko, Franc Meyer, Ebbe Nordlander, Tapan Kanti Paine. A Mononuclear Nonheme Iron(IV)-Oxo Complex of a Substituted N4Py Ligand: Effect of Ligand Field on Oxygen Atom Transfer and C–H Bond Cleavage Reactivity. Inorganic Chemistry 2019, 58 (3) , 1862-1876. https://doi.org/10.1021/acs.inorgchem.8b02577
    8. Mian Guo, Teresa Corona, Kallol Ray, Wonwoo Nam. Heme and Nonheme High-Valent Iron and Manganese Oxo Cores in Biological and Abiological Oxidation Reactions. ACS Central Science 2019, 5 (1) , 13-28. https://doi.org/10.1021/acscentsci.8b00698
    9. Jun Cheng, Lijun Wang, Peng Wang, Liang Deng. High-Oxidation-State 3d Metal (Ti–Cu) Complexes with N-Heterocyclic Carbene Ligation. Chemical Reviews 2018, 118 (19) , 9930-9987. https://doi.org/10.1021/acs.chemrev.8b00096
    10. Anselm W. Hahn, Benjamin E. Van Kuiken, Vijay Gopal Chilkuri, Natalia Levin, Eckhard Bill, Thomas Weyhermüller, Alessandro Nicolaou, Jun Miyawaki, Yoshihisa Harada, Serena DeBeer. Probing the Valence Electronic Structure of Low-Spin Ferrous and Ferric Complexes Using 2p3d Resonant Inelastic X-ray Scattering (RIXS). Inorganic Chemistry 2018, 57 (15) , 9515-9530. https://doi.org/10.1021/acs.inorgchem.8b01550
    11. Bhaskar Mondal, Frank Neese, Eckhard Bill, Shengfa Ye. Electronic Structure Contributions of Non-Heme Oxo-Iron(V) Complexes to the Reactivity. Journal of the American Chemical Society 2018, 140 (30) , 9531-9544. https://doi.org/10.1021/jacs.8b04275
    12. Johannes E. M. N. Klein, Debasish Mandal, Wei-Min Ching, Dibyendu Mallick, Lawrence Que, Jr., and Sason Shaik . Privileged Role of Thiolate as the Axial Ligand in Hydrogen Atom Transfer Reactions by Oxoiron(IV) Complexes in Shaping the Potential Energy Surface and Inducing Significant H-Atom Tunneling. Journal of the American Chemical Society 2017, 139 (51) , 18705-18713. https://doi.org/10.1021/jacs.7b11300
    13. Gaya R. Elpitiya, Brian J. Malbrecht, and David M. Jenkins . A Chromium(II) Tetracarbene Complex Allows Unprecedented Oxidative Group Transfer. Inorganic Chemistry 2017, 56 (22) , 14101-14110. https://doi.org/10.1021/acs.inorgchem.7b02253
    14. Dimitrios Maganas, Serena DeBeer, and Frank Neese . A Restricted Open Configuration Interaction with Singles Method To Calculate Valence-to-Core Resonant X-ray Emission Spectra: A Case Study. Inorganic Chemistry 2017, 56 (19) , 11819-11836. https://doi.org/10.1021/acs.inorgchem.7b01810
    15. Claudia Kupper, Bhaskar Mondal, Joan Serrano-Plana, Iris Klawitter, Frank Neese, Miquel Costas, Shengfa Ye, and Franc Meyer . Nonclassical Single-State Reactivity of an Oxo-Iron(IV) Complex Confined to Triplet Pathways. Journal of the American Chemical Society 2017, 139 (26) , 8939-8949. https://doi.org/10.1021/jacs.7b03255
    16. Santanu Pattanayak, Andrew J. Jasniewski, Atanu Rana, Apparao Draksharapu, Kundan K. Singh, Andrew Weitz, Michael Hendrich, Lawrence Que, Jr., Abhishek Dey, and Sayam Sen Gupta . Spectroscopic and Reactivity Comparisons of a Pair of bTAML Complexes with FeV═O and FeIV═O Units. Inorganic Chemistry 2017, 56 (11) , 6352-6361. https://doi.org/10.1021/acs.inorgchem.7b00448
    17. Elizaveta A. Suturina, Joscha Nehrkorn, Joseph M. Zadrozny, Junjie Liu, Mihail Atanasov, Thomas Weyhermüller, Dimitrios Maganas, Stephen Hill, Alexander Schnegg, Eckhard Bill, Jeffrey R. Long, and Frank Neese . Magneto-Structural Correlations in Pseudotetrahedral Forms of the [Co(SPh)4]2– Complex Probed by Magnetometry, MCD Spectroscopy, Advanced EPR Techniques, and ab Initio Electronic Structure Calculations. Inorganic Chemistry 2017, 56 (5) , 3102-3118. https://doi.org/10.1021/acs.inorgchem.7b00097
    18. Erik Andris, Rafael Navrátil, Juraj Jašík, Thibault Terencio, Martin Srnec, Miquel Costas, and Jana Roithová . Chasing the Evasive Fe═O Stretch and the Spin State of the Iron(IV)–Oxo Complexes by Photodissociation Spectroscopy. Journal of the American Chemical Society 2017, 139 (7) , 2757-2765. https://doi.org/10.1021/jacs.6b12291
