ACS Publications. Most Trusted. Most Cited. Most Read
Ammonia Oxidation by Abstraction of Three Hydrogen Atoms from a Mo–NH3 Complex
My Activity

Figure 1Loading Img
    Communication

    Ammonia Oxidation by Abstraction of Three Hydrogen Atoms from a Mo–NH3 Complex
    Click to copy article linkArticle link copied!

    View Author Information
    Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
    Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
    § Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
    Other Access OptionsSupporting Information (3)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2017, 139, 8, 2916–2919
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.7b00002
    Published February 6, 2017
    Copyright © 2017 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We report ammonia oxidation by homolytic cleavage of all three H atoms from a [Mo—NH3]+ complex using the 2,4,6-tri-tert-butylphenoxyl radical to yield a Mo-alkylimido ([Mo═NR]+) complex (R = 2,4,6-tri-tert-butylcyclohexa-2,5-dien-1-one). Chemical reduction of [Mo═NR]+ generates a terminal Mo≡N nitride complex upon N—C bond cleavage, and a [Mo═NH]+ complex is formed by protonation of the nitride. Computational analysis describes the energetic profile for the stepwise removal of three H atoms from [Mo—NH3]+ and formation of [Mo═NR]+.

    Copyright © 2017 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b00002.

    • Data for Complex 1 (CIF)

    • Data for Complex 2 (CIF)

    • Experimental and computational details and data (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 64 publications.

