ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Inhibition of Huntingtin Exon-1 Aggregation by the Molecular Tweezer CLR01

View Author Information
Department of Physical Chemistry II, Ruhr-University Bochum, 44780 Bochum, Germany
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
§ Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44780 Bochum, Germany
Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90095, United States
# Department of Biological Chemistry and UCLA/DOE Institute of Genomics and Proteomics, University of California at Los Angeles, Los Angeles, California 90095, United States
Institute of Organic Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
Department of Neurology, David Geffen School of Medicine, Brain Research Institute, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095-7334, United States
Cite this: J. Am. Chem. Soc. 2017, 139, 16, 5640–5643
Publication Date (Web):April 13, 2017
https://doi.org/10.1021/jacs.6b11039
Copyright © 2017 American Chemical Society

    Article Views

    2161

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Huntington’s disease is a neurodegenerative disorder associated with the expansion of the polyglutamine tract in the exon-1 domain of the huntingtin protein (htte1). Above a threshold of 37 glutamine residues, htte1 starts to aggregate in a nucleation-dependent manner. A 17-residue N-terminal fragment of htte1 (N17) has been suggested to play a crucial role in modulating the aggregation propensity and toxicity of htte1. Here we identify N17 as a potential target for novel therapeutic intervention using the molecular tweezer CLR01. A combination of biochemical experiments and computer simulations shows that binding of CLR01 induces structural rearrangements within the htte1 monomer and inhibits htte1 aggregation, underpinning the key role of N17 in modulating htte1 toxicity.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b11039.

    • Computational and experimental methods, supporting results with the corresponding figures and tables, and Cartesian coordinates of the QM regions (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 45 publications.

