ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Tuning the Rectification Ratio by Changing the Electronic Nature (Open-Shell and Closed-Shell) in Donor–Acceptor Self-Assembled Monolayers

View Author Information
Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)/CIBER-BBN, Campus de la UAB, 08193 Bellaterra, Spain
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
Cite this: J. Am. Chem. Soc. 2017, 139, 12, 4262–4265
Publication Date (Web):March 10, 2017
https://doi.org/10.1021/jacs.6b12601
Copyright © 2017 American Chemical Society

    Article Views

    2869

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (1 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    This Communication describes the mechanism of charge transport across self-assembled monolayers (SAMs) of two donor–acceptor systems consisting of a polychlorotriphenylmethyl (PTM) electron-acceptor moiety linked to an electron-donor ferrocene (Fc) unit supported by ultraflat template-stripped Au and contacted by a eutectic alloy of gallium and indium top contacts. The electronic and supramolecular structures of these SAMs were well characterized. The PTM unit can be switched between the nonradical and radical forms, which influences the rectification behavior of the junction. Junctions with nonradical units rectify currents via the highest occupied molecular orbital (HOMO) with a rectification ratio R = 99, but junctions with radical units have a new accessible state, a single-unoccupied molecular orbital (SUMO), which turns rectification off and drops R to 6.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b12601.

    • General methods for synthesis and characterization; synthesis and characterization of 1, 2, and 3; general procedures for the SAMs preparation and characterization, and transport measurements, including Figures S1–S21 and Tables S1–S4 (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 47 publications.

    1. Abigail Cousino, Lanka D. Wickramasinghe, Widana Kaushalya, S. Sameera Perera, Habib Baydoun, Alice R. Walker, Cláudio N. Verani. Studies on Monolayer Formation and Electron Transport in Au|LB|Au Junctions Containing 3d4 MnIII Metallosurfactants. The Journal of Physical Chemistry C 2023, 127 (33) , 16654-16667. https://doi.org/10.1021/acs.jpcc.3c03616
    2. Vivian J. Santamaría-García, Jaime Bonilla-Ríos, Julio L. Palma. Bridge Effect on Molecular Rectification: Linearly Conjugated, Cross-Conjugated, and Saturated Bridges. The Journal of Physical Chemistry C 2023, 127 (14) , 6825-6834. https://doi.org/10.1021/acs.jpcc.2c08026
    3. J. Alejandro De Sousa, Raphael Pfattner, Diego Gutiérrez, Kilian Jutglar, Stefan T. Bromley, Jaume Veciana, Concepció Rovira, Marta Mas-Torrent, Bruno Fabre, Núria Crivillers. Stable Organic Radical for Enhancing Metal–Monolayer–Semiconductor Junction Performance. ACS Applied Materials & Interfaces 2023, 15 (3) , 4635-4642. https://doi.org/10.1021/acsami.2c15690
    4. A. D. K. Isuri Weeraratne, Neha Rani, Samudra Amunugama, S. Sameera Perera, Kenneth K. Kpogo, Shivnath Mazumder, Cláudio N. Verani. Influence of Electronic Configurations on the Modulation of Fermi/Orbital Junction Energies for Directional Electron Transport through 3d1, 3d3, and 3d5 Metallosurfactants. The Journal of Physical Chemistry C 2022, 126 (49) , 21010-21021. https://doi.org/10.1021/acs.jpcc.2c04840