    19. Jane A. Knappenberger, Kenneth L. Knappenberger. Understanding Nanoparticle Electronic Spin‐State Dynamics and Properties Using Variable‐Temperature, Variable‐Field Magnetic Circular Photoluminescence. ChemPhysChem 2025, 26 (9) https://doi.org/10.1002/cphc.202401139
    20. Isabelle Becker, Massimiliano Morganti, Sophie Jana Gross, Serhiy Demeshko, Sebastian Dechert, Michael John, Franc Meyer. Axial Ligand Lability and Coordination Induced Spin State Variations of Tetracarbene Iron(II) Thiolato Complexes. European Journal of Inorganic Chemistry 2025, 28 (11) https://doi.org/10.1002/ejic.202400823
    21. Yuwei Ye, Xuebin Jiang, Qing Liu, Shengfa Ye, Liang Deng. [2Fe–2S] clusters supported by N -heterocyclic carbene ligands. Inorganic Chemistry Frontiers 2025, 74 https://doi.org/10.1039/D5QI00120J
    22. Haowei Chen, Peng Zhang, Shengfa Ye. Application of Wavefunction‐Based Multireference Calculations on Studies of High‐Valent Biomimetic Iron Complexes. 2024, 1-14. https://doi.org/10.1002/9781119951438.eibc2883
    23. Derek B. Rice, Deniz Wong, Thomas Weyhermüller, Frank Neese, Serena DeBeer. The spin-forbidden transition in iron(IV)-oxo catalysts relevant to two-state reactivity. Science Advances 2024, 10 (26) https://doi.org/10.1126/sciadv.ado1603
    24. Rami Shafei, Ai Hamano, Christophe Gourlaouen, Dimitrios Maganas, Keiko Takano, Chantal Daniel, Frank Neese. Theoretical spectroscopy for unraveling the intensity mechanism of the optical and photoluminescent spectra of chiral Re(I) transition metal complexes. The Journal of Chemical Physics 2023, 159 (8) https://doi.org/10.1063/5.0153742
    25. Nicolás Foglia, Bernardo De Souza, Dimitrios Maganas, Frank Neese. Including vibrational effects in magnetic circular dichroism spectrum calculations in the framework of excited state dynamics. The Journal of Chemical Physics 2023, 158 (15) https://doi.org/10.1063/5.0144845
    26. Tim P. Schlachta, Fritz E. Kühn. Cyclic iron tetra N-heterocyclic carbenes: synthesis, properties, reactivity, and catalysis. Chemical Society Reviews 2023, 52 (6) , 2238-2277. https://doi.org/10.1039/D2CS01064J
    27. Yang Liu, Stefan G. Resch, Haowei Chen, Sebastian Dechert, Serhiy Demeshko, Eckhard Bill, Shengfa Ye, Franc Meyer. Fully Delocalized Mixed‐Valent Cu 1.5 Cu 1.5 Complex: Strong Cu‐Cu interaction and Fast Electron Self‐Exchange Rate Despite Large Structural Changes**. Angewandte Chemie 2023, 135 (10) https://doi.org/10.1002/ange.202215840
    28. Yang Liu, Stefan G. Resch, Haowei Chen, Sebastian Dechert, Serhiy Demeshko, Eckhard Bill, Shengfa Ye, Franc Meyer. Fully Delocalized Mixed‐Valent Cu 1.5 Cu 1.5 Complex: Strong Cu‐Cu interaction and Fast Electron Self‐Exchange Rate Despite Large Structural Changes**. Angewandte Chemie International Edition 2023, 62 (10) https://doi.org/10.1002/anie.202215840
    29. Dominik Munz. Late transition metal-ligand multiple bonds: Covalency and reactivity. 2023, 189-236. https://doi.org/10.1016/bs.adioch.2023.08.005
    30. Abhishek Panwar, Maynak Pal, Mithun Roy. Photo-chemical aspects of iron complexes exhibiting photo-activated chemotherapy (PACT). Journal of Inorganic Biochemistry 2023, 238 , 112055. https://doi.org/10.1016/j.jinorgbio.2022.112055
    31. Nicolás O. Foglia, Dimitrios Maganas, Frank Neese. Going beyond the electric-dipole approximation in the calculation of absorption and (magnetic) circular dichroism spectra including scalar relativistic and spin–orbit coupling effects. The Journal of Chemical Physics 2022, 157 (8) https://doi.org/10.1063/5.0094709
    32. Milica Feldt, Quan Manh Phung. Ab Initio Methods in First‐Row Transition Metal Chemistry. European Journal of Inorganic Chemistry 2022, 2022 (15) https://doi.org/10.1002/ejic.202200014
