ACS Publications. Most Trusted. Most Cited. Most Read
Hydrogen Transfer Pathways during Zeolite Catalyzed Methanol Conversion to Hydrocarbons
My Activity

Figure 1Loading Img
    Article

    Hydrogen Transfer Pathways during Zeolite Catalyzed Methanol Conversion to Hydrocarbons
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr., 4, 85747 Garching, Germany
    Clariant Produkte (Deutschland) GmbH, Waldheimer Str. 13, 83052 Bruckmühl, Germany
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2016, 138, 49, 15994–16003
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.6b09605
    Published November 16, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Hydrogen transfer is the major route in catalytic conversion of methanol to olefins (MTO) for the formation of nonolefinic byproducts, including alkanes and aromatics. Two separate, noninterlinked hydrogen transfer pathways have been identified. In the absence of methanol, hydrogen transfer occurs between olefins and naphthenes via protonation of the olefin and the transfer of the hydride to the carbenium ion. A hitherto unidentified hydride transfer pathway involving Lewis and Brønsted acid sites dominates as long as methanol is present in the reacting mixture, leading to aromatics and alkanes. Experiments with purely Lewis acidic ZSM-5 showed that methanol and propene react on Lewis acid sites to HCHO and propane. In turn, HCHO reacts with olefins stepwise to aromatic molecules on Brønsted acid sites. The aromatic molecules formed at Brønsted acid sites have a high tendency to convert to irreversibly adsorbed carbonaceous deposits and are responsible for the critical deactivation in the methanol to olefin process.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b09605.

    • Additional results on the conversion and product distribution for MeOH reaction, MeOH/DMM cofeeding reaction, 1-hexene reaction and 1-methoxypropane reaction; XRD pattern of the sample H-ZSM-5 (B 68, L 39) (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 304 publications.

    1. Shanfan Lin, Hua Li, Peng Tian, Yingxu Wei, Mao Ye, Zhongmin Liu. Methanol to Olefins (MTO): Understanding and Regulating Dynamic Complex Catalysis. Journal of the American Chemical Society 2025, 147 (14) , 11585-11607. https://doi.org/10.1021/jacs.4c12145
    2. Felix Warnecke, Lin Lin, Stéphane Haag, Hannsjörg Freund. Mechanistic Investigations and Kinetic Modeling of Hydrogen Transfer Reactions in Olefin Cracking Processes over H-ZSM-5. Industrial & Engineering Chemistry Research 2025, 64 (12) , 6321-6340. https://doi.org/10.1021/acs.iecr.4c04140
    3. Qian Ma, Tingjun Fu, Chuntao Cao, Xueqing Wu, Zhong Li. Ultrathin ZSM-5 Shell Constructed on an S-1 Crystal Surface for Prins Reaction to Boost Methanol Aromatization with High Catalytic Stability. ACS Catalysis 2025, 15 (3) , 2082-2094. https://doi.org/10.1021/acscatal.4c07004
    4. Xingxing Wang, Chao Wang, Yueying Chu, Yinghao Liu, Min Hu, Feng Deng, Jun Xu, Jihong Yu. Deciphering the Link between Zeolite Crystal Size, Brønsted Acid Site Distribution, and Dual-Cycle Selectivity in Methanol-to-Olefins over Zeolite. ACS Catalysis 2024, 14 (20) , 15609-15621. https://doi.org/10.1021/acscatal.4c05555
    5. Jinsong Luo, Tianci Xiao, Wu Wen, Jun Bao, Chengyuan Liu, Yang Pan. Effects of Acid Sites and Formaldehyde Decomposition on the Catalyst Lifetime for Methanol-to-Olefins over Ca-Modified HZSM-5. ACS Catalysis 2024, 14 (18) , 14078-14088. https://doi.org/10.1021/acscatal.4c02842
    6. Annika E. Enss, Philipp Huber, Philipp N. Plessow, Felix Studt. Methanol-Mediated Hydrogen Transfer Reactions at Surface Lewis Acid Sites of H-SSZ-13. The Journal of Physical Chemistry C 2024, 128 (37) , 15367-15379. https://doi.org/10.1021/acs.jpcc.4c03408
    7. Chao Wang, Tomás Aztiria, Przemyslaw Rzepka, René Verel, Jun Xu, Feng Deng, Jeroen A. van Bokhoven, Vladimir Paunović. Structural Changes of ZSM-5 Catalysts during Methanol-to-Hydrocarbons Conversion Processes. ACS Catalysis 2024, 14 (16) , 12410-12424. https://doi.org/10.1021/acscatal.4c02625