    5. Hira Khalid, Esther Martine Opodi, Xianneng Song, Ziyan Wang, Baili Li, Lixian Tian, Xi Yu, Wenping Hu. Modulated Structure and Rectification Properties of a Molecular Junction by a Mixed Self-Assembled Monolayer. Langmuir 2022, 38 (35) , 10893-10901. https://doi.org/10.1021/acs.langmuir.2c01751
    6. Quyen Van Nguyen. Controlling Rectification in Metal–Molecules–Metal Junctions Based on 11-(Ferrocenyl) Undecanethiol: Effects of the Electronic Coupling Strength. The Journal of Physical Chemistry C 2022, 126 (14) , 6405-6412. https://doi.org/10.1021/acs.jpcc.1c10806
    7. Sumit Kumar, Saurabh Soni, Wojciech Danowski, Carlijn L. F. van Beek, Ben L. Feringa, Petra Rudolf, Ryan C. Chiechi. Correlating the Influence of Disulfides in Monolayers across Photoelectron Spectroscopy Wettability and Tunneling Charge-Transport. Journal of the American Chemical Society 2020, 142 (35) , 15075-15083. https://doi.org/10.1021/jacs.0c06508
    8. Takashi Ikeda, Keishiro Tahara, Tomofumi Kadoya, Hiroyuki Tajima, Noriaki Toyoda, Satoshi Yasuno, Yoshiki Ozawa, Masaaki Abe. Ferrocene on Insulator: Silane Coupling to a SiO2 Surface and Influence on Electrical Transport at a Buried Interface with an Organic Semiconductor Layer. Langmuir 2020, 36 (21) , 5809-5819. https://doi.org/10.1021/acs.langmuir.0c00515
    9. Víctor Rubio-Giménez, Garin Escorcia-Ariza, Carlos Bartual-Murgui, Christian Sternemann, Marta Galbiati, Javier Castells-Gil, José Antonio Real, Sergio Tatay, Carlos Martí-Gastaldo. Ultrathin Films of 2D Hofmann-Type Coordination Polymers: Influence of Pillaring Linkers on Structural Flexibility and Vertical Charge Transport. Chemistry of Materials 2019, 31 (18) , 7277-7287. https://doi.org/10.1021/acs.chemmater.9b01634
    10. Xiaoping Chen, Hongting Hu, Jorge Trasobares, Christian A. Nijhuis. Rectification Ratio and Tunneling Decay Coefficient Depend on the Contact Geometry Revealed by in Situ Imaging of the Formation of EGaIn Junctions. ACS Applied Materials & Interfaces 2019, 11 (23) , 21018-21029. https://doi.org/10.1021/acsami.9b02033
    11. Mostafa Baghbanzadeh, Lee Belding, Li Yuan, Junwoo Park, Mohammad H. Al-Sayah, Carleen M. Bowers, George M. Whitesides. Dipole-Induced Rectification Across AgTS/SAM//Ga2O3/EGaIn Junctions. Journal of the American Chemical Society 2019, 141 (22) , 8969-8980. https://doi.org/10.1021/jacs.9b02891
    12. Yong Ai, Andrii Kovalchuk, Xinkai Qiu, Yanxi Zhang, Sumit Kumar, Xintai Wang, Martin Kühnel, Kasper Nørgaard, Ryan C. Chiechi. In-Place Modulation of Rectification in Tunneling Junctions Comprising Self-Assembled Monolayers. Nano Letters 2018, 18 (12) , 7552-7559. https://doi.org/10.1021/acs.nanolett.8b03042
    13. Jiahao Chen, Miso Kim, Symon Gathiaka, Soo Jin Cho, Souvik Kundu, Hyo Jae Yoon, Martin M. Thuo. Understanding Keesom Interactions in Monolayer-Based Large-Area Tunneling Junctions. The Journal of Physical Chemistry Letters 2018, 9 (17) , 5078-5085. https://doi.org/10.1021/acs.jpclett.8b01731
    14. Francesc Bejarano, Ignacio Jose Olavarria-Contreras, Andrea Droghetti, Ivan Rungger, Alexander Rudnev, Diego Gutiérrez, Marta Mas-Torrent, Jaume Veciana, Herre S. J. van der Zant, Concepció Rovira, Enrique Burzurı́, and Núria Crivillers . Robust Organic Radical Molecular Junctions Using Acetylene Terminated Groups for C–Au Bond Formation. Journal of the American Chemical Society 2018, 140 (5) , 1691-1696. https://doi.org/10.1021/jacs.7b10019