    33. Suma Basappa, Ramesh Bhawar, D. H. Nagaraju, Shubhankar Kumar Bose. Recent advances in the chemistry of the phosphaethynolate and arsaethynolate anions. Dalton Transactions 2022, 51 (10) , 3778-3806. https://doi.org/10.1039/D1DT03994F
    34. Liang Deng, Zhenbo Mo. Organometallic Chemistry of NHCs and Analogues. 2022, 339-372. https://doi.org/10.1016/B978-0-12-820206-7.00027-5
    35. Jonas F. Schlagintweit, Philipp J. Altmann, Alexander D. Böth, Benjamin J. Hofmann, Christian Jandl, Clemens Kaußler, Linda Nguyen, Robert M. Reich, Alexander Pöthig, Fritz E. Kühn. Activation of Molecular Oxygen by a Cobalt(II) Tetra‐NHC Complex**. Chemistry – A European Journal 2021, 27 (4) , 1311-1315. https://doi.org/10.1002/chem.202004758
    36. Jin Lin, Qiangsheng Sun, Wei Sun. A DFT study on the C–H oxidation reactivity of Fe( iv )–oxo species with N4/N5 ligands derived from l -proline. RSC Advances 2021, 11 (4) , 2293-2297. https://doi.org/10.1039/D0RA08496D
    37. Ravi Kumar, Bhawana Pandey, Asmita Sen, Mursaleem Ansari, Sunita Sharma, Gopalan Rajaraman. Role of oxidation state, ferryl-oxygen, and ligand architecture on the reactivity of popular high-valent FeIV=O species: A theoretical perspective. Coordination Chemistry Reviews 2020, 419 , 213397. https://doi.org/10.1016/j.ccr.2020.213397
    38. Dimitrios Maganas, Joanna K. Kowalska, Casey Van Stappen, Serena DeBeer, Frank Neese. Mechanism of L2,3-edge x-ray magnetic circular dichroism intensity from quantum chemical calculations and experiment—A case study on V(IV)/V(III) complexes. The Journal of Chemical Physics 2020, 152 (11) https://doi.org/10.1063/1.5129029
    39. Peter Comba, Dieter Faltermeier, Saskia Krieg, Bodo Martin, Gopalan Rajaraman. Spin state and reactivity of iron( iv )oxido complexes with tetradentate bispidine ligands. Dalton Transactions 2020, 49 (9) , 2888-2894. https://doi.org/10.1039/C9DT04578C
    40. Dmitry B. Eremin, Ekaterina A. Denisova, Alexander Yu. Kostyukovich, Jonathan Martens, Giel Berden, Jos Oomens, Victor N. Khrustalev, Victor M. Chernyshev, Valentine P. Ananikov. Ionic Pd/NHC Catalytic System Enables Recoverable Homogeneous Catalysis: Mechanistic Study and Application in the Mizoroki–Heck Reaction. Chemistry – A European Journal 2019, 25 (72) , 16564-16572. https://doi.org/10.1002/chem.201903221
    41. Munmun Ghosh, Hanna H. Cramer, Sebastian Dechert, Serhiy Demeshko, Michael John, Max M. Hansmann, Shengfa Ye, Franc Meyer. A μ‐Phosphido Diiron Dumbbell in Multiple Oxidation States. Angewandte Chemie 2019, 131 (40) , 14487-14494. https://doi.org/10.1002/ange.201908213
    42. Munmun Ghosh, Hanna H. Cramer, Sebastian Dechert, Serhiy Demeshko, Michael John, Max M. Hansmann, Shengfa Ye, Franc Meyer. A μ‐Phosphido Diiron Dumbbell in Multiple Oxidation States. Angewandte Chemie International Edition 2019, 58 (40) , 14349-14356. https://doi.org/10.1002/anie.201908213
    43. Claudia Cordes (née Kupper), Massimiliano Morganti, Iris Klawitter, Claudia Schremmer, Sebastian Dechert, Franc Meyer. Disproportionation Equilibrium of a μ ‐Oxodiiron(III) Complex Giving Rise to C−H Activation Reactivity: Structural Snapshot of a Unique Oxoiron(IV) Adduct. Angewandte Chemie 2019, 131 (32) , 10971-10974. https://doi.org/10.1002/ange.201900683
    44. Claudia Cordes (née Kupper), Massimiliano Morganti, Iris Klawitter, Claudia Schremmer, Sebastian Dechert, Franc Meyer. Disproportionation Equilibrium of a μ ‐Oxodiiron(III) Complex Giving Rise to C−H Activation Reactivity: Structural Snapshot of a Unique Oxoiron(IV) Adduct. Angewandte Chemie International Edition 2019, 58 (32) , 10855-10858. https://doi.org/10.1002/anie.201900683
    45. Lisa Roy. Theoretical Identification of the Factors Governing the Reactivity of C−H Bond Activation by Non‐Heme Iron(IV)‐Oxo Complexes. ChemPlusChem 2019, 84 (7) , 893-906. https://doi.org/10.1002/cplu.201900178
    46. Claudia Schremmer, Claudia Cordes (née Kupper), Iris Klawitter, Marie Bergner, Christine E. Schiewer, Sebastian Dechert, Serhiy Demeshko, Michael John, Franc Meyer. Spin‐State Variations of Iron(III) Complexes with Tetracarbene Macrocycles. Chemistry – A European Journal 2019, 25 (15) , 3918-3929. https://doi.org/10.1002/chem.201805855
    47. Yonaton N. Heit, Dumitru-Claudiu Sergentu, Jochen Autschbach. Magnetic circular dichroism spectra of transition metal complexes calculated from restricted active space wavefunctions. Physical Chemistry Chemical Physics 2019, 21 (10) , 5586-5597. https://doi.org/10.1039/C8CP07849A
    48. Justin K. Kirkland, Shahriar N. Khan, Bryan Casale, Evangelos Miliordos, Konstantinos D. Vogiatzis. Ligand field effects on the ground and excited states of reactive FeO 2+ species. Physical Chemistry Chemical Physics 2018, 20 (45) , 28786-28795. https://doi.org/10.1039/C8CP05372C
    49. Juan Chen, Wesley R. Browne. Photochemistry of iron complexes. Coordination Chemistry Reviews 2018, 374 , 15-35. https://doi.org/10.1016/j.ccr.2018.06.008
    50. Ravi Kumar, Azaj Ansari, Gopalan Rajaraman. Axial vs. Equatorial Ligand Rivalry in Controlling the Reactivity of Iron(IV)‐Oxo Species: Single‐State vs. Two‐State Reactivity. Chemistry – A European Journal 2018, 24 (26) , 6818-6827. https://doi.org/10.1002/chem.201800380
    51. Lucie Jašíková, Jana Roithová. Infrared Multiphoton Dissociation Spectroscopy with Free‐Electron Lasers: On the Road from Small Molecules to Biomolecules. Chemistry – A European Journal 2018, 24 (14) , 3374-3390. https://doi.org/10.1002/chem.201705692
    52. Patrick J. Herbert, Utsab Mitra, Kenneth L. Knappenberger. Variable-temperature variable-field magnetic circular photoluminescence (VTVH-MCPL) spectroscopy for electronic-structure determination in nanoscale chemical systems. Optics Letters 2017, 42 (23) , 4833. https://doi.org/10.1364/OL.42.004833
    53. Frank Neese. Kombination von hochwertiger Spektroskopie, Quantenchemie und Katalyse: nicht nur eine Modeerscheinung. Angewandte Chemie 2017, 129 (37) , 11147-11154. https://doi.org/10.1002/ange.201701163
    54. Frank Neese. High‐Level Spectroscopy, Quantum Chemistry, and Catalysis: Not just a Passing Fad. Angewandte Chemie International Edition 2017, 56 (37) , 11003-11010. https://doi.org/10.1002/anie.201701163
    55. Fabián G. Cantú Reinhard, Sam P. de Visser. Oxygen Atom Transfer Using an Iron(IV)‐Oxo Embedded in a Tetracyclic N‐Heterocyclic Carbene System: How Does the Reactivity Compare to Cytochrome P450 Compound I?. Chemistry – A European Journal 2017, 23 (12) , 2935-2944. https://doi.org/10.1002/chem.201605505
    56. Frédéric Gendron, Valerie E. Fleischauer, Thomas J. Duignan, Brian L. Scott, Matthias W. Löble, Samantha K. Cary, Stosh A. Kozimor, Hélène Bolvin, Michael L. Neidig, Jochen Autschbach. Magnetic circular dichroism of UCl 6 − in the ligand-to-metal charge-transfer spectral region. Physical Chemistry Chemical Physics 2017, 19 (26) , 17300-17313. https://doi.org/10.1039/C7CP02572F
    57. Nathalie Camus, Nathalie Le Bris, Selbi Nuryyeva, Matthieu Chessé, David Esteban-Gómez, Carlos Platas-Iglesias, Raphaël Tripier, Mourad Elhabiri. Tuning the copper( ii ) coordination properties of cyclam by subtle chemical modifications. Dalton Transactions 2017, 46 (34) , 11479-11490. https://doi.org/10.1039/C7DT00750G

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2016, 138, 43, 14312–14325
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.6b07708
    Published September 28, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    3936

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.