    8. Luca Maggiulli, Vitaly L. Sushkevich, Oliver Kröcher, Jeroen A. van Bokhoven, Davide Ferri. Correlating the Nature of Carbenium Ions in Zeolites to the Product Distribution in the Methanol-to-Olefins Process. ACS Catalysis 2024, 14 (15) , 11477-11489. https://doi.org/10.1021/acscatal.4c03185
    9. Yifeng Zhu, Ran Luo, Honghong Shi, Katherine Koh, Libor Kovarik, John L. Fulton, Johannes A. Lercher, Zhi-Jian Zhao, Jinlong Gong, Oliver Y. Gutiérrez. Formation of (Rh–Fe)–FeOx Complex Sites Enables Methanol Synthesis from CO2. ACS Catalysis 2024, 14 (13) , 10031-10039. https://doi.org/10.1021/acscatal.4c00339
    10. Tianci Xiao, Jinsong Luo, Weixiong Huang, Lilin Lu, Chengyuan Liu, Yang Pan. Revealing Formaldehyde-Mediated Methanol-to-Aromatics Reactions over Zn-Modified Zeolites by Observing the Oxygenated and Polyunsaturated Intermediates. ACS Catalysis 2024, 14 (9) , 6881-6896. https://doi.org/10.1021/acscatal.4c00020
    11. Przemyslaw Rzepka, Denis Sheptyakov, Chao Wang, Jeroen A. van Bokhoven, Vladimir Paunović. How Micropore Topology Influences the Structure and Location of Coke in Zeolite Catalysts. ACS Catalysis 2024, 14 (8) , 5593-5604. https://doi.org/10.1021/acscatal.4c00025
    12. Chao Wang, Mingji Zheng, Min Hu, Wenjin Cai, Yueying Chu, Qiang Wang, Jun Xu, Feng Deng. Unraveling Spatially Dependent Hydrophilicity and Reactivity of Confined Carbocation Intermediates during Methanol Conversion over ZSM-5 Zeolite. Journal of the American Chemical Society 2024, 146 (12) , 8688-8696. https://doi.org/10.1021/jacs.4c01155
    13. Ke Ma, Siyuan Zhao, Meixin Dou, Xiaoxun Ma, Chengyi Dai. Enhancing the Stability of Methanol-to-Olefins Reaction Catalyzed by SAPO-34 Zeolite in the Presence of CO2 and Oxygen-Vacancy-Rich ZnCeZrOx. ACS Catalysis 2024, 14 (2) , 594-607. https://doi.org/10.1021/acscatal.3c04707
    14. Charles W. P. Pare, Przemyslaw Rzepka, Patrick Hemberger, Andras Bodi, Roland Hauert, Jeroen A. van Bokhoven, Vladimir Paunović. Formaldehyde-Induced Deactivation of ZSM5 Catalysts during the Methanol-to-Hydrocarbons Conversion. ACS Catalysis 2024, 14 (1) , 463-474. https://doi.org/10.1021/acscatal.3c04279
    15. Bingyu Liu, Yongchao Wang, Ying Xie, Linfei Xiao, Wei Wang, Wei Wu. yIn2O3-ZnZrOx/Hierarchical ZSM-5 Tandem Catalysts for CO2 Hydrogenation to Aromatics Rich in Tetramethylbenzene. ACS Sustainable Chemistry & Engineering 2023, 11 (49) , 17340-17354. https://doi.org/10.1021/acssuschemeng.3c04853
    16. Sergei A. Chernyak, Massimo Corda, Maya Marinova, Olga V. Safonova, Vita A. Kondratenko, Evgenii V. Kondratenko, Yury G. Kolyagin, Kang Cheng, Vitaly V. Ordomsky, Andrei Y. Khodakov. Decisive Influence of SAPO-34 Zeolite on Light Olefin Selectivity in Methanol-Meditated CO2 Hydrogenation over Metal Oxide-Zeolite Catalysts. ACS Catalysis 2023, 13 (22) , 14627-14638. https://doi.org/10.1021/acscatal.3c03759
    17. Jingxiu Xie, Unni Olsbye. The Oxygenate-Mediated Conversion of COx to Hydrocarbons─On the Role of Zeolites in Tandem Catalysis. Chemical Reviews 2023, 123 (20) , 11775-11816. https://doi.org/10.1021/acs.chemrev.3c00058
    18. Stefan Peters, Carolin Rieg, Stephan Bartling, Magdalena Parlinska-Wojtan, Michael Dyballa, Sebastian Wohlrab, Ali M. Abdel-Mageed. Accessibility of Reactants and Neighborhood of Mo Species during Methane Aromatization Uncovered by Operando NAP-XPS and MAS NMR. ACS Catalysis 2023, 13 (19) , 13056-13070. https://doi.org/10.1021/acscatal.3c02385
    19. Liangliang Zhang, Tingjun Fu, Yating Han, Ran Wang, Zhong Li. Relay and Feedback Conversion Effect of Hydrocarbons between ZSM-5 Grains on Product Selectivity and Coke Formation during Methanol Aromatization. ACS Catalysis 2023, 13 (14) , 9524-9541. https://doi.org/10.1021/acscatal.3c01332