    15. Jesús Valdiviezo and Julio L. Palma . Molecular Rectification Enhancement Based On Conformational and Chemical Modifications. The Journal of Physical Chemistry C 2018, 122 (4) , 2053-2063. https://doi.org/10.1021/acs.jpcc.7b12780
    16. Brandon K. Rugg, Brian T. Phelan, Noah E. Horwitz, Ryan M. Young, Matthew D. Krzyaniak, Mark A. Ratner, and Michael R. Wasielewski . Spin-Selective Photoreduction of a Stable Radical within a Covalent Donor–Acceptor–Radical Triad. Journal of the American Chemical Society 2017, 139 (44) , 15660-15663. https://doi.org/10.1021/jacs.7b10458
    17. Quyen van Nguyen, Pascal Martin, Denis Frath, Maria Luisa Della Rocca, Frederic Lafolet, Clément Barraud, Philippe Lafarge, Vineetha Mukundan, David James, Richard L. McCreery, and Jean-Christophe Lacroix . Control of Rectification in Molecular Junctions: Contact Effects and Molecular Signature. Journal of the American Chemical Society 2017, 139 (34) , 11913-11922. https://doi.org/10.1021/jacs.7b05732
    18. Zenghui Li, Jing Wang, Xiaoyang Liu, Pin Gao, Guoping Li, Gang He, Bin Rao. Air‐Stable Organoradical Boron Reagents. Angewandte Chemie International Edition 2023, 62 (23) https://doi.org/10.1002/anie.202302835
    19. Zenghui Li, Jing Wang, Xiaoyang Liu, Pin Gao, Guoping Li, Gang He, Bin Rao. Air‐Stable Organoradical Boron Reagents. Angewandte Chemie 2023, 135 (23) https://doi.org/10.1002/ange.202302835
    20. Tianming Li, Vineeth Kumar Bandari, Oliver G. Schmidt. Molecular Electronics: Creating and Bridging Molecular Junctions and Promoting Its Commercialization. Advanced Materials 2023, 35 (22) https://doi.org/10.1002/adma.202209088
    21. Nerea González-Pato, Xavier Rodriguez Rodriguez, Nicola Pellizzi, Claudia Fasolato, Judith Guasch, Paolo Postorino, Jaume Veciana, Alejandro R. Goñi, Imma Ratera. Electroactive substrates for surface-enhanced Raman spectroscopy based on overgrown gold-nanoparticle arrays by electrodeposition on indium tin oxide. Materials Advances 2023, 4 (5) , 1378-1388. https://doi.org/10.1039/D2MA00914E
    22. Archit Dhingra, Xuedong Hu, Mario F Borunda, Joseph F Johnson, Christian Binek, Jonathan Bird, Alpha T N’Diaye, Jean-Pascal Sutter, Emilie Delahaye, Eric D Switzer, Enrique del Barco, Talat S Rahman, Peter A Dowben. Molecular transistors as substitutes for quantum information applications. Journal of Physics: Condensed Matter 2022, 34 (44) , 441501. https://doi.org/10.1088/1361-648X/ac8c11
    23. Cécile Huez, David Guérin, Stéphane Lenfant, Florence Volatron, Michel Calame, Mickael L. Perrin, Anna Proust, Dominique Vuillaume. Redox-controlled conductance of polyoxometalate molecular junctions. Nanoscale 2022, 14 (37) , 13790-13800. https://doi.org/10.1039/D2NR03457C
    24. Zixiao Wang, Julio L. Palma, Hui Wang, Junzhi Liu, Gang Zhou, M. R. Ajayakumar, Xinliang Feng, Wei Wang, Jens Ulstrup, Alexei A. Kornyshev, Yueqi Li, Nongjian Tao. Electrochemically controlled rectification in symmetric single-molecule junctions. Proceedings of the National Academy of Sciences 2022, 119 (39) https://doi.org/10.1073/pnas.2122183119