    1. Sriram Katipamula, Andrew W. Cook, Isabella Niedzwiecki, Chathumini Nadeesha, Ashish Parihar, Thomas J. Emge, Kate M. Waldie. Electrocatalytic Formate Oxidation by Cobalt–Phosphine Complexes. ACS Catalysis 2025, 15 (3) , 1771-1781. https://doi.org/10.1021/acscatal.4c03189
    2. Amanda L. Humphries, Gabrielle A. Tellier, Mark D. Smith, Anthony R. Chianese, Dmitry V. Peryshkov. N–H Bond Activation of Ammonia by a Redox-Active Carboranyl Diphosphine. Journal of the American Chemical Society 2024, 146 (48) , 33159-33168. https://doi.org/10.1021/jacs.4c12146
    3. Han-Yu Liu, Hannah M. C. Lant, Claire C. Cody, Jana Jelušić, Robert H. Crabtree, Gary W. Brudvig. Electrochemical Ammonia Oxidation with Molecular Catalysts. ACS Catalysis 2023, 13 (7) , 4675-4682. https://doi.org/10.1021/acscatal.3c00032
    4. Yan Li, Suhashini Handunneththige, Jin Xiong, Yisong Guo, Marat R. Talipov, Dong Wang. Direct Activation of the C(sp3)–NH2 Bond of Primary Aliphatic Alkylamines by a High-Valent CoIII,IV2(μ-O)2 Diamond Core Complex. Journal of the American Chemical Society 2023, 145 (4) , 2690-2697. https://doi.org/10.1021/jacs.2c13199
    5. Waad S. Alharbi, Thomas R. Cundari. Mapping the Basicity of Selected 3d and 4d Metal Nitrides: A DFT Study. Inorganic Chemistry 2022, 61 (48) , 19049-19057. https://doi.org/10.1021/acs.inorgchem.2c01812
    6. Peter L. Dunn, Melissa Barona, Samantha I. Johnson, Simone Raugei, R. Morris Bullock. Hydrogen Atom Abstraction from an OsII(NH3)2 Complex Generates an OsIV(NH2)2 Complex: Experimental and Computational Analysis of the N–H Bond Dissociation Free Energies and Reactivity. Inorganic Chemistry 2022, 61 (39) , 15325-15334. https://doi.org/10.1021/acs.inorgchem.2c00708
    7. Eric S. Wiedner, Aaron M. Appel, Simone Raugei, Wendy J. Shaw, R. Morris Bullock. Molecular Catalysts with Diphosphine Ligands Containing Pendant Amines. Chemical Reviews 2022, 122 (14) , 12427-12474. https://doi.org/10.1021/acs.chemrev.1c01001
    8. Brian J. Cook, Melissa Barona, Samantha I. Johnson, Simone Raugei, R. Morris Bullock. Weakening the N–H Bonds of NH3 Ligands: Triple Hydrogen-Atom Abstraction to Form a Chromium(V) Nitride. Inorganic Chemistry 2022, 61 (29) , 11165-11172. https://doi.org/10.1021/acs.inorgchem.2c01115
    9. Diego Martelino, Samyadeb Mahato, Warren VandeVen, Nicholas M. Hein, Ryan M. Clarke, Gregory A. MacNeil, Fabrice Thomas, Tim Storr. Chromium Nitride Umpolung Tuned by the Locus of Oxidation. Journal of the American Chemical Society 2022, 144 (26) , 11594-11607. https://doi.org/10.1021/jacs.2c01840
    10. Yongxian Li, Jia-Yi Chen, Qiyi Miao, Xin Yu, Lei Feng, Rong-Zhen Liao, Shengfa Ye, Chen-Ho Tung, Wenguang Wang. A Parent Iron Amido Complex in Catalysis of Ammonia Oxidation. Journal of the American Chemical Society 2022, 144 (10) , 4365-4375. https://doi.org/10.1021/jacs.1c08609
    11. Robert E. Warburton, James M. Mayer, Sharon Hammes-Schiffer. Proton-Coupled Defects Impact O–H Bond Dissociation Free Energies on Metal Oxide Surfaces. The Journal of Physical Chemistry Letters 2021, 12 (40) , 9761-9767. https://doi.org/10.1021/acs.jpclett.1c02837
    12. Zongheng Wang, Samantha I. Johnson, Guang Wu, Gabriel Ménard. Multiple N–H and C–H Hydrogen Atom Abstractions Through Coordination-Induced Bond Weakening at Fe-Amine Complexes. Inorganic Chemistry 2021, 60 (11) , 8242-8251. https://doi.org/10.1021/acs.inorgchem.1c00923
    13. Peter L. Dunn, Brian J. Cook, Samantha I. Johnson, Aaron M. Appel, R. Morris Bullock. Oxidation of Ammonia with Molecular Complexes. Journal of the American Chemical Society 2020, 142 (42) , 17845-17858. https://doi.org/10.1021/jacs.0c08269
    14. Catherine F. Wise, Rishi G. Agarwal, James M. Mayer. Determining Proton-Coupled Standard Potentials and X–H Bond Dissociation Free Energies in Nonaqueous Solvents Using Open-Circuit Potential Measurements. Journal of the American Chemical Society 2020, 142 (24) , 10681-10691. https://doi.org/10.1021/jacs.0c01032
    15. Peter L. Dunn, Samantha I. Johnson, Werner Kaminsky, R. Morris Bullock. Diversion of Catalytic C–N Bond Formation to Catalytic Oxidation of NH3 through Modification of the Hydrogen Atom Abstractor. Journal of the American Chemical Society 2020, 142 (7) , 3361-3365. https://doi.org/10.1021/jacs.9b13706
    16. Michael D. Zott, Pablo Garrido-Barros, Jonas C. Peters. Electrocatalytic Ammonia Oxidation Mediated by a Polypyridyl Iron Catalyst. ACS Catalysis 2019, 9 (11) , 10101-10108. https://doi.org/10.1021/acscatal.9b03499
    17. Máté J. Bezdek, Paul J. Chirik. Pyridine(diimine) Chelate Hydrogenation in a Molybdenum Nitrido Ethylene Complex. Organometallics 2019, 38 (8) , 1682-1687. https://doi.org/10.1021/acs.organomet.9b00095
    18. Grant W. Margulieux, Máté J. Bezdek, Zoë R. Turner, and Paul J. Chirik . Ammonia Activation, H2 Evolution and Nitride Formation from a Molybdenum Complex with a Chemically and Redox Noninnocent Ligand. Journal of the American Chemical Society 2017, 139 (17) , 6110-6113. https://doi.org/10.1021/jacs.7b03070
    19. Sotirios Pavlidis, Jasmin Alasadi, Amanda Opis-Basilio, Josh Abbenseth. Two-fold proton coupled electron transfer of a Ta( v ) aniline complex mediated by a redox active NNN pincer ligand. Dalton Transactions 2025, 54 (6) , 2421-2429. https://doi.org/10.1039/D4DT03281K
    20. Igor D. Strelnik, Tatiana P. Gerasimova, Kseniya A. Karasik, Igor A. Litvinov, Irina R. Dayanova, Kamil D. Ahmadgaleev, Alexey V. Kurenkov, Elvira I. Musina, Andrey A. Karasik. New classification of cyclic P2N2-ligands predicting bridging and chelate coordination. Inorganic Chemistry Communications 2025, 172 , 113638. https://doi.org/10.1016/j.inoche.2024.113638
    21. Jun Li, Feiyang Zhang, Huatian Xiong, Yuanyuan Cai, Biaobiao Zhang. Molecular catalysts for electrocatalytic ammonia oxidation. Science China Chemistry 2024, 67 (12) , 3976-3993. https://doi.org/10.1007/s11426-024-2137-5
    22. Liang Liu, Samantha I. Johnson, Aaron M. Appel, R. Morris Bullock. Oxidation of Ammonia Catalyzed by a Molecular Iron Complex: Translating Chemical Catalysis to Mediated Electrocatalysis. Angewandte Chemie 2024, 136 (41) https://doi.org/10.1002/ange.202402635
    23. Liang Liu, Samantha I. Johnson, Aaron M. Appel, R. Morris Bullock. Oxidation of Ammonia Catalyzed by a Molecular Iron Complex: Translating Chemical Catalysis to Mediated Electrocatalysis. Angewandte Chemie International Edition 2024, 63 (41) https://doi.org/10.1002/anie.202402635
    24. A. V. Kurenkov, I. R. Dayanova, I. A. Rychkova, O. E. Naumova, D. R. Islamov, I. D. Strelnik, A. A. Karasik. Reaction of 6-Methylpyridin-2-ylphosphine with Benzaldehyde and p-Toluidine: A Pathway to Acyclic Aminomethylphosphine Oxides with Carbon-Substituted PCHN Fragments. Russian Journal of General Chemistry 2024, 94 (9) , 2264-2270. https://doi.org/10.1134/S1070363224090068
    25. David N. Stephens, Michael T. Mock. Molecular Complexes for Catalytic Ammonia Oxidation to Dinitrogen and the Cleavage of N−H Bonds. European Journal of Inorganic Chemistry 2024, 27 (13) https://doi.org/10.1002/ejic.202400039