    20. Daniel Dittmann, Carolin Rieg, Zheng Li, Elif Kaya, Michael Dyballa. Better Performance in C2-Conversion to Aromatics by Optimized Feed and Catalysts. Energy & Fuels 2023, 37 (6) , 4566-4579. https://doi.org/10.1021/acs.energyfuels.3c00356
    21. Hansel Montalvo-Castro, Mykela DeLuca, Lauren Kilburn, David Hibbitts. Mechanisms and Kinetics of the Dehydrogenation of C6–C8 Cycloalkanes, Cycloalkenes, and Cyclodienes to Aromatics in H-MFI Zeolite Framework. ACS Catalysis 2023, 13 (1) , 99-112. https://doi.org/10.1021/acscatal.2c03360
    22. Xuan Gong, Yiru Ye, Abhishek Dutta Chowdhury. Evaluating the Role of Descriptor- and Spectator-Type Reaction Intermediates During the Early Phases of Zeolite Catalysis. ACS Catalysis 2022, 12 (24) , 15463-15500. https://doi.org/10.1021/acscatal.2c04600
    23. Annapurna Sri Sowmya Turuga, Arno de Klerk. Free Radical and Cationic Addition due to Clay Minerals Found in Bitumen Froth at 250 °C Probed with Use of α-Methylstyrene and 1-Octene. Energy & Fuels 2022, 36 (23) , 14148-14162. https://doi.org/10.1021/acs.energyfuels.2c03017
    24. Vladimir Paunović, Patrick Hemberger, Andras Bodi, Roland Hauert, Jeroen A. van Bokhoven. Impact of Nonzeolite-Catalyzed Formation of Formaldehyde on the Methanol-to-Hydrocarbons Conversion. ACS Catalysis 2022, 12 (21) , 13426-13434. https://doi.org/10.1021/acscatal.2c02953
    25. Sheng Fan, Han Wang, Shipei He, Kai Yuan, Pengfei Wang, Junfen Li, Sen Wang, Zhangfeng Qin, Mei Dong, Weibin Fan, Jianguo Wang. Formation and Evolution of Methylcyclohexene in the Initial Period of Methanol to Olefins over H-ZSM-5. ACS Catalysis 2022, 12 (20) , 12477-12487. https://doi.org/10.1021/acscatal.2c03410
    26. Nini Zhang, Sheng-Li Chen, Ruyue Zhu, Wei Sun. Evolution Pathway and Role of Intermediates Acetaldehyde and Acetone Formed During the Methanol-to-Olefins Reaction. Energy & Fuels 2022, 36 (20) , 12708-12718. https://doi.org/10.1021/acs.energyfuels.2c01858
    27. Yu Sun, Shiwei Cao, Jie Wang, He Tang, Zhengkang Yang, Tong Ma, Yanjun Gong, Guang Mo, Zhihong Li. Fabrication of Twin-Free Nanoslab ZSM-5 Zeolite with b-Axis Orientation for Super MTP Catalyst. ACS Sustainable Chemistry & Engineering 2022, 10 (29) , 9431-9442. https://doi.org/10.1021/acssuschemeng.2c01813
    28. Philipp Huber, Felix Studt, Philipp N. Plessow. Reactivity of Surface Lewis and Brønsted Acid Sites in Zeolite Catalysis: A Computational Case Study of DME Synthesis Using H-SSZ-13. The Journal of Physical Chemistry C 2022, 126 (13) , 5896-5905. https://doi.org/10.1021/acs.jpcc.2c00668
    29. Chuncheng Liu, Evgeny A. Uslamin, Elena Khramenkova, Enrico Sireci, Lucas T. L. J. Ouwehand, Swapna Ganapathy, Freek Kapteijn, Evgeny A. Pidko. High Stability of Methanol to Aromatic Conversion over Bimetallic Ca,Ga-Modified ZSM-5. ACS Catalysis 2022, 12 (5) , 3189-3200. https://doi.org/10.1021/acscatal.1c05481
    30. Jingxiu Xie, Daniel S. Firth, Tomás Cordero-Lanzac, Alessia Airi, Chiara Negri, Sigurd Øien-Ødegaard, Karl Petter Lillerud, Silvia Bordiga, Unni Olsbye. MAPO-18 Catalysts for the Methanol to Olefins Process: Influence of Catalyst Acidity in a High-Pressure Syngas (CO and H2) Environment. ACS Catalysis 2022, 12 (2) , 1520-1531. https://doi.org/10.1021/acscatal.1c04694
    31. Ashley T. Smith, Philipp N. Plessow, Felix Studt. Trends in the Reactivity of Proximate Aluminum Sites in H-SSZ-13. The Journal of Physical Chemistry C 2021, 125 (30) , 16508-16515. https://doi.org/10.1021/acs.jpcc.1c03509
    32. Teng Li, Tuiana Shoinkhorova, Jorge Gascon, Javier Ruiz-Martínez. Aromatics Production via Methanol-Mediated Transformation Routes. ACS Catalysis 2021, 11 (13) , 7780-7819. https://doi.org/10.1021/acscatal.1c01422
    33. Jason S. Lee, Stavros Caratzoulas, Raul F. Lobo. Carbocation-Mediated Cyclization of Trienes in Acid Zeolites. The Journal of Physical Chemistry A 2021, 125 (19) , 4062-4069. https://doi.org/10.1021/acs.jpca.0c11574
    34. Yuxuan Huang, Hongfang Ma, Zhiqiang Xu, Weixin Qian, Haitao Zhang, Weiyong Ying. Direct Conversion of Syngas to Light Olefins over a ZnCrOx + H-SSZ-13 Bifunctional Catalyst. ACS Omega 2021, 6 (16) , 10953-10962. https://doi.org/10.1021/acsomega.1c00751
    35. Tuiana Shoinkhorova, Tomas Cordero-Lanzac, Adrian Ramirez, Sang-ho Chung, Abhay Dokania, Javier Ruiz-Martinez, Jorge Gascon. Highly Selective and Stable Production of Aromatics via High-Pressure Methanol Conversion. ACS Catalysis 2021, 11 (6) , 3602-3613. https://doi.org/10.1021/acscatal.0c05133
    36. Brandon L. Foley, Blake A. Johnson, Aditya Bhan. Kinetic Evaluation of Deactivation Pathways in Methanol-to-Hydrocarbon Catalysis on HZSM-5 with Formaldehyde, Olefinic, Dieneic, and Aromatic Co-Feeds. ACS Catalysis 2021, 11 (6) , 3628-3637. https://doi.org/10.1021/acscatal.0c05335
    37. Mizuho Yabushita, Hiroki Kobayashi, Ryota Osuga, Masafumi Nakaya, Masaki Matsubara, Sachiko Maki, Kiyoshi Kanie, Atsushi Muramatsu. Mechanochemical Approach to Preparation of MFI Zeolites Substituted Isomorphously by Both Al and Fe as Durable Catalysts for the Dimethyl Ether to Olefin Reaction. Industrial & Engineering Chemistry Research 2021, 60 (5) , 2079-2088. https://doi.org/10.1021/acs.iecr.0c05386
    38. Zhichen Shi, Matthew Neurock, Aditya Bhan. Methanol-to-Olefins Catalysis on HSSZ-13 and HSAPO-34 and Its Relationship to Acid Strength. ACS Catalysis 2021, 11 (3) , 1222-1232. https://doi.org/10.1021/acscatal.0c04011
    39. Gen Li, Feng Jiao, Xiulian Pan, Na Li, Dengyun Miao, Lin Li, Xinhe Bao. Role of SAPO-18 Acidity in Direct Syngas Conversion to Light Olefins. ACS Catalysis 2020, 10 (21) , 12370-12375. https://doi.org/10.1021/acscatal.0c03257
    40. Chengyi Dai, Xiao Zhao, Borui Hu, Jiaxing Zhang, Qingqing Hao, Huiyong Chen, Xinwen Guo, Xiaoxun Ma. Hydrogenation of CO2 to Aromatics over Fe–K/Alkaline Al2O3 and P/ZSM-5 Tandem Catalysts. Industrial & Engineering Chemistry Research 2020, 59 (43) , 19194-19202. https://doi.org/10.1021/acs.iecr.0c03598
    41. Zhiqiang Xu, Hongfang Ma, Yuxuan Huang, Weixin Qian, Haitao Zhang, Weiyong Ying. Synthesis of Submicron SSZ-13 with Tunable Acidity by the Seed-Assisted Method and Its Performance and Coking Behavior in the MTO Reaction. ACS Omega 2020, 5 (38) , 24574-24583. https://doi.org/10.1021/acsomega.0c03075
    42. Brandon L. Foley, Aditya Bhan. Transient and Steady-State Kinetic Studies of Formaldehyde Alkylation of Benzene to Form Diphenylmethane on HZSM-5 Catalysts. ACS Catalysis 2020, 10 (18) , 10436-10448. https://doi.org/10.1021/acscatal.0c02991
    43. Philipp N. Plessow, Felix Studt. How Accurately Do Approximate Density Functionals Predict Trends in Acidic Zeolite Catalysis?. The Journal of Physical Chemistry Letters 2020, 11 (11) , 4305-4310. https://doi.org/10.1021/acs.jpclett.0c01240
    44. Bahram Ghanbari, Fatemeh Kazemi Zangeneh, Zahra Taheri Rizi, Erfan Aghaei. High-Impact Promotional Effect of Mo Impregnation on Aluminum-Rich and Alkali-Treated Hierarchical Zeolite Catalysts on Methanol Aromatization. ACS Omega 2020, 5 (21) , 11971-11986. https://doi.org/10.1021/acsomega.9b04407
    45. Huiqiu Wang, Yilin Hou, Wenjing Sun, Qikun Hu, Hao Xiong, Tiefeng Wang, Binhang Yan, Weizhong Qian. Insight into the Effects of Water on the Ethene to Aromatics Reaction with HZSM-5. ACS Catalysis 2020, 10 (9) , 5288-5298. https://doi.org/10.1021/acscatal.9b05552
    46. Mykela DeLuca, Christina Janes, David Hibbitts. Contrasting Arene, Alkene, Diene, and Formaldehyde Hydrogenation in H-ZSM-5, H-SSZ-13, and H-SAPO-34 Frameworks during MTO. ACS Catalysis 2020, 10 (8) , 4593-4607. https://doi.org/10.1021/acscatal.9b04529
    47. Min Hu, Chao Wang, Xiuzhi Gao, Yueying Chu, Guodong Qi, Qiang Wang, Guangtong Xu, Jun Xu, Feng Deng. Establishing a Link Between the Dual Cycles in Methanol-to-Olefins Conversion on H-ZSM-5: Aromatization of Cycloalkenes. ACS Catalysis 2020, 10 (7) , 4299-4305. https://doi.org/10.1021/acscatal.0c00838
    48. Nini Zhang, Ruyue Zhu, Sheng-Li Chen, Nan Chen, Yingqian Cao, Liya Ma, Tao Wu, Wei Sun. Insight into the Coke Precursor in the Process of the Methanol-to-Olefins Reaction. Energy & Fuels 2020, 34 (1) , 742-748. https://doi.org/10.1021/acs.energyfuels.9b02861
    49. Youming Ni, Wenliang Zhu, Zhongmin Liu. H-ZSM-5-Catalyzed Hydroacylation Involved in the Coupling of Methanol and Formaldehyde to Aromatics. ACS Catalysis 2019, 9 (12) , 11398-11403. https://doi.org/10.1021/acscatal.9b03474
    50. Andrew Hwang, Aditya Bhan. Deactivation of Zeolites and Zeotypes in Methanol-to-Hydrocarbons Catalysis: Mechanisms and Circumvention. Accounts of Chemical Research 2019, 52 (9) , 2647-2656. https://doi.org/10.1021/acs.accounts.9b00204
    51. Bo Yu, Chuanmin Ding, Junwen Wang, Yongkang Zhang, Yuanyuan Meng, Jinxiang Dong, Hui Ge, Xuekuan Li. Dual Effects of Zinc Species on Active Sites in Bifunctional Composite Catalysts Zr/H[Zn]ZSM-5 for Alkylation of Benzene with Syngas. The Journal of Physical Chemistry C 2019, 123 (31) , 18993-19004. https://doi.org/10.1021/acs.jpcc.9b03990
    52. Aihua Xing, Nini Zhang, Delin Yuan, Hua Liu, Yu Sang, Ping Miao, Qi Sun, Mingsheng Luo. Relationship between Acidity, Defective Sites, and Diffusion Properties of Nanosheet ZSM-5 and Its Catalytic Performance in the Methanol to Propylene Reaction. Industrial & Engineering Chemistry Research 2019, 58 (28) , 12506-12515. https://doi.org/10.1021/acs.iecr.9b00325
    53. Liu Yang, Tingting Yan, Chuanming Wang, Weili Dai, Guangjun Wu, Michael Hunger, Weibin Fan, Zaiku Xie, Naijia Guan, Landong Li. Role of Acetaldehyde in the Roadmap from Initial Carbon–Carbon Bonds to Hydrocarbons during Methanol Conversion. ACS Catalysis 2019, 9 (7) , 6491-6501. https://doi.org/10.1021/acscatal.9b00641
    54. Jong Hun Kang, Faisal H. Alshafei, Stacey I. Zones, Mark E. Davis. Cage-Defining Ring: A Molecular Sieve Structural Indicator for Light Olefin Product Distribution from the Methanol-to-Olefins Reaction. ACS Catalysis 2019, 9 (7) , 6012-6019. https://doi.org/10.1021/acscatal.9b00746
    55. Sukaran S. Arora, Zhichen Shi, Aditya Bhan. Mechanistic Basis for Effects of High-Pressure H2 Cofeeds on Methanol-to-Hydrocarbons Catalysis over Zeolites. ACS Catalysis 2019, 9 (7) , 6407-6414. https://doi.org/10.1021/acscatal.9b00969
    56. Alfred Haas, Christoph Hauber, Marius Kirchmann. Time-Resolved Product Analysis of Dimethyl Ether-to-Olefins Conversion on SAPO-34. ACS Catalysis 2019, 9 (6) , 5679-5691. https://doi.org/10.1021/acscatal.9b00765
    57. Philipp N. Plessow, Ashley Smith, Steffen Tischer, Felix Studt. Identification of the Reaction Sequence of the MTO Initiation Mechanism Using Ab Initio-Based Kinetics. Journal of the American Chemical Society 2019, 141 (14) , 5908-5915. https://doi.org/10.1021/jacs.9b00585
    58. Delin Yuan, Yu Sang, Aihua Xing, Chuanfu Wang, Ping Miao, Qi Sun. Tuning of Magnesium Distribution in ZSM-5 via Different Impregnation Methods and Its Effect on Methanol to Propene Reaction. Industrial & Engineering Chemistry Research 2019, 58 (13) , 5112-5120. https://doi.org/10.1021/acs.iecr.8b04434
    59. Zhiqiang Ma, Marc D. Porosoff. Development of Tandem Catalysts for CO2 Hydrogenation to Olefins. ACS Catalysis 2019, 9 (3) , 2639-2656. https://doi.org/10.1021/acscatal.8b05060
    60. Junjie Li, Min Liu, Shanshan Li, Xinwen Guo, Chunshan Song. Influence of Diffusion and Acid Properties on Methane and Propane Selectivity in Methanol-to-Olefins Reaction. Industrial & Engineering Chemistry Research 2019, 58 (5) , 1896-1905. https://doi.org/10.1021/acs.iecr.8b03969
    61. Claudia Cammarano, Elodie Gay, Annie Finiels, François Fajula, Vasile Hulea. Toluene Methylation by Methyl Mercaptan and Methanol over Zeolites—A Comparative Study. ACS Catalysis 2019, 9 (1) , 605-609. https://doi.org/10.1021/acscatal.8b04608
    62. Zoran Ristanović, Abhishek Dutta Chowdhury, Rasmus Y. Brogaard, Klaartje Houben, Marc Baldus, Johan Hofkens, Maarten B. J. Roeffaers, Bert M. Weckhuysen. Reversible and Site-Dependent Proton-Transfer in Zeolites Uncovered at the Single-Molecule Level. Journal of the American Chemical Society 2018, 140 (43) , 14195-14205. https://doi.org/10.1021/jacs.8b08041
    63. Hongyu An, Fei Zhang, Zaihong Guan, Xuebin Liu, Fengtao Fan, Can Li. Investigating the Coke Formation Mechanism of H-ZSM-5 during Methanol Dehydration Using Operando UV–Raman Spectroscopy. ACS Catalysis 2018, 8 (10) , 9207-9215. https://doi.org/10.1021/acscatal.8b00928
    64. Pan Gao, Jun Xu, Guodong Qi, Chao Wang, Qiang Wang, Yanxi Zhao, Yuhua Zhang, Ningdong Feng, Xingling Zhao, Jinlin Li, Feng Deng. A Mechanistic Study of Methanol-to-Aromatics Reaction over Ga-Modified ZSM-5 Zeolites: Understanding the Dehydrogenation Process. ACS Catalysis 2018, 8 (10) , 9809-9820. https://doi.org/10.1021/acscatal.8b03076
    65. Michiel Dusselier, Mark E. Davis. Small-Pore Zeolites: Synthesis and Catalysis. Chemical Reviews 2018, 118 (11) , 5265-5329. https://doi.org/10.1021/acs.chemrev.7b00738
    66. Toshiki Nishitoba, Naohiro Yoshida, Junko N. Kondo, Toshiyuki Yokoi. Control of Al Distribution in the CHA-Type Aluminosilicate Zeolites and Its Impact on the Hydrothermal Stability and Catalytic Properties. Industrial & Engineering Chemistry Research 2018, 57 (11) , 3914-3922. https://doi.org/10.1021/acs.iecr.7b04985
    67. Daniel Rojo-Gama, Lukasz Mentel, Georgios N. Kalantzopoulos, Dimitrios K. Pappas, Iurii Dovgaliuk, Unni Olsbye, Karl Petter Lillerud, Pablo Beato, Lars F. Lundegaard, David S. Wragg, Stian Svelle. Deactivation of Zeolite Catalyst H-ZSM-5 during Conversion of Methanol to Gasoline: Operando Time- and Space-Resolved X-ray Diffraction. The Journal of Physical Chemistry Letters 2018, 9 (6) , 1324-1328. https://doi.org/10.1021/acs.jpclett.8b00094
    68. Chong Liu, Rutger A. van Santen, Ali Poursaeidesfahani, Thijs J. H. Vlugt, Evgeny A. Pidko, and Emiel J. M. Hensen . Hydride Transfer versus Deprotonation Kinetics in the Isobutane–Propene Alkylation Reaction: A Computational Study. ACS Catalysis 2017, 7 (12) , 8613-8627. https://doi.org/10.1021/acscatal.7b02877
    69. John R. Di Iorio, Claire T. Nimlos, and Rajamani Gounder . Introducing Catalytic Diversity into Single-Site Chabazite Zeolites of Fixed Composition via Synthetic Control of Active Site Proximity. ACS Catalysis 2017, 7 (10) , 6663-6674. https://doi.org/10.1021/acscatal.7b01273
    70. Fan Lin, Yifei Yang, and Ya-Huei Chin . Kinetic Requirements of Aldehyde Transfer Hydrogenation Catalyzed by Microporous Solid Brønsted Acid Catalysts. ACS Catalysis 2017, 7 (10) , 6909-6914. https://doi.org/10.1021/acscatal.7b01403
    71. Ya Wang, Sheng-Li Chen, Yu-Li Gao, Ying-Qian Cao, Qi Zhang, Wei-Ke Chang, and Jay B. Benziger . Enhanced Methanol to Olefin Catalysis by Physical Mixtures of SAPO-34 Molecular Sieve and MgO. ACS Catalysis 2017, 7 (9) , 5572-5584. https://doi.org/10.1021/acscatal.7b01285
    72. Juan S. Martínez-Espín, Kristof De Wispelaere, Ton V. W. Janssens, Stian Svelle, Karl Petter Lillerud, Pablo Beato, Veronique Van Speybroeck, Unni Olsbye. Hydrogen Transfer versus Methylation: On the Genesis of Aromatics Formation in the Methanol-To-Hydrocarbons Reaction over H-ZSM-5. ACS Catalysis 2017, 7 (9) , 5773-5780. https://doi.org/10.1021/acscatal.7b01643
    73. Guo Shiou Foo, Guoxiang Hu, Zachary D. Hood, Meijun Li, De-en Jiang, and Zili Wu . Kinetics and Mechanism of Methanol Conversion over Anatase Titania Nanoshapes. ACS Catalysis 2017, 7 (8) , 5345-5356. https://doi.org/10.1021/acscatal.7b01456
    74. E. Borodina, H. Sharbini Harun Kamaluddin, F. Meirer, M. Mokhtar, A. M. Asiri, S. A. Al-Thabaiti, S. N. Basahel, J. Ruiz-Martinez, and B. M. Weckhuysen . Influence of the Reaction Temperature on the Nature of the Active and Deactivating Species During Methanol-to-Olefins Conversion over H-SAPO-34. ACS Catalysis 2017, 7 (8) , 5268-5281. https://doi.org/10.1021/acscatal.7b01497
    75. Andrew Hwang and Aditya Bhan . Bifunctional Strategy Coupling Y2O3-Catalyzed Alkanal Decomposition with Methanol-to-Olefins Catalysis for Enhanced Lifetime. ACS Catalysis 2017, 7 (7) , 4417-4422. https://doi.org/10.1021/acscatal.7b00894
    76. Zhichao Guo, Qingteng Chen, Jian Liu, Bo Yang. Discovery of ketene/acetyl as a potential receptor for hydrogen-transfer reactions in zeolites. Nature Communications 2025, 16 (1) https://doi.org/10.1038/s41467-024-55514-1
    77. Yiyang Lin, Haitao Yin, Shuang Chen, Jiaqi Wang, Wen Li, Yining Gao, Mingyuan Sheng, Nanzhe Jiang. Research and progress in catalyst modification for ZSM-5 zeolite catalyzed ethanol-to hydrocarbon reaction. Journal of Industrial and Engineering Chemistry 2025, 146 , 87-108. https://doi.org/10.1016/j.jiec.2024.11.031
    78. Marius Drexler, Victor Zaghini Francesconi, Ulrich Arnold, Thomas A. Zevaco, Jörg Sauer. Production of oxymethylene ethers (OME) as sustainable diesel fuel substitutes: continuous synthesis from dimethyl ether and trioxane and evaluation of catalyst stability. RSC Sustainability 2025, 3 (4) , 1941-1956. https://doi.org/10.1039/D4SU00818A
    79. Ruiliang Gao, Shanjun Mao, Bing Lu, Wencong Liu, Yong Wang. Efficient Upcycling of Polyolefin Waste to Light Aromatics via Coupling C─C Scission and Carbonylation. Angewandte Chemie International Edition 2025, 3 https://doi.org/10.1002/anie.202424334
    80. Ruiliang Gao, Shanjun Mao, Bing Lu, Wencong Liu, Yong Wang. Efficient Upcycling of Polyolefin Waste to Light Aromatics via Coupling C─C Scission and Carbonylation. Angewandte Chemie 2025, 3 https://doi.org/10.1002/ange.202424334
    81. Eric D. Hernandez, Dipti Bhave, Friederike C. Jentoft. Spectroscopic summation of surface species as a measure of zeolite hydride transfer activity. Journal of Catalysis 2025, 443 , 115917. https://doi.org/10.1016/j.jcat.2024.115917
    82. Daniel Dittmann, Alime Ileri, Dennis Strassheim, Michael Dyballa. Higher BTEX aromatic yield from ethanol over desilicated H,Zn-[Al]ZSM-5 catalysts. Catalysis Science & Technology 2025, 15 (4) , 1028-1040. https://doi.org/10.1039/D4CY01062K
    83. Ginu R. George, Adam Yonge, Meagan F. Crowley, Anh T. To, Peter N. Ciesielski, Canan Karakaya. Multiscale characterization, modeling and simulation of packed bed reactor for direct conversion of syngas to dimethyl ether. RSC Sustainability 2025, 3 (2) , 856-874. https://doi.org/10.1039/D4SU00602J
    84. Ahmed Sajid, Julien Devos, Sven Robijns, Thibaut Donckels, Ibrahim Khalil, Michiel Dusselier. Role of coupling and zeolite acidity in the methanol-mediated CO2 conversion to olefins over ZnZrOx-AEI zeolite tandem catalysis. Journal of Catalysis 2025, 442 , 115927. https://doi.org/10.1016/j.jcat.2024.115927
    85. Jinsong Luo, Tianci Xiao, Chengyuan Liu, Yang Pan. Recent Progress on the Involvement of Formaldehyde in the Methanol‐To‐Hydrocarbons Reaction. ChemSusChem 2025, 18 (2) https://doi.org/10.1002/cssc.202400884
    86. Xuan Gong, Shican Jiang, Alla Dikhtiarenko, Stefan Adrian F. Nastase, Edy Abou‐Hamad, Yiru Ye, Hexun Zhou, Xinyu You, Rushana Khairova, Javier Patarroyo, Luigi Cavallo, Jorge Gascon, Abhishek Dutta Chowdhury. The Paradoxical Influence of Hydrothermally Treated Zeolites on the Hydrocarbon Pool Mechanism. Angewandte Chemie International Edition 2025, 64 (2) https://doi.org/10.1002/anie.202414724
    87. Xuan Gong, Shican Jiang, Alla Dikhtiarenko, Stefan Adrian F. Nastase, Edy Abou‐Hamad, Yiru Ye, Hexun Zhou, Xinyu You, Rushana Khairova, Javier Patarroyo, Luigi Cavallo, Jorge Gascon, Abhishek Dutta Chowdhury. The Paradoxical Influence of Hydrothermally Treated Zeolites on the Hydrocarbon Pool Mechanism. Angewandte Chemie 2025, 137 (2) https://doi.org/10.1002/ange.202414724
    88. Xin Zhang, Xinyu You, Yunfan Wang, Hexun Zhou, Xue Zhou, Abhishek Dutta Chowdhury. The catalytic relevance of hydrothermally substituted Zn on the zeolite ZSM-5 during the methanol-to-aromatics process. Catalysis Science & Technology 2025, 15 (1) , 185-192. https://doi.org/10.1039/D4CY01168F
    89. Marzieh Hamidzadeh, Mohadese Nazari, Solmaz Shifteh, Ali Abdolali. Optimizing H-B-ZSM-5 catalyst for efficient methanol-to-propylene conversion via precise control of NaOH-TPABr interaction. Microporous and Mesoporous Materials 2025, 381 , 113344. https://doi.org/10.1016/j.micromeso.2024.113344
    90. Chao Wang, Min Hu, Jun Xu, Feng Deng. Mechanistic studies of zeolite catalysis via in situ solid-state nuclear magnetic resonance spectroscopy: progress and prospects. Frontiers of Chemical Science and Engineering 2025, 19 (1) https://doi.org/10.1007/s11705-024-2505-2
    91. Canan Karakaya, Hai-Ying Chen. Model-based optimization strategies for direct hydrogenation of carbon dioxide to dimethyl ether. Chemical Engineering Journal 2025, 503 , 157448. https://doi.org/10.1016/j.cej.2024.157448
    92. Héctor Vicente, Andrés T. Aguayo, Pedro Castaño, Ana G. Gayubo. A global methanol-to-hydrocarbons (MTH) model with H-ZSM-5 catalyst acidity descriptors. Fuel 2024, 378 , 132777. https://doi.org/10.1016/j.fuel.2024.132777
    93. Xin Shang, Jingfeng Han, Qiao Han, Guangjin Hou, Anmin Zheng, Xiaofeng Yang, Zhiqiang Liu, Guodong Liu, Xiong Su, Yanqiang Huang, Tao Zhang. Regulating anisotropic diffusion in zeolite for reinforced para-xylene synthesis via CO2 hydrogenation in the presence of toluene. Applied Catalysis B: Environment and Energy 2024, 359 , 124523. https://doi.org/10.1016/j.apcatb.2024.124523
    94. Zareta M. Matieva, Yulia M. Snatenkova, Natalia V. Kolesnichenko, Konstantin I. Dement'ev. Direct synthesis of liquid hydrocarbons from CO2 and H2 over bifunctional ZnCrOx-НZSM-5 combined and composite catalysts in a single reactor. International Journal of Hydrogen Energy 2024, 94 , 320-330. https://doi.org/10.1016/j.ijhydene.2024.11.023
    95. Tianci Xiao, Jinsong Luo, Chengyuan Liu, Yang Pan. Tracking the coupling conversion of C1-C4 aldehydes with methanol-to-hydrocarbon reaction. Applied Catalysis A: General 2024, 687 , 119948. https://doi.org/10.1016/j.apcata.2024.119948
    96. Yifan Guo, Ran Wang, Liangliang Zhang, Tingjun Fu, Zhong Li. Constructing hollow bivalve nanocomposite ZSM-5 with inverse Al zoned distribution to strengthen the stepwise conversion of methanol to aromatics. Applied Catalysis A: General 2024, 31 , 120008. https://doi.org/10.1016/j.apcata.2024.120008
    97. Xin Zhang, Xuan Gong, Edy Abou‐Hamad, Hexun Zhou, Xinyu You, Jorge Gascon, Abhishek Dutta Chowdhury. Selectivity Descriptors of Methanol‐to‐Aromatics Process over 3‐Dimensional Zeolites. Angewandte Chemie 2024, 136 (43) https://doi.org/10.1002/ange.202411197
    98. Qin Zhao, Fang Li, Yiran Wang, Yueming Liu, Mingyuan He. Acid strength controlled reaction pathways of propylene conversion under olefin cracking conditions over ZSM-5. Fuel 2024, 371 , 132077. https://doi.org/10.1016/j.fuel.2024.132077
    99. Michael Dyballa, Zheng Li, Daniel Dittmann. Boron vs. Aluminum in ZSM-5 Zeolites: Solid-state NMR, Acidity, and C1/C2 Reactant Conversion. Microporous and Mesoporous Materials 2024, 82 , 113353. https://doi.org/10.1016/j.micromeso.2024.113353
    100. Xin Zhang, Xuan Gong, Edy Abou‐Hamad, Hexun Zhou, Xinyu You, Jorge Gascon, Abhishek Dutta Chowdhury. Selectivity Descriptors of Methanol‐to‐Aromatics Process over 3‐Dimensional Zeolites. Angewandte Chemie International Edition 2024, 26 https://doi.org/10.1002/anie.202411197
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2016, 138, 49, 15994–16003
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.6b09605
    Published November 16, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    6221

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.