    25. Jin‐Liang Lin, Zhou Cao, Xiyue Bai, Ningyue Chen, Chengtai Li, Xunwen Xiao, Lejia Wang, Yuan Li. Molecular Diodes With Tunable Threshold Voltage Based on π‐Extended Tetrathiafulvalene. Advanced Materials Interfaces 2022, 9 (27) https://doi.org/10.1002/admi.202201238
    26. Samudra Amunugama, Eyram Asempa, Ramesh Chandra Tripathi, Dakshika Wanniarachchi, Habib Baydoun, Peter Hoffmann, Elena Jakubikova, Cláudio N. Verani. Electron transport through a (terpyridine)ruthenium metallo-surfactant containing a redox-active aminocatechol derivative. Dalton Transactions 2022, 51 (21) , 8425-8436. https://doi.org/10.1039/D2DT00938B
    27. Peihui Li, Zhou Li, Cong Zhao, Hongyu Ju, Qinghua Gao, Wei Si, Li Cheng, Jie Hao, Mengmeng Li, Yijian YiChen, Chuancheng Jia, Xuefeng Guo. Single-molecule nano-optoelectronics: Insights from physics. Reports on Progress in Physics 2022, https://doi.org/10.1088/1361-6633/ac7401
    28. Esther Martine Opodi, Xianneng Song, Xi Yu, Wenping Hu. A single level tunneling model for molecular junctions: evaluating the simulation methods. Physical Chemistry Chemical Physics 2022, 24 (19) , 11958-11966. https://doi.org/10.1039/D1CP05807J
    29. Troy L.R. Bennett, Nicholas J. Long. Ferrocene: From the Perspective of Molecular Electronics. 2022, 1-22. https://doi.org/10.1002/9781119951438.eibc2806
    30. Varshini J. Kumar, Jian-Zhong Wu, Martyna Judd, Elodie Rousset, Marcus Korb, Stephen A. Moggach, Nicholas Cox, Paul J. Low. The syntheses, structures and spectroelectrochemical properties of 6-oxo-verdazyl derivatives bearing surface anchoring groups. Journal of Materials Chemistry C 2022, 10 (5) , 1896-1915. https://doi.org/10.1039/D1TC05495C
    31. Zuoti Xie, Ioan Bâldea, Quyen Van Nguyen, C. Daniel Frisbie. Quantitative analysis of weak current rectification in molecular tunnel junctions subject to mechanical deformation reveals two different rectification mechanisms for oligophenylene thiols versus alkane thiols. Nanoscale 2021, 13 (39) , 16755-16768. https://doi.org/10.1039/D1NR04410A
    32. Imma Ratera, Jose Vidal-Gancedo, Daniel Maspoch, Stefan T. Bromley, Núria Crivillers, Marta Mas-Torrent. Perspectives for polychlorinated trityl radicals. Journal of Materials Chemistry C 2021, 9 (33) , 10610-10623. https://doi.org/10.1039/D1TC02196F
    33. Yuru Liu, Xinkai Qiu, Saurabh Soni, Ryan C. Chiechi. Charge transport through molecular ensembles: Recent progress in molecular electronics. Chemical Physics Reviews 2021, 2 (2) https://doi.org/10.1063/5.0050667
    34. Elena Gorenskaia, Kelly L. Turner, Santiago Martín, Pilar Cea, Paul J. Low. Fabrication of metallic and non-metallic top electrodes for large-area molecular junctions. Nanoscale 2021, 13 (20) , 9055-9074. https://doi.org/10.1039/D1NR00917F
    35. John M. Hudson, Timothy J. H. Hele, Emrys W. Evans. Efficient light-emitting diodes from organic radicals with doublet emission. Journal of Applied Physics 2021, 129 (18) https://doi.org/10.1063/5.0047636
    36. Carolina Sergi Lopes, Leandro Merces, Rafael Furlan de Oliveira, Davi Henrique Starnini de Camargo, Carlos César Bof Bufon. Rectification ratio and direction controlled by temperature in copper phthalocyanine ensemble molecular diodes. Nanoscale 2020, 12 (18) , 10001-10009. https://doi.org/10.1039/C9NR10601D
    37. Ke Xu, Shusen Xie. Self-assembled molecular devices: a minireview. Instrumentation Science & Technology 2020, 48 (1) , 86-111. https://doi.org/10.1080/10739149.2019.1660182
    38. Valentin Diez-Cabanes, Andrés Gómez, Manuel Souto, Nerea González-Pato, Jérôme Cornil, Jaume Veciana, Imma Ratera. Reversible switching of the Au(111) work function by near infrared irradiation with a bistable SAM based on a radical donor–acceptor dyad. Journal of Materials Chemistry C 2019, 7 (24) , 7418-7426. https://doi.org/10.1039/C9TC00906J
    39. M. Farid Jamali, H. Rahimpour Soleimani, M. Bagheri Tagani. The maximum rectification ratio of pyrene-based molecular devices: a systematic study. Journal of Computational Electronics 2019, 18 (2) , 453-464. https://doi.org/10.1007/s10825-019-01307-5
    40. Valentin Diez‐Cabanes, Dayana C. Morales, Manuel Souto, Markos Paradinas, Francesca Delchiaro, Anna Painelli, Carmen Ocal, David Cornil, Jérôme Cornil, Jaume Veciana, Imma Ratera. Effect of the Molecular Polarizability of SAMs on the Work Function Modification of Gold: Closed‐ versus Open‐Shell Donor–Acceptor SAMs. Advanced Materials Technologies 2019, 4 (5) https://doi.org/10.1002/admt.201800152
    41. Judith Guasch, Núria Crivillers, Manuel Souto, Imma Ratera, Concepció Rovira, Paolo Samorì, Jaume Veciana. Two-dimensional self-assembly and electrical properties of the donor-acceptor tetrathiafulvalene-polychlorotriphenylmethyl radical on graphite substrates. Journal of Applied Physics 2019, 125 (14) https://doi.org/10.1063/1.5065448
    42. Manuel Souto, Valentin Díez-Cabanes, Li Yuan, Adriana R. Kyvik, Imma Ratera, Christian A. Nijhuis, Jerome Cornil, Jaume Veciana. Influence of the donor unit on the rectification ratio in tunnel junctions based on donor–acceptor SAMs using PTM units as acceptors. Physical Chemistry Chemical Physics 2018, 20 (40) , 25638-25647. https://doi.org/10.1039/C8CP05488F
    43. Valentín Diez‐Cabanes, Gonca Seber, Carlos Franco, Francesc Bejarano, Nuria Crivillers, Marta Mas‐Torrent, Jaume Veciana, Concepció Rovira, Jérôme Cornil. Design of Perchlorotriphenylmethyl (PTM) Radical‐Based Compounds for Optoelectronic Applications: The Role of Orbital Delocalization. ChemPhysChem 2018, 19 (19) , 2572-2578. https://doi.org/10.1002/cphc.201800321
    44. Mark Welker. Ferrocenes as Building Blocks in Molecular Rectifiers and Diodes. Molecules 2018, 23 (7) , 1551. https://doi.org/10.3390/molecules23071551
    45. Zuoti Xie, Ioan Bâldea, C. Daniel Frisbie. Why one can expect large rectification in molecular junctions based on alkane monothiols and why rectification is so modest. Chemical Science 2018, 9 (19) , 4456-4467. https://doi.org/10.1039/C8SC00938D
    46. Denis Frath, Van Quyen Nguyen, Frédéric Lafolet, Pascal Martin, Jean-Christophe Lacroix. Electrografted monolayer based on a naphthalene diimide–ruthenium terpyridine complex dyad: efficient creation of large-area molecular junctions with high current densities. Chemical Communications 2017, 53 (80) , 10997-11000. https://doi.org/10.1039/C7CC04972B
    47. Mickael L. Perrin, Matthijs Doelman, Rienk Eelkema, Herre S. J. van der Zant. Design of an efficient coherent multi-site single-molecule rectifier. Physical Chemistry Chemical Physics 2017, 19 (43) , 29187-29194. https://doi.org/10.1039/C7CP04456A

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect