ACS Publications. Most Trusted. Most Cited. Most Read
Chemoenzymatic Approach for the Preparation of Asymmetric Bi-, Tri-, and Tetra-Antennary N-Glycans from a Common Precursor
My Activity

Figure 1Loading Img
    Article

    Chemoenzymatic Approach for the Preparation of Asymmetric Bi-, Tri-, and Tetra-Antennary N-Glycans from a Common Precursor
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
    ‡ § Complex Carbohydrate Research Center and §Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
    Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
    Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2017, 139, 2, 1011–1018
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.6b12080
    Published December 21, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Progress in glycoscience is hampered by a lack of well-defined complex oligosaccharide standards that are needed to fabricate the next generation of microarrays, to develop analytical protocols to determine exact structures of isolated glycans, and to elucidate pathways of glycan biosynthesis. We describe here a chemoenzymatic methodology that makes it possible, for the first time, to prepare any bi-, tri-, and tetra-antennary asymmetric N-glycan from a single precursor. It is based on the chemical synthesis of a tetra-antennary glycan that has N-acetylglucosamine (GlcNAc), N-acetyllactosamine (LacNAc), and unnatural Galα(1,4)-GlcNAc and Manβ(1,4)-GlcNAc appendages. Mammalian glycosyltransferases recognize only the terminal LacNAc moiety as a substrate, and thus this structure can be uniquely extended. Next, the β-GlcNAc terminating antenna can be converted into LacNAc by galactosylation and can then be enzymatically modified into a complex structure. The unnatural α-Gal and β-Man terminating antennae can sequentially be decaged by an appropriate glycosidase to liberate a terminal β-GlcNAc moiety, which can be converted into LacNAc and then elaborated by a panel of glycosyltransferases. Asymmetric bi- and triantennary glycans could be obtained by removal of a terminal β-GlcNAc moiety by treatment with β-N-acetylglucosaminidase and selective extension of the other arms. The power of the methodology is demonstrated by the preparation of an asymmetric tetra-antennary N-glycan found in human breast carcinoma tissue, which represents the most complex N-glycan ever synthesized. Multistage mass spectrometry of the two isomeric triantennary glycans uncovered unique fragment ions that will facilitate identification of exact structures of glycans in biological samples.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b12080.

    • Synthetic protocols, compounds characterization of glycans, and NMR spectra (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 74 publications.

    1. Dongfang Li, Can Li, Qiushi Chen, Haiyan Zhou, Zhixiang Zhong, Zirong Huang, Han Liu, Xuechen Li. Generalizing a Ligation Site at the N-Glycosylation Sequon for Chemical Synthesis of N-Linked Glycopeptides and Glycoproteins. Journal of the American Chemical Society 2024, 146 (42) , 29017-29027. https://doi.org/10.1021/jacs.4c09996
    2. Yunfei Wu, Gerlof P. Bosman, Digantkumar Chapla, Chin Huang, Kelley W. Moremen, Robert P. de Vries, Geert-Jan Boons. A Biomimetic Synthetic Strategy Can Provide Keratan Sulfate I and II Oligosaccharides with Diverse Fucosylation and Sulfation Patterns. Journal of the American Chemical Society 2024, 146 (13) , 9230-9240. https://doi.org/10.1021/jacs.4c00363