    26. C. Christopher Almquist, Thayalan Rajeshkumar, H. D. A. Chathumal Jayaweera, Nicole Removski, Wen Zhou, Benjamin S. Gelfand, Laurent Maron, Warren E. Piers. Oxidation-induced ambiphilicity triggers N–N bond formation and dinitrogen release in octahedral terminal molybdenum( v ) nitrido complexes. Chemical Science 2024, 360 https://doi.org/10.1039/D4SC00090K
    27. Martin Ernst Doleschal, Arseni Kostenko, Jin Yu Liu, Shigeyoshi Inoue. Silicon-aryl cooperative activation of ammonia. Chemical Communications 2024, 50 https://doi.org/10.1039/D4CC04617J
    28. Hiroki Toda, Kaito Kuroki, Ryoichi Kanega, Tasuku Yano, Takeshi Yoshikawa, Shogo Kuriyama, Yuichiro Himeda, Ken Sakata, Yoshiaki Nishibayashi. Catalytic Ammonia Oxidation Using Ammonia Solution under Electrochemical Conditions: Investigation on Axial Ligand of Ruthenium Catalysts. Bulletin of the Chemical Society of Japan 2023, 96 (9) , 980-988. https://doi.org/10.1246/bcsj.20230136
    29. David N. Stephens, Robert K. Szilagyi, Paige N. Roehling, Navamoney Arulsamy, Michael T. Mock. Catalytic Ammonia Oxidation to Dinitrogen by a Nickel Complex. Angewandte Chemie 2023, 135 (1) https://doi.org/10.1002/ange.202213462
    30. David N. Stephens, Robert K. Szilagyi, Paige N. Roehling, Navamoney Arulsamy, Michael T. Mock. Catalytic Ammonia Oxidation to Dinitrogen by a Nickel Complex. Angewandte Chemie International Edition 2023, 62 (1) https://doi.org/10.1002/anie.202213462
    31. C. Christopher Almquist, Nicole Removski, Thayalan Rajeshkumar, Benjamin S. Gelfand, Laurent Maron, Warren E. Piers. Spontaneous Ammonia Activation Through Coordination‐Induced Bond Weakening in Molybdenum Complexes of a Dianionic Pentadentate Ligand Platform**. Angewandte Chemie International Edition 2022, 61 (32) https://doi.org/10.1002/anie.202203576
    32. C. Christopher Almquist, Nicole Removski, Thayalan Rajeshkumar, Benjamin S. Gelfand, Laurent Maron, Warren E. Piers. Spontaneous Ammonia Activation Through Coordination‐Induced Bond Weakening in Molybdenum Complexes of a Dianionic Pentadentate Ligand Platform**. Angewandte Chemie 2022, 134 (32) https://doi.org/10.1002/ange.202203576
    33. Linan Su, Dawei Yang, Yang Jiang, Yahui Li, Kai Di, Baomin Wang, Shengfa Ye, Jingping Qu. A Bioinspired Iron‐Molybdenum μ‐Nitrido Complex and Its Reactivity toward Ammonia Formation. Angewandte Chemie 2022, 134 (30) https://doi.org/10.1002/ange.202203121
    34. Linan Su, Dawei Yang, Yang Jiang, Yahui Li, Kai Di, Baomin Wang, Shengfa Ye, Jingping Qu. A Bioinspired Iron‐Molybdenum μ‐Nitrido Complex and Its Reactivity toward Ammonia Formation. Angewandte Chemie International Edition 2022, 61 (30) https://doi.org/10.1002/anie.202203121
    35. Gannon P. Connor, Daniel Delony, Jeremy E. Weber, Brandon Q. Mercado, Julia B. Curley, Sven Schneider, James M. Mayer, Patrick L. Holland. Facile conversion of ammonia to a nitride in a rhenium system that cleaves dinitrogen. Chemical Science 2022, 13 (14) , 4010-4018. https://doi.org/10.1039/D1SC04503B
    36. Melissa Barona, Samantha I. Johnson, Margareth Mbea, R. Morris Bullock, Simone Raugei. Computational Investigations of the Reactivity of Metalloporphyrins for Ammonia Oxidation. Topics in Catalysis 2022, 65 (1-4) , 341-353. https://doi.org/10.1007/s11244-021-01511-3
    37. Wenguang Wang, Xiaofang Zhai, Shu-Fen Hou. Cyclic and Non-Cyclic Pi Complexes of Molybdenum. 2022, 174-256. https://doi.org/10.1016/B978-0-12-820206-7.00031-7
    38. Jeremy E. Weber, Samuel M. Bhutto, Alexandre T.-Y. Genoux, Patrick L. Holland. Dinitrogen Binding and Functionalization. 2022, 521-554. https://doi.org/10.1016/B978-0-12-820206-7.00068-8
    39. Olivia L. Duletski, Roark D. O’Neill, Charles Beasley, Molly O’Hagan, Michael T. Mock. Complexes of Groups 5–7 with N2, NO, and Other N-Containing Small Molecules. 2022, 772-841. https://doi.org/10.1016/B978-0-12-820206-7.00165-7
    40. Yajie Shu, Jian Ji, Ming Zhou, Shimin Liang, Quan Xie, Sitan Li, Biyuan Liu, Jiguang Deng, Jianping Cao, Shengwei Liu, Haibao Huang. Selective photocatalytic oxidation of gaseous ammonia at ppb level over Pt and F modified TiO2. Applied Catalysis B: Environmental 2022, 300 , 120688. https://doi.org/10.1016/j.apcatb.2021.120688
    41. Nina X. Gu, Paul H. Oyala, Jonas C. Peters. Hydrazine Formation via Coupling of a Nickel(III)–NH 2 Radical. Angewandte Chemie 2021, 133 (8) , 4055-4059. https://doi.org/10.1002/ange.202013119
    42. Nina X. Gu, Paul H. Oyala, Jonas C. Peters. Hydrazine Formation via Coupling of a Nickel(III)–NH 2 Radical. Angewandte Chemie International Edition 2021, 60 (8) , 4009-4013. https://doi.org/10.1002/anie.202013119
    43. Lucie Nurdin, Yan Yang, Peter G. N. Neate, Warren E. Piers, Laurent Maron, Michael L. Neidig, Jian-Bin Lin, Benjamin S. Gelfand. Activation of ammonia and hydrazine by electron rich Fe( ii ) complexes supported by a dianionic pentadentate ligand platform through a common terminal Fe( iii ) amido intermediate. Chemical Science 2021, 12 (6) , 2231-2241. https://doi.org/10.1039/D0SC06466A
    44. Jessica R. Wilson, Matthias Zeller, Nathaniel K. Szymczak. Hydrogen-bonded nickel( i ) complexes. Chemical Communications 2021, 57 (6) , 753-756. https://doi.org/10.1039/D0CC07216H
    45. Moritz Horstmann, Hans Joachim Drexler, Nora Jannsen, Wolfgang Baumann, Detlef Heller. Ammine and amido complexes of rhodium: Synthesis, application and contributions to analytics. Journal of Organometallic Chemistry 2020, 922 , 121342. https://doi.org/10.1016/j.jorganchem.2020.121342
    46. Jianzhe Li, Dawei Yang, Peng Tong, Baomin Wang, Jingping Qu. Facile C–N coupling of coordinated ammonia and labile carbonyl or acetonitrile promoted by a thiolate-bridged dicobalt reaction scaffold. Dalton Transactions 2020, 49 (32) , 11260-11267. https://doi.org/10.1039/D0DT02133D
    47. Brian J. Cook, Samantha I. Johnson, Geoffrey M. Chambers, Werner Kaminsky, R. Morris Bullock. Triple hydrogen atom abstraction from Mn–NH 3 complexes results in cyclophosphazenium cations. Chemical Communications 2019, 55 (93) , 14058-14061. https://doi.org/10.1039/C9CC06915A
    48. Papri Bhattacharya, Zachariah M. Heiden, Geoffrey M. Chambers, Samantha I. Johnson, R. Morris Bullock, Michael T. Mock. Catalytic Ammonia Oxidation to Dinitrogen by Hydrogen Atom Abstraction. Angewandte Chemie 2019, 131 (34) , 11744-11750. https://doi.org/10.1002/ange.201903221
    49. Papri Bhattacharya, Zachariah M. Heiden, Geoffrey M. Chambers, Samantha I. Johnson, R. Morris Bullock, Michael T. Mock. Catalytic Ammonia Oxidation to Dinitrogen by Hydrogen Atom Abstraction. Angewandte Chemie International Edition 2019, 58 (34) , 11618-11624. https://doi.org/10.1002/anie.201903221
    50. Akira Katayama, Takehiro Ohta, Yuko Wasada‐Tsutsui, Tomohiko Inomata, Tomohiro Ozawa, Takashi Ogura, Hideki Masuda. Dinitrogen‐Molybdenum Complex Induces Dinitrogen Cleavage by One‐Electron Oxidation. Angewandte Chemie 2019, 131 (33) , 11401-11406. https://doi.org/10.1002/ange.201905299
    51. Akira Katayama, Takehiro Ohta, Yuko Wasada‐Tsutsui, Tomohiko Inomata, Tomohiro Ozawa, Takashi Ogura, Hideki Masuda. Dinitrogen‐Molybdenum Complex Induces Dinitrogen Cleavage by One‐Electron Oxidation. Angewandte Chemie International Edition 2019, 58 (33) , 11279-11284. https://doi.org/10.1002/anie.201905299
    52. Kazunari Nakajima, Hiroki Toda, Ken Sakata, Yoshiaki Nishibayashi. Ruthenium-catalysed oxidative conversion of ammonia into dinitrogen. Nature Chemistry 2019, 11 (8) , 702-709. https://doi.org/10.1038/s41557-019-0293-y
    53. Samantha I. Johnson, Spencer P. Heins, Christina M. Klug, Eric S. Wiedner, R. Morris Bullock, Simone Raugei. Design and reactivity of pentapyridyl metal complexes for ammonia oxidation. Chemical Communications 2019, 55 (35) , 5083-5086. https://doi.org/10.1039/C9CC01249D
    54. Samuel M. Bhutto, Patrick L. Holland. Dinitrogen Activation and Functionalization Using β‐Diketiminate Iron Complexes. European Journal of Inorganic Chemistry 2019, 2019 (14) , 1861-1869. https://doi.org/10.1002/ejic.201900133
    55. Faezeh Habibzadeh, Susanne L. Miller, Thomas W. Hamann, Milton R. Smith. Homogeneous electrocatalytic oxidation of ammonia to N 2 under mild conditions. Proceedings of the National Academy of Sciences 2019, 116 (8) , 2849-2853. https://doi.org/10.1073/pnas.1813368116
    56. Yanming Liu, Thomas J. Meyer. Homogeneous catalysis for the nitrogen fuel cycle. Proceedings of the National Academy of Sciences 2019, 116 (8) , 2794-2795. https://doi.org/10.1073/pnas.1822090116
    57. Mu-Chieh Chang, Kate A. Jesse, Alexander S. Filatov, John S. Anderson. Reversible homolytic activation of water via metal–ligand cooperativity in a T-shaped Ni( ii ) complex. Chemical Science 2019, 10 (5) , 1360-1367. https://doi.org/10.1039/C8SC03719A
    58. Brian J. Cook, Maren Pink, Chun‐Hsing Chen, Kenneth G. Caulton. Electrophile Recruitment as a Structural Element in Bis‐Pyrazolate Pyridine Complex Aggregation. European Journal of Inorganic Chemistry 2018, 2018 (48) , 5160-5166. https://doi.org/10.1002/ejic.201800689
    59. Etienne A. LaPierre, Warren E. Piers, Chris Gendy. Redox-state dependent activation of silanes and ammonia with reverse polarity (PC carbene P)Ni complexes: electrophilic vs. nucleophilic carbenes. Dalton Transactions 2018, 47 (46) , 16789-16797. https://doi.org/10.1039/C8DT04409K
    60. Joshua A. Buss, Christine Cheng, Theodor Agapie. A Low‐Valent Molybdenum Nitride Complex: Reduction Promotes Carbonylation Chemistry. Angewandte Chemie 2018, 130 (31) , 9818-9822. https://doi.org/10.1002/ange.201803728
    61. Joshua A. Buss, Christine Cheng, Theodor Agapie. A Low‐Valent Molybdenum Nitride Complex: Reduction Promotes Carbonylation Chemistry. Angewandte Chemie International Edition 2018, 57 (31) , 9670-9674. https://doi.org/10.1002/anie.201803728
    62. Máté J. Bezdek, Paul J. Chirik. Interconversion of Molybdenum Imido and Amido Complexes by Proton‐Coupled Electron Transfer. Angewandte Chemie 2018, 130 (8) , 2246-2250. https://doi.org/10.1002/ange.201708406
    63. Máté J. Bezdek, Paul J. Chirik. Interconversion of Molybdenum Imido and Amido Complexes by Proton‐Coupled Electron Transfer. Angewandte Chemie International Edition 2018, 57 (8) , 2224-2228. https://doi.org/10.1002/anie.201708406
    64. Megan Keener, Madeline Peterson, Raúl Hernández Sánchez, Victoria F. Oswald, Guang Wu, Gabriel Ménard. Towards Catalytic Ammonia Oxidation to Dinitrogen: A Synthetic Cycle by Using a Simple Manganese Complex. Chemistry – A European Journal 2017, 23 (48) , 11479-11484. https://doi.org/10.1002/chem.201703153

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2017, 139, 8, 2916–2919
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.7b00002
    Published February 6, 2017
    Copyright © 2017 American Chemical Society

    Article Views

    3870

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.