    1. Carter Lantz, Jaybree Lopez, Andrew K. Goring, Muhammad A. Zenaidee, Karl Biggs, Julian P. Whitelegge, Rachel R. Ogorzalek Loo, Frank-Gerrit Klärner, Thomas Schrader, Gal Bitan, Joseph A. Loo. Characterization of Molecular Tweezer Binding on α-Synuclein with Native Top-Down Mass Spectrometry and Ion Mobility-Mass Spectrometry Reveals a Mechanism for Aggregation Inhibition. Journal of the American Society for Mass Spectrometry 2023, 34 (12) , 2739-2747. https://doi.org/10.1021/jasms.3c00281
    2. Hash Brown Taha, Esha Chawla, Gal Bitan. IM-MS and ECD-MS/MS Provide Insight into Modulation of Amyloid Proteins Self-Assembly by Peptides and Small Molecules. Journal of the American Society for Mass Spectrometry 2023, 34 (10) , 2066-2086. https://doi.org/10.1021/jasms.3c00065
    3. Alexander Hautke, Arthur Voronin, Fathia Idiris, Anton Riel, Felix Lindner, Amandine Lelièvre-Büttner, Jikang Zhu, Bettina Appel, Edoardo Fatti, Karsten Weis, Sabine Müller, Alexander Schug, Simon Ebbinghaus. CAG-Repeat RNA Hairpin Folding and Recruitment to Nuclear Speckles with a Pivotal Role of ATP as a Cosolute. Journal of the American Chemical Society 2023, 145 (17) , 9571-9583. https://doi.org/10.1021/jacs.2c13653
    4. Augustina Jozeliu̅naitė, Tomas Javorskis, Vytenis Vaitkevičius, Vytautas Klimavičius, Edvinas Orentas. Fully Supramolecular Chiral Hydrogen-Bonded Molecular Tweezer. Journal of the American Chemical Society 2022, 144 (18) , 8231-8241. https://doi.org/10.1021/jacs.2c01455
    5. Jack L. Bennett, Giang T. H. Nguyen, William A. Donald. Protein–Small Molecule Interactions in Native Mass Spectrometry. Chemical Reviews 2022, 122 (8) , 7327-7385. https://doi.org/10.1021/acs.chemrev.1c00293
    6. Yasser B. Ruiz-Blanco, Elsa Sanchez-Garcia. CL-FEP: An End-State Free Energy Perturbation Approach. Journal of Chemical Theory and Computation 2020, 16 (3) , 1396-1410. https://doi.org/10.1021/acs.jctc.9b00725
    7. Sanda Nastasia Moldovean, Vasile Chiş. Molecular Dynamics Simulations Applied to Structural and Dynamical Transitions of the Huntingtin Protein: A Review. ACS Chemical Neuroscience 2020, 11 (2) , 105-120. https://doi.org/10.1021/acschemneuro.9b00561
    8. Virender Singh, Kinjal A. Patel, Raj Kumar Sharma, Pratik R. Patil, Abhayraj S. Joshi, Rashmi Parihar, Thamarailingam Athilingam, Neeraj Sinha, Subramaniam Ganesh, Pradip Sinha, Ipsita Roy, Ashwani Kumar Thakur. Discovery of Arginine Ethyl Ester as Polyglutamine Aggregation Inhibitor: Conformational Transitioning of Huntingtin N-Terminus Augments Aggregation Suppression. ACS Chemical Neuroscience 2019, 10 (9) , 3969-3985. https://doi.org/10.1021/acschemneuro.9b00167
    9. Liyuan Zhao, Yanru Xin, Yanan Li, Xiangliang Yang, Liang Luo, Fanling Meng. Ultraeffective Inhibition of Amyloid Fibril Assembly by Nanobody–Gold Nanoparticle Conjugates. Bioconjugate Chemistry 2019, 30 (1) , 29-33. https://doi.org/10.1021/acs.bioconjchem.8b00797
    10. Michael Nshanian, Carter Lantz, Piriya Wongkongkathep, Thomas Schrader, Frank-Gerrit Klärner, Anika Blümke, Clément Despres, Michael Ehrmann, Caroline Smet-Nocca, Gal Bitan, Joseph A. Loo. Native Top-Down Mass Spectrometry and Ion Mobility Spectrometry of the Interaction of Tau Protein with a Molecular Tweezer Assembly Modulator. Journal of the American Society for Mass Spectrometry 2019, 30 (1) , 16-23. https://doi.org/10.1007/s13361-018-2027-6
    11. Virender Singh, R. N. V. Krishna Deepak, Bhaswati Sengupta, Abhayraj S. Joshi, Hao Fan, Pratik Sen, Ashwani Kumar Thakur. Calmidazolium Chloride and Its Complex with Serum Albumin Prevent Huntingtin Exon1 Aggregation. Molecular Pharmaceutics 2018, 15 (8) , 3356-3368. https://doi.org/10.1021/acs.molpharmaceut.8b00380
    12. Sumit Mittal, Kenny Bravo-Rodriguez, Elsa Sanchez-Garcia. Mechanism of Inhibition of Beta Amyloid Toxicity by Supramolecular Tweezers. The Journal of Physical Chemistry B 2018, 122 (15) , 4196-4205. https://doi.org/10.1021/acs.jpcb.7b10530
    13. Sam van Dun, Christian Ottmann, Lech-Gustav Milroy, and Luc Brunsveld . Supramolecular Chemistry Targeting Proteins. Journal of the American Chemical Society 2017, 139 (40) , 13960-13968. https://doi.org/10.1021/jacs.7b01979
    14. Rakesh Mishra, Gabriella J. Gerlach, Bankanidhi Sahoo, Carlos J. Camacho, Ronald Wetzel. A targetable self-association surface of the huntingtin exon1 helical tetramer required for assembly of amyloid pre-nucleation oligomers. Journal of Molecular Biology 2024, 147 , 168607. https://doi.org/10.1016/j.jmb.2024.168607