    3. Chang-Cheng Liu, Jinfeng Ye, Hongzhi Cao. Chemical Evolution of Enzyme-Catalyzed Glycosylation. Accounts of Chemical Research 2024, 57 (4) , 636-647. https://doi.org/10.1021/acs.accounts.3c00754
    4. Joshua C.L. Maliepaard, J. Mirjam A. Damen, Geert-Jan P.H. Boons, Karli R. Reiding. Glycoproteomics-Compatible MS/MS-Based Quantification of Glycopeptide Isomers. Analytical Chemistry 2023, 95 (25) , 9605-9614. https://doi.org/10.1021/acs.analchem.3c01319
    5. Jincai Wang, Yingle Feng, Taotao Sun, Qi Zhang, Yonghai Chai. Photolabile 2-(2-Nitrophenyl)-propyloxycarbonyl (NPPOC) for Stereoselective Glycosylation and Its Application in Consecutive Assembly of Oligosaccharides. The Journal of Organic Chemistry 2022, 87 (5) , 3402-3421. https://doi.org/10.1021/acs.joc.1c03006
    6. Zhaoyu Hu, Mounir Benkoulouche, Louis-Antoine Barel, Guillaume Le Heiget, Akli Ben Imeddourene, Yann Le Guen, Nelly Monties, Catherine Guerreiro, Magali Remaud-Siméon, Claire Moulis, Isabelle André, Laurence A. Mulard. Convergent Chemoenzymatic Strategy to Deliver a Diversity of Shigella flexneri Serotype-Specific O-Antigen Segments from a Unique Lightly Protected Tetrasaccharide Core. The Journal of Organic Chemistry 2021, 86 (3) , 2058-2075. https://doi.org/10.1021/acs.joc.0c00777
    7. Rajendra S. Rohokale, Qingjiang Li, Zhongwu Guo. A Diversity-Oriented Strategy for Chemical Synthesis of Glycosphingolipids: Synthesis of Glycosphingolipid LcGg4 and Its Analogues and Derivatives. The Journal of Organic Chemistry 2021, 86 (2) , 1633-1648. https://doi.org/10.1021/acs.joc.0c02490
    8. Sujeet Pawar, Li Hsu, Thatikonda Narendar Reddy, Mettu Ravinder, Chien-Tai Ren, Yu-Wei Lin, Yang-Yu Cheng, Tzu-Wen Lin, Tsui-Ling Hsu, Sheng-Kai Wang, Chi-Huey Wong, Chung-Yi Wu. Synthesis of Asymmetric N-Glycans as Common Core Substrates for Structural Diversification through Selective Enzymatic Glycosylation. ACS Chemical Biology 2020, 15 (9) , 2382-2394. https://doi.org/10.1021/acschembio.0c00359
    9. Kim Le Mai Hoang, Alonso Pardo-Vargas, Yuntao Zhu, Yang Yu, Mirco Loria, Martina Delbianco, Peter H. Seeberger. Traceless Photolabile Linker Expedites the Chemical Synthesis of Complex Oligosaccharides by Automated Glycan Assembly. Journal of the American Chemical Society 2019, 141 (22) , 9079-9086. https://doi.org/10.1021/jacs.9b03769
    10. Larissa Krasnova, Chi-Huey Wong. Oligosaccharide Synthesis and Translational Innovation. Journal of the American Chemical Society 2019, 141 (9) , 3735-3754. https://doi.org/10.1021/jacs.8b11005
    11. Suvarn S. Kulkarni, Cheng-Chung Wang, Narayana Murthy Sabbavarapu, Ananda Rao Podilapu, Pin-Hsuan Liao, Shang-Cheng Hung. “One-Pot” Protection, Glycosylation, and Protection–Glycosylation Strategies of Carbohydrates. Chemical Reviews 2018, 118 (17) , 8025-8104. https://doi.org/10.1021/acs.chemrev.8b00036
    12. Liuqing Wen, Garrett Edmunds, Christopher Gibbons, Jiabin Zhang, Madhusudhan Reddy Gadi, Hailiang Zhu, Junqiang Fang, Xianwei Liu, Yun Kong, Peng George Wang. Toward Automated Enzymatic Synthesis of Oligosaccharides. Chemical Reviews 2018, 118 (17) , 8151-8187. https://doi.org/10.1021/acs.chemrev.8b00066
    13. Chao Li, Lai-Xi Wang. Chemoenzymatic Methods for the Synthesis of Glycoproteins. Chemical Reviews 2018, 118 (17) , 8359-8413. https://doi.org/10.1021/acs.chemrev.8b00238
    14. Yuta Maki, Takanori Mima, Ryo Okamoto, Masayuki Izumi, and Yasuhiro Kajihara . Semisynthesis of Complex-Type Biantennary Oligosaccharides Containing Lactosamine Repeating Units from a Biantennary Oligosaccharide Isolated from a Natural Source. The Journal of Organic Chemistry 2018, 83 (1) , 443-451. https://doi.org/10.1021/acs.joc.7b02485
    15. Ivan A. Gagarinov, Lin Liu, Geert-Jan Boons. Chemical Synthesis of Oligosaccharides Derived from Streptococcus pneumoniae Serotype 35B and D to Investigate Binding of Complement and Serum Factors. 2025https://doi.org/10.1101/2025.01.28.635287
    16. Carmanah D. Hunter, Christopher W. Cairo. Detection Strategies for Sialic Acid and Sialoglycoconjugates. ChemBioChem 2024, 25 (23) https://doi.org/10.1002/cbic.202400402
    17. Shengzhou Ma, Jinhua Gao, Yinping Tian, Liuqing Wen. Recent progress in chemoenzymatic synthesis of human glycans. Organic & Biomolecular Chemistry 2024, 22 (38) , 7767-7785. https://doi.org/10.1039/D4OB01006J
    18. Fangyu Wei, Lanlan Zang, Pengfei Zhang, Jiabin Zhang, Liuqing Wen. Concise chemoenzymatic synthesis of N-glycans. Chem 2024, 10 (9) , 2844-2860. https://doi.org/10.1016/j.chempr.2024.05.006
    19. Zhi-Fei Hu, Kan Zhong, Hongzhi Cao. Recent advances in enzymatic and chemoenzymatic synthesis of N- and O-glycans. Current Opinion in Chemical Biology 2024, 78 , 102417. https://doi.org/10.1016/j.cbpa.2023.102417
    20. Mehman Bunyatov, Margreet A. Wolfert, Lin Liu, Ruth Huizinga, Marco W. J. Schreurs, Bart C. Jacobs, Geert-Jan Boons. Chemoenzymatic synthesis of human natural killer-1-containing glycans and application as serum antibodies probes. Nature Synthesis 2024, 3 (1) , 85-98. https://doi.org/10.1038/s44160-023-00394-4
    21. Joshua M Kofsky, Jonathan L Babulic, Marie E Boddington, Fabiola V De León González, Chantelle J Capicciotti. Glycosyltransferases as versatile tools to study the biology of glycans. Glycobiology 2023, 33 (11) , 888-910. https://doi.org/10.1093/glycob/cwad092
    22. Koichi Fukase, Yoshiyuki Manabe, Atsushi Shimoyama. Diacetyl strategy for synthesis of NHAc containing glycans: enhancing glycosylation reactivity via diacetyl imide protection. Frontiers in Chemistry 2023, 11 https://doi.org/10.3389/fchem.2023.1319883
    23. Chih-Lan Lin, Mirat Sojitra, Eric J. Carpenter, Ellen S. Hayhoe, Susmita Sarkar, Elizabeth A. Volker, Chao Wang, Duong T. Bui, Loretta Yang, John S. Klassen, Peng Wu, Matthew S. Macauley, Todd L. Lowary, Ratmir Derda. Chemoenzymatic synthesis of genetically-encoded multivalent liquid N-glycan arrays. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-40900-y
    24. Wenjing Ma, Zhuojia Xu, Yuhan Jiang, Jialin Liu, Dandan Xu, Wei Huang, Tiehai Li. Divergent Enzymatic Assembly of a Comprehensive 64‐Membered IgG N ‐Glycan Library for Functional Glycomics. Advanced Science 2023, 10 (30) https://doi.org/10.1002/advs.202303832
    25. David J. Harvey. Analysis of carbohydrates and glycoconjugates by matrix‐assisted laser desorption/ionization mass spectrometry: An update for 2017–2018. Mass Spectrometry Reviews 2023, 42 (1) , 227-431. https://doi.org/10.1002/mas.21721
    26. Yen-Pang Hsu, Deeptak Verma, Shuwen Sun, Caroline McGregor, Ian Mangion, Benjamin F. Mann. Successive remodeling of IgG glycans using a solid-phase enzymatic platform. Communications Biology 2022, 5 (1) https://doi.org/10.1038/s42003-022-03257-4
    27. Debashis Dhara, Ashis Dhara, Paul V. Murphy, Laurence A. Mulard. Protecting group principles suited to late stage functionalization and global deprotection in oligosaccharide synthesis. Carbohydrate Research 2022, 521 , 108644. https://doi.org/10.1016/j.carres.2022.108644
    28. Mohammed Tarique Anwar, Avijit K. Adak, Sachin Kisan Kawade, Hsin-Ru Wu, Takashi Angata, Chun-Cheng Lin. Combining CuAAC reaction enables sialylated Bi- and triantennary pseudo mannose N-glycans for investigating Siglec-7 interactions. Bioorganic & Medicinal Chemistry 2022, 67 , 116839. https://doi.org/10.1016/j.bmc.2022.116839
    29. Javier Mauricio Melo Diaz, Alan B. Moran, Simon R. Peel, Jenifer L. Hendel, Daniel I. R. Spencer. Egg yolk sialylglycopeptide: purification, isolation and characterization of N -glycans from minor glycopeptide species. Organic & Biomolecular Chemistry 2022, 20 (24) , 4905-4914. https://doi.org/10.1039/D2OB00615D
    30. Yuan Zheng, Jiabin Zhang, Jeffrey Meisner, Wanjin Li, Yawen Luo, Fangyu Wei, Liuqing Wen. Cofactor‐Driven Cascade Reactions Enable the Efficient Preparation of Sugar Nucleotides. Angewandte Chemie 2022, 134 (20) https://doi.org/10.1002/ange.202115696
    31. Yuan Zheng, Jiabin Zhang, Jeffrey Meisner, Wanjin Li, Yawen Luo, Fangyu Wei, Liuqing Wen. Cofactor‐Driven Cascade Reactions Enable the Efficient Preparation of Sugar Nucleotides. Angewandte Chemie International Edition 2022, 61 (20) https://doi.org/10.1002/anie.202115696
    32. Mohammed Tarique Anwar, Sachin Kisan Kawade, Yi-Ren Huo, Avijit K. Adak, Deepa Sridharan, Yan-Ting Kuo, Chen-Yo Fan, Hsin-Ru Wu, Yun-Sheng Lee, Takashi Angata, Chun-Cheng Lin. Sugar nucleotide regeneration system for the synthesis of Bi- and triantennary N-glycans and exploring their activities against siglecs. European Journal of Medicinal Chemistry 2022, 232 , 114146. https://doi.org/10.1016/j.ejmech.2022.114146
    33. Marco Brito-Arias. O-Glycoside Formation. 2022, 101-228. https://doi.org/10.1007/978-3-030-97854-9_2
    34. Asuka Shirakawa, Yoshiyuki Manabe, Roberta Marchetti, Kumpei Yano, Seiji Masui, Alba Silipo, Antonio Molinaro, Koichi Fukase. Chemical Synthesis of Sialyl N ‐Glycans and Analysis of Their Recognition by Neuraminidase. Angewandte Chemie 2021, 133 (46) , 24891-24898. https://doi.org/10.1002/ange.202111035
    35. Asuka Shirakawa, Yoshiyuki Manabe, Roberta Marchetti, Kumpei Yano, Seiji Masui, Alba Silipo, Antonio Molinaro, Koichi Fukase. Chemical Synthesis of Sialyl N ‐Glycans and Analysis of Their Recognition by Neuraminidase. Angewandte Chemie International Edition 2021, 60 (46) , 24686-24693. https://doi.org/10.1002/anie.202111035
    36. Mingli Liu, Xianjin Qin, Xin‐Shan Ye. Glycan Assembly Strategy: From Concept to Application. The Chemical Record 2021, 21 (11) , 3256-3277. https://doi.org/10.1002/tcr.202100183
    37. Apoorva D. Srivastava, Luca Unione, Mehman Bunyatov, Ivan A. Gagarinov, Sandra Delgado, Nicola G. A. Abrescia, Ana Ardá, Geert‐Jan Boons. Chemoenzymatic Synthesis of Complex N ‐Glycans of the Parasite S. mansoni to Examine the Importance of Epitope Presentation on DC‐SIGN recognition. Angewandte Chemie 2021, 133 (35) , 19436-19445. https://doi.org/10.1002/ange.202105647
    38. Apoorva D. Srivastava, Luca Unione, Mehman Bunyatov, Ivan A. Gagarinov, Sandra Delgado, Nicola G. A. Abrescia, Ana Ardá, Geert‐Jan Boons. Chemoenzymatic Synthesis of Complex N ‐Glycans of the Parasite S. mansoni to Examine the Importance of Epitope Presentation on DC‐SIGN recognition. Angewandte Chemie International Edition 2021, 60 (35) , 19287-19296. https://doi.org/10.1002/anie.202105647
    39. Irina Dyukova, Ahmed Ben Faleh, Stephan Warnke, Natalia Yalovenko, Vasyl Yatsyna, Priyanka Bansal, Thomas R. Rizzo. A new approach for identifying positional isomers of glycans cleaved from monoclonal antibodies. The Analyst 2021, 146 (15) , 4789-4795. https://doi.org/10.1039/D1AN00780G
    40. Yoshiyuki Manabe. Chemical Biology Study on N-glycans. Trends in Glycoscience and Glycotechnology 2021, 33 (193) , E63-E67. https://doi.org/10.4052/tigg.2109.2E
    41. Yoshiyuki Manabe. Chemical Biology Study on N-glycans. Trends in Glycoscience and Glycotechnology 2021, 33 (193) , J63-J68. https://doi.org/10.4052/tigg.2109.2J
    42. Hsin-Kai Tseng, Yung-Yu Su, Ting-Wei Chang, Hsin-Chien Liu, Pei-Jhen Li, Pei-Yun Chiang, Chun-Cheng Lin. Acceptor-mediated regioselective enzyme catalyzed sialylation: chemoenzymatic synthesis of GAA-7 ganglioside glycan. Chemical Communications 2021, 57 (28) , 3468-3471. https://doi.org/10.1039/D1CC00653C
    43. Liting Zhao, Zhongbao Ma, Jian Yin, Guiyang Shi, Zhongyang Ding. Biological strategies for oligo/polysaccharide synthesis: biocatalyst and microbial cell factory. Carbohydrate Polymers 2021, 258 , 117695. https://doi.org/10.1016/j.carbpol.2021.117695
    44. Asuka Shirakawa, Yoshiyuki Manabe, Koichi Fukase. Recent Advances in the Chemical Biology of N-Glycans. Molecules 2021, 26 (4) , 1040. https://doi.org/10.3390/molecules26041040
    45. Masanori Yamaguchi, Kenji Yamamoto. Chemo-Enzymatic Syntheses of Oligosaccharides and Glycoconjugates. 2021, 525-547. https://doi.org/10.1016/B978-0-12-819475-1.00011-0
    46. N. de Haan, M. Wuhrer, L.R. Ruhaak. Mass spectrometry in clinical glycomics: The path from biomarker identification to clinical implementation. Clinical Mass Spectrometry 2020, 18 , 1-12. https://doi.org/10.1016/j.clinms.2020.08.001
    47. Ying Zhang, Yuyang Zhu, Yi Lasanajak, David F. Smith, Xuezheng Song. O-Benzylhydroxylamine (BHA) as a Cleavable Tag for Isolation and Purification of Reducing Glycans. SLAS Technology 2020, 25 (4) , 388-396. https://doi.org/10.1177/2472630319898150
    48. Qiang Chao, Yi Ding, Zheng-Hui Chen, Meng-Hai Xiang, Ning Wang, Xiao-Dong Gao. Recent Progress in Chemo-Enzymatic Methods for the Synthesis of N-Glycans. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.00513
    49. Hanne L. P. Tytgat, Chia-wei Lin, Mikail D. Levasseur, Markus B. Tomek, Christoph Rutschmann, Jacqueline Mock, Nora Liebscher, Naohiro Terasaka, Yusuke Azuma, Michael Wetter, Martin F. Bachmann, Donald Hilvert, Markus Aebi, Timothy G. Keys. Cytoplasmic glycoengineering enables biosynthesis of nanoscale glycoprotein assemblies. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-13283-2
    50. Luuk Mestrom, Marta Przypis, Daria Kowalczykiewicz, André Pollender, Antje Kumpf, Stefan R. Marsden, Isabel Bento, Andrzej B. Jarzębski, Katarzyna Szymańska, Arkadiusz Chruściel, Dirk Tischler, Rob Schoevaart, Ulf Hanefeld, Peter-Leon Hagedoorn. Leloir Glycosyltransferases in Applied Biocatalysis: A Multidisciplinary Approach. International Journal of Molecular Sciences 2019, 20 (21) , 5263. https://doi.org/10.3390/ijms20215263
    51. Julia Weber, Dennis Svatunek, Simon Krauter, Gregor Tegl, Christian Hametner, Paul Kosma, Hannes Mikula. 2- O -Benzyloxycarbonyl protected glycosyl donors: a revival of carbonate-mediated anchimeric assistance for diastereoselective glycosylation. Chemical Communications 2019, 55 (83) , 12543-12546. https://doi.org/10.1039/C9CC07194F
    52. Alyssa M. McQuillan, Lauren Byrd-Leotis, Jamie Heimburg-Molinaro, Richard D. Cummings. Natural and Synthetic Sialylated Glycan Microarrays and Their Applications. Frontiers in Molecular Biosciences 2019, 6 https://doi.org/10.3389/fmolb.2019.00088
    53. Qiongyu Li, Yixuan Xie, Maurice Wong, Carlito Lebrilla. Characterization of Cell Glycocalyx with Mass Spectrometry Methods. Cells 2019, 8 (8) , 882. https://doi.org/10.3390/cells8080882
    54. Wanyi Guan, Garrett A. Edmunds, Zhigang Wu, Lei Li. Synthetically Useful Glycosyltransferases for the Access of Mammalian Glycomes. 2019, 46-82. https://doi.org/10.1039/9781788016575-00046
    55. Yu-Hsuan Lih, Sachin S. Shivatare, Chung-Yi Wu. Chemical Synthesis of N -Glycans. 2019, 83-104. https://doi.org/10.1039/9781788016575-00083
    56. Lei Li, Wanyi Guan, Zhigang Wu, Peng G. Wang. Chemoenzymatic Synthesis of N -Glycans. 2019, 105-124. https://doi.org/10.1039/9781788016575-00105
    57. Hai Yu, Xi Chen. Enzymatic and Chemoenzymatic Synthesis of Human Milk Oligosaccharides (HMOS). 2019, 254-280. https://doi.org/10.1039/9781788016575-00254
    58. Lei Li, Wanyi Guan, Zhigang Wu, Shuaishuai Wang. Current Stage of Commercial Glycan Microarrays. 2019, 447-460. https://doi.org/10.1039/9781788016575-00447
    59. Lin Liu, Anthony R. Prudden, Chantelle J. Capicciotti, Gerlof P. Bosman, Jeong-Yeh Yang, Digantkumar G. Chapla, Kelley W. Moremen, Geert-Jan Boons. Streamlining the chemoenzymatic synthesis of complex N-glycans by a stop and go strategy. Nature Chemistry 2019, 11 (2) , 161-169. https://doi.org/10.1038/s41557-018-0188-3
    60. Wanqing Li, John B. McArthur, Xi Chen. Strategies for chemoenzymatic synthesis of carbohydrates. Carbohydrate Research 2019, 472 , 86-97. https://doi.org/10.1016/j.carres.2018.11.014
    61. Olga O. Zaytseva, Bas C. Jansen, Maja Hanić, Mia Mrčela, Genadij Razdorov, Ranko Stojković, Julija Erhardt, Ilija Brizić, Stipan Jonjić, Marija Pezer, Gordan Lauc. MIgGGly (mouse IgG glycosylation analysis) - a high-throughput method for studying Fc-linked IgG N-glycosylation in mice with nanoUPLC-ESI-MS. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-31844-1
    62. Weizhun Yang, Sherif Ramadan, Jared Orwenyo, Tayeb Kakeshpour, Thomas Diaz, Yigitcan Eken, Miloslav Sanda, James E. Jackson, Angela K. Wilson, Xuefei Huang. Chemoenzymatic synthesis of glycopeptides bearing rare N-glycan sequences with or without bisecting GlcNAc. Chemical Science 2018, 9 (43) , 8194-8206. https://doi.org/10.1039/C8SC02457J
    63. Karli R. Reiding, Albert Bondt, Vojtech Franc, Albert J.R. Heck. The benefits of hybrid fragmentation methods for glycoproteomics. TrAC Trends in Analytical Chemistry 2018, 108 , 260-268. https://doi.org/10.1016/j.trac.2018.09.007
    64. Unverzagt Carlo, Kajihara Yasuhiro. Recent advances in the chemical synthesis of N-linked glycoproteins. Current Opinion in Chemical Biology 2018, 46 , 130-137. https://doi.org/10.1016/j.cbpa.2018.07.004
    65. Supriya Dey, Sumit O. Bajaj, Tsung-I. Tsai, Hong-Jay Lo, Kevin Wu, Chi-Huey Wong. Synthesis of modular building blocks using glycosyl phosphate donors for the construction of asymmetric N-glycans. Tetrahedron 2018, 74 (41) , 6003-6011. https://doi.org/10.1016/j.tet.2018.08.039
    66. Mirella Wawryszyn, Paul F. Sauter, Martin Nieger, Martin R. M. Koos, Christine Koehler, Burkhard Luy, Edward A. Lemke, Stefan Bräse. Synthesis of Azido‐Glycans for Chemical Glycomodification of Proteins. European Journal of Organic Chemistry 2018, 2018 (31) , 4296-4305. https://doi.org/10.1002/ejoc.201800602
    67. Yoshiyuki Manabe, Hiroki Shomura, Naoya Minamoto, Masahiro Nagasaki, Yohei Takakura, Katsunori Tanaka, Alba Silipo, Antonio Molinaro, Koichi Fukase. Convergent Synthesis of a Bisecting N ‐Acetylglucosamine (GlcNAc)‐Containing N‐Glycan. Chemistry – An Asian Journal 2018, 13 (12) , 1544-1551. https://doi.org/10.1002/asia.201800367
    68. O. Aizpurua-Olaizola, J. Sastre Toraño, J.M. Falcon-Perez, C. Williams, N. Reichardt, G.-J. Boons. Mass spectrometry for glycan biomarker discovery. TrAC Trends in Analytical Chemistry 2018, 100 , 7-14. https://doi.org/10.1016/j.trac.2017.12.015
    69. Ning Wang, Sheng-Tao Li, Tian-Tian Lu, Hideki Nakanishi, Xiao-Dong Gao. Approaches towards the core pentasaccharide in N- linked glycans. Chinese Chemical Letters 2018, 29 (1) , 35-39. https://doi.org/10.1016/j.cclet.2017.09.044
    70. Yuta Maki. Semisynthesis of Complex-type Triantennary Oligosaccharides from a Biantennary Oligosaccharide Isolated from Hen Egg Yolk. Trends in Glycoscience and Glycotechnology 2018, 30 (171) , E15-E20. https://doi.org/10.4052/tigg.1707.4E
    71. Yuta Maki. Semisynthesis of Complex-type Triantennary Oligosaccharides from a Biantennary Oligosaccharide Isolated from Hen Egg Yolk. Trends in Glycoscience and Glycotechnology 2018, 30 (171) , J1-J6. https://doi.org/10.4052/tigg.1707.4J
    72. Cheng‐Yueh Ting, Yu‐Wei Lin, Chung‐Yi Wu, Chi‐Huey Wong. Design of Disaccharide Modules for a Programmable One‐Pot Synthesis of Building Blocks with LacNAc Repeating Units for Asymmetric N‐Glycans. Asian Journal of Organic Chemistry 2017, 6 (12) , 1800-1807. https://doi.org/10.1002/ajoc.201700393
    73. Maciej A. Walczak, Feng Zhu. Size Matters: Chemical Synthesis of a Homogenous Arabinogalactan 92‐mer. ChemBioChem 2017, 18 (18) , 1789-1791. https://doi.org/10.1002/cbic.201700311
    74. Angie D. Calderon, Jun Zhou, Wanyi Guan, Zhigang Wu, Yuxi Guo, Jing Bai, Qing Li, Peng George Wang, Junqiang Fang, Lei Li. An enzymatic strategy to asymmetrically branched N-glycans. Organic & Biomolecular Chemistry 2017, 15 (35) , 7258-7262. https://doi.org/10.1039/C7OB01765K
    75. Zhigang Wu, Yunpeng Liu, Lei Li, Xiu-Feng Wan, He Zhu, Yuxi Guo, Mohui Wei, Wanyi Guan, Peng George Wang. Decoding glycan protein interactions by a new class of asymmetric N-glycans. Organic & Biomolecular Chemistry 2017, 15 (42) , 8946-8951. https://doi.org/10.1039/C7OB02303K

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2017, 139, 2, 1011–1018
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.6b12080
    Published December 21, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    4353

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.