    15. Debabrata Maity. Recent advances in the modulation of amyloid protein aggregation using the supramolecular host-guest approaches. Biophysical Chemistry 2023, 297 , 107022. https://doi.org/10.1016/j.bpc.2023.107022
    16. Mohammed Khaled, Birgit Strodel, Abdallah Sayyed-Ahmad. Comparative molecular dynamics simulations of pathogenic and non-pathogenic huntingtin protein monomers and dimers. Frontiers in Molecular Biosciences 2023, 10 https://doi.org/10.3389/fmolb.2023.1143353
    17. Oluwatosin A. Saibu, Sodiq O. Hammed, Oladapo O. Oladipo, Tope T. Odunitan, Temitope M. Ajayi, Aderonke J. Adejuyigbe, Boluwatife T. Apanisile, Oluwatoba E. Oyeneyin, Adenrele T. Oluwafemi, Tolulope Ayoola, Olamide T. Olaoba, Abdullahi O. Alausa, Damilola A. Omoboyowa. Protein-protein interaction and interference of carcinogenesis by supramolecular modifications. Bioorganic & Medicinal Chemistry 2023, 81 , 117211. https://doi.org/10.1016/j.bmc.2023.117211
    18. Hedieh Shahpasand-Kroner, Ibrar Siddique, Ravinder Malik, Gabriel R. Linares, Magdalena I. Ivanova, Justin Ichida, Tatjana Weil, Jan Münch, Elsa Sanchez-Garcia, Frank-Gerrit Klärner, Thomas Schrader, Gal Bitan, . Molecular Tweezers: Supramolecular Hosts with Broad-Spectrum Biological Applications. Pharmacological Reviews 2023, 75 (2) , 263-308. https://doi.org/10.1124/pharmrev.122.000654
    19. Nirnay Samanta, Yasser B. Ruiz‐Blanco, Zamira Fetahaj, David Gnutt, Carter Lantz, Joseph A. Loo, Elsa Sanchez‐Garcia, Simon Ebbinghaus. Superoxide Dismutase 1 Folding Stability as a Target for Molecular Tweezers in SOD1‐Related Amyotrophic Lateral Sclerosis. ChemBioChem 2022, 23 (21) https://doi.org/10.1002/cbic.202200396
    20. Jiaming Guan, Zhijian Song, Guanghong Wei, Qin Qiao. Distinct binding interactions trigger opposite conformational modulations on pathogenic and wildtype Huntingtin exon 1 proteins. Physical Chemistry Chemical Physics 2022, 24 (40) , 24959-24974. https://doi.org/10.1039/D2CP03173F
    21. Xin Zhou, Mingsong Shi, Xin Wang, Dingguo Xu. Exploring the Binding Mechanism of a Supramolecular Tweezer CLR01 to 14-3-3σ Protein via Well-Tempered Metadynamics. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.921695
    22. Oliver Brylski, Puja Shrestha, Philip J. House, Patricia Gnutt, Jonathan Wolf Mueller, Simon Ebbinghaus. Disease-Related Protein Variants of the Highly Conserved Enzyme PAPSS2 Show Marginal Stability and Aggregation in Cells. Frontiers in Molecular Biosciences 2022, 9 https://doi.org/10.3389/fmolb.2022.860387
    23. Annika Meiners, Sandra Bäcker, Inesa Hadrović, Christian Heid, Christine Beuck, Yasser B. Ruiz-Blanco, Joel Mieres-Perez, Marius Pörschke, Jean-Noël Grad, Cecilia Vallet, Daniel Hoffmann, Peter Bayer, Elsa Sánchez-García, Thomas Schrader, Shirley K. Knauer. Specific inhibition of the Survivin–CRM1 interaction by peptide-modified molecular tweezers. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-21753-9
    24. Wenbing Cao, Xuewen Qin, Tao Liu. When Supramolecular Chemistry Meets Chemical Biology: New Strategies to Target Proteins through Host‐Guest Interactions. ChemBioChem 2021, 22 (20) , 2914-2917. https://doi.org/10.1002/cbic.202100357
    25. Yunna Li, Yun Xia, Sijia Yin, Fang Wan, Junjie Hu, Liang Kou, Yadi Sun, Jiawei Wu, Qiulu Zhou, Jinsha Huang, Nian Xiong, Tao Wang. Targeting Microglial α-Synuclein/TLRs/NF-kappaB/NLRP3 Inflammasome Axis in Parkinson’s Disease. Frontiers in Immunology 2021, 12 https://doi.org/10.3389/fimmu.2021.719807
    26. Wenbing Cao, Xuewen Qin, Yong Wang, Zhen Dai, Xianyin Dai, Haoyu Wang, Weimin Xuan, Yingming Zhang, Yu Liu, Tao Liu. A General Supramolecular Approach to Regulate Protein Functions by Cucurbit[7]uril and Unnatural Amino Acid Recognition. Angewandte Chemie 2021, 133 (20) , 11296-11300. https://doi.org/10.1002/ange.202100916
    27. Wenbing Cao, Xuewen Qin, Yong Wang, Zhen Dai, Xianyin Dai, Haoyu Wang, Weimin Xuan, Yingming Zhang, Yu Liu, Tao Liu. A General Supramolecular Approach to Regulate Protein Functions by Cucurbit[7]uril and Unnatural Amino Acid Recognition. Angewandte Chemie International Edition 2021, 60 (20) , 11196-11200. https://doi.org/10.1002/anie.202100916
    28. Christoph Rumancev, Tobias Vöpel, Susan Stuhr, Andreas R. von Gundlach, Tobias Senkbeil, Markus Osterhoff, Michael Sprung, Vasil M. Garamus, Simon Ebbinghaus, Axel Rosenhahn. In Cellulo Analysis of Huntingtin Inclusion Bodies by Cryogenic Nanoprobe SAXS. ChemSystemsChem 2021, 3 (3) https://doi.org/10.1002/syst.202000050
    29. Anisha Thomas, Gagandeep Kaur, Rafat Ali, Sandeep Verma. Small Molecule Inhibitors for Amyloid Aggregation. 2021, 153-193. https://doi.org/10.1002/9783527811014.ch6
    30. Rebecca Beveridge, Antonio N. Calabrese. Structural Proteomics Methods to Interrogate the Conformations and Dynamics of Intrinsically Disordered Proteins. Frontiers in Chemistry 2021, 9 https://doi.org/10.3389/fchem.2021.603639
    31. Gopa Mitra. Emerging Role of Mass Spectrometry‐Based Structural Proteomics in Elucidating Intrinsic Disorder in Proteins. PROTEOMICS 2021, 21 (3-4) https://doi.org/10.1002/pmic.202000011
    32. Ali Abdullah Issa, Hasan R. Obayes. Capture carcinogenic aromatic compounds by the design of new tweezer compounds: a theoretical study. Journal of Molecular Modeling 2020, 26 (10) https://doi.org/10.1007/s00894-020-04558-3
    33. Béatrice Legouin, Arnaud Bondon, Clément Orione, Solenn Ferron, Philippe Uriac. Study of the self-association of molecular tweezers bearing two different arms: influence of the stereoelectronic effects of the arm substituents. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2020, 96 (1-2) , 101-109. https://doi.org/10.1007/s10847-019-00954-2
    34. Joel Mieres-Perez, Elsa Sanchez-Garcia. Quantum mechanics/molecular mechanics multiscale modeling of biomolecules. 2020, 143-183. https://doi.org/10.1016/bs.apoc.2020.08.002
    35. Gopa Mitra. Application of native mass spectrometry in studying intrinsically disordered proteins: A special focus on neurodegenerative diseases. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2019, 1867 (11) , 140260. https://doi.org/10.1016/j.bbapap.2019.07.013
    36. Lei Li, Nelli Erwin, Simone Möbitz, Felix Niemeyer, Thomas Schrader, Roland Hermann Alfons Winter. Dissociation of the Signaling Protein K‐Ras4B from Lipid Membranes Induced by a Molecular Tweezer. Chemistry – A European Journal 2019, 25 (42) , 9827-9833. https://doi.org/10.1002/chem.201901861
    37. Michael C. Owen, David Gnutt, Mimi Gao, Sebastian K. T. S. Wärmländer, Jüri Jarvet, Astrid Gräslund, Roland Winter, Simon Ebbinghaus, Birgit Strodel. Effects of in vivo conditions on amyloid aggregation. Chemical Society Reviews 2019, 48 (14) , 3946-3996. https://doi.org/10.1039/C8CS00034D
    38. Joydev Hatai, Carsten Schmuck. Artificial Peptide and Protein Receptors. 2019, 79-113. https://doi.org/10.1002/9783527814923.ch3
    39. David Gnutt, Linda Sistemich, Simon Ebbinghaus. Protein Folding Modulation in Cells Subject to Differentiation and Stress. Frontiers in Molecular Biosciences 2019, 6 https://doi.org/10.3389/fmolb.2019.00038
    40. Oliver Brylski, Simon Ebbinghaus, Jonathan W. Mueller. Melting Down Protein Stability: PAPS Synthase 2 in Patients and in a Cellular Environment. Frontiers in Molecular Biosciences 2019, 6 https://doi.org/10.3389/fmolb.2019.00031
    41. Amira Mbarek, Ghina Moussa, Jeanne Leblond Chain. Pharmaceutical Applications of Molecular Tweezers, Clefts and Clips. Molecules 2019, 24 (9) , 1803. https://doi.org/10.3390/molecules24091803
    42. Mingsong Shi, Dingguo Xu. Molecular Dynamics Investigations Suggest a Non-specific Recognition Strategy of 14-3-3σ Protein by Tweezer: Implication for the Inhibition Mechanism. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00237
    43. Ravinder Malik, Helen Meng, Piriya Wongkongkathep, Christian I. Corrales, Niki Sepanj, Ryan S. Atlasi, Frank-Gerrit Klärner, Thomas Schrader, Melissa J. Spencer, Joseph A. Loo, Martina Wiedau, Gal Bitan. The molecular tweezer CLR01 inhibits aberrant superoxide dismutase 1 (SOD1) self-assembly in vitro and in the G93A-SOD1 mouse model of ALS. Journal of Biological Chemistry 2019, 294 (10) , 3501-3513. https://doi.org/10.1074/jbc.RA118.005940
    44. Gustavo Fuertes, Laura Nevola, Santiago Esteban-Martín. Perspectives on drug discovery strategies based on IDPs. 2019, 275-327. https://doi.org/10.1016/B978-0-12-816348-1.00009-0
    45. Anne S. Wagner, Antonio Z. Politi, Anne Ast, Kenny Bravo-Rodriguez, Katharina Baum, Alexander Buntru, Nadine U. Strempel, Lydia Brusendorf, Christian Hänig, Annett Boeddrich, Stephanie Plassmann, Konrad Klockmeier, Juan M. Ramirez-Anguita, Elsa Sanchez-Garcia, Jana Wolf, Erich E. Wanker. Self-assembly of Mutant Huntingtin Exon-1 Fragments into Large Complex Fibrillar Structures Involves Nucleated Branching. Journal of Molecular Biology 2018, 430 (12) , 1725-1744. https://doi.org/10.1016/j.jmb.2018.03.017

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect