ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Figure 1Loading Img

Physical Organic Approach to Persistent, Cyclable, Low-Potential Electrolytes for Flow Battery Applications

View Author Information
Joint Center for Energy Storage Research, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
§ Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
Cite this: J. Am. Chem. Soc. 2017, 139, 8, 2924–2927
Publication Date (Web):February 21, 2017
https://doi.org/10.1021/jacs.7b00147
Copyright © 2017 American Chemical Society
Article Views
7042
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)
Supporting Info (3)»

Abstract

Abstract Image

The deployment of nonaqueous redox flow batteries for grid-scale energy storage has been impeded by a lack of electrolytes that undergo redox events at as low (anolyte) or high (catholyte) potentials as possible while exhibiting the stability and cycling lifetimes necessary for a battery device. Herein, we report a new approach to electrolyte design that uses physical organic tools for the predictive targeting of electrolytes that possess this combination of properties. We apply this approach to the identification of a new pyridinium-based anolyte that undergoes 1e electrochemical charge–discharge cycling at low potential (−1.21 V vs Fc/Fc+) to a 95% state-of-charge without detectable capacity loss after 200 cycles.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b00147.

  • Data for C20H18NO, BF4 (CIF)

  • Data for C20H18NO (CIF)

  • Experimental procedures, characterization, and spectral and electrochemical data (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 138 publications.

  1. Md. Motiur R. Mazumder, Niharika Dalpati, P. Raj Pokkuluri, Byron H. Farnum. Zinc-Catalyzed Two-Electron Nickel(IV/II) Redox Couple for Multi-Electron Storage in Redox Flow Batteries. Inorganic Chemistry 2022, 61 (48) , 19039-19048. https://doi.org/10.1021/acs.inorgchem.2c03124
  2. Michał Jakubczyk, Satenik Mkrtchyan, Mohanad Shkoor, Suneel Lanka, Šimon Budzák, Miroslav Iliaš, Marek Skoršepa, Viktor O. Iaroshenko. Mechanochemical Conversion of Aromatic Amines to Aryl Trifluoromethyl Ethers. Journal of the American Chemical Society 2022, 144 (23) , 10438-10445. https://doi.org/10.1021/jacs.2c02611
  3. McKenzie Jonely, Rodrigo Noriega. Selectively Altering the Reactivity of Transient Organic Radical Ions via Their Solvation Environment. The Journal of Physical Chemistry B 2022, 126 (16) , 3107-3115. https://doi.org/10.1021/acs.jpcb.2c00719
  4. Xiaoting Fang, Zhiguang Li, Yuyue Zhao, Diqing Yue, Lu Zhang, Xiaoliang Wei. Multielectron Organic Redoxmers for Energy-Dense Redox Flow Batteries. ACS Materials Letters 2022, 4 (2) , 277-306. https://doi.org/10.1021/acsmaterialslett.1c00668
  5. Bertrand J. Neyhouse, Kevin M. Tenny, Yet-Ming Chiang, Fikile R. Brushett. Microelectrode-Based Sensor for Measuring Operando Active Species Concentrations in Redox Flow Cells. ACS Applied Energy Materials 2021, 4 (12) , 13830-13840. https://doi.org/10.1021/acsaem.1c02580
  6. Benjamin Silcox, Jingjing Zhang, Siu On Tung, Ilya A. Shkrob, Lu Zhang, Levi T. Thompson. Cross-Platform Classifier of Chemical Stability for Charged Redoxmers. ACS Materials Letters 2021, 3 (11) , 1605-1609. https://doi.org/10.1021/acsmaterialslett.1c00424
  7. Mingguang Pan, Yan Lu, Shuyu Lu, Bo Yu, Jie Wei, Yuzhu Liu, Zhong Jin. The Dual Role of Bridging Phenylene in an Extended Bipyridine System for High-Voltage and Stable Two-Electron Storage in Redox Flow Batteries. ACS Applied Materials & Interfaces 2021, 13 (37) , 44174-44183. https://doi.org/10.1021/acsami.1c09019
  8. Seongmo Ahn, Jin Hyeok Jang, Jungtaek Kang, Moony Na, Jia Seo, Vikram Singh, Jung Min Joo, Hye Ryung Byon. Systematic Designs of Dicationic Heteroarylpyridiniums as Negolytes for Nonaqueous Redox Flow Batteries. ACS Energy Letters 2021, 6 (9) , 3390-3397. https://doi.org/10.1021/acsenergylett.1c01623
  9. Yichao Yan, Sophia G. Robinson, Thomas P. Vaid, Matthew S. Sigman, Melanie S. Sanford. Simultaneously Enhancing the Redox Potential and Stability of Multi-Redox Organic Catholytes by Incorporating Cyclopropenium Substituents. Journal of the American Chemical Society 2021, 143 (33) , 13450-13459. https://doi.org/10.1021/jacs.1c07237
  10. Zhifei Yan, Ryszard J. Wycisk, Amy S. Metlay, Langqiu Xiao, Yein Yoon, Peter N. Pintauro, Thomas E. Mallouk. High-Voltage Aqueous Redox Flow Batteries Enabled by Catalyzed Water Dissociation and Acid–Base Neutralization in Bipolar Membranes. ACS Central Science 2021, 7 (6) , 1028-1035. https://doi.org/10.1021/acscentsci.1c00217
  11. Guangyuan Gao, Xiujuan Wang, Ling Chen, Thomas Baumgartner, Xiaoming He. Conjugated Polymers with Benzoyl-N-methylpyridinium Units: An Effective Design Strategy for High-Performance Lithium-Ion Batteries. Chemistry of Materials 2021, 33 (12) , 4596-4605. https://doi.org/10.1021/acs.chemmater.1c01072
  12. Bin Liu, Chun Wai Tang, Haoran Jiang, Guochen Jia, Tianshou Zhao. Carboxyl-Functionalized TEMPO Catholyte Enabling High-Cycling-Stability and High-Energy-Density Aqueous Organic Redox Flow Batteries. ACS Sustainable Chemistry & Engineering 2021, 9 (18) , 6258-6265. https://doi.org/10.1021/acssuschemeng.0c08946
  13. Curt M. Wong, Christo S. Sevov. All-Organic Storage Solids and Redox Shuttles for Redox-Targeting Flow Batteries. ACS Energy Letters 2021, 6 (4) , 1271-1279. https://doi.org/10.1021/acsenergylett.1c00143
  14. Jeremy D. Griffin, Adam R. Pancoast, Matthew S. Sigman. Interrogation of 2,2′-Bipyrimidines as Low-Potential Two-Electron Electrolytes. Journal of the American Chemical Society 2021, 143 (2) , 992-1004. https://doi.org/10.1021/jacs.0c11267
  15. Mark D. Bartolo, Ryan P. Brisbin, James C. Fettinger, Sayantani Ghosh, Ryan D. Baxter. Impact of Bis(imino)pyridine Ligands on Mesoscale Properties of CdSe/ZnS Quantum Dots. The Journal of Physical Chemistry C 2020, 124 (41) , 22677-22683. https://doi.org/10.1021/acs.jpcc.0c06335
  16. Jisu Back, Giyun Kwon, Jung Eun Byeon, Hayoung Song, Kisuk Kang, Eunsung Lee. Tunable Redox-Active Triazenyl–Carbene Platforms: A New Class of Anolytes for Non-Aqueous Organic Redox Flow Batteries. ACS Applied Materials & Interfaces 2020, 12 (33) , 37338-37345. https://doi.org/10.1021/acsami.0c09400
  17. Blaise L. Truesdell, Taylor B. Hamby, Christo S. Sevov. General C(sp2)–C(sp3) Cross-Electrophile Coupling Reactions Enabled by Overcharge Protection of Homogeneous Electrocatalysts. Journal of the American Chemical Society 2020, 142 (12) , 5884-5893. https://doi.org/10.1021/jacs.0c01475
  18. Sophia G. Robinson, Matthew S. Sigman. Integrating Electrochemical and Statistical Analysis Tools for Molecular Design and Mechanistic Understanding. Accounts of Chemical Research 2020, 53 (2) , 289-299. https://doi.org/10.1021/acs.accounts.9b00527
  19. Caixing Wang, Xiang Li, Bo Yu, Yanrong Wang, Zhen Yang, Huaizhu Wang, Huinan Lin, Jing Ma, Guigen Li, Zhong Jin. Molecular Design of Fused-Ring Phenazine Derivatives for Long-Cycling Alkaline Redox Flow Batteries. ACS Energy Letters 2020, 5 (2) , 411-417. https://doi.org/10.1021/acsenergylett.9b02676
  20. Jingchao Chai Amir Lashgari Jianbing “Jimmy” Jiang . Electroactive Materials for Next-Generation Redox Flow Batteries: From Inorganic to Organic. 2020, 1-47. https://doi.org/10.1021/bk-2020-1364.ch001
  21. Andrew W. Lantz, Sydney A. Shavalier, William Schroeder, Paul G. Rasmussen. Evaluation of an Aqueous Biphenol- and Anthraquinone-Based Electrolyte Redox Flow Battery. ACS Applied Energy Materials 2019, 2 (11) , 7893-7902. https://doi.org/10.1021/acsaem.9b01381
  22. Alolika Mukhopadhyay, Huijuan Zhao, Bin Li, Jonathan Hamel, Yang Yang, Daxian Cao, Avi Natan, Hongli Zhu. Abundant Organic Dye as an Anolyte for Aqueous Flow Battery with Multielectron Transfer. ACS Applied Energy Materials 2019, 2 (10) , 7425-7437. https://doi.org/10.1021/acsaem.9b01429
  23. Jian Luo, Bo Hu, Maowei Hu, Yu Zhao, T. Leo Liu. Status and Prospects of Organic Redox Flow Batteries toward Sustainable Energy Storage. ACS Energy Letters 2019, 4 (9) , 2220-2240. https://doi.org/10.1021/acsenergylett.9b01332
  24. Saleem Abbas, Jinyeon Hwang, Heejin Kim, Seen Ae Chae, Ji Won Kim, Sheeraz Mehboob, Ahreum Ahn, Oc Hee Han, Heung Yong Ha. Enzyme-Inspired Formulation of the Electrolyte for Stable and Efficient Vanadium Redox Flow Batteries at High Temperatures. ACS Applied Materials & Interfaces 2019, 11 (30) , 26842-26853. https://doi.org/10.1021/acsami.9b06790
  25. John L. Barton, Alex I. Wixtrom, Jeffrey A. Kowalski, Elaine A. Qian, Dahee Jung, Fikile R. Brushett, Alexander M. Spokoyny. Perfunctionalized Dodecaborate Clusters as Stable Metal-Free Active Materials for Charge Storage. ACS Applied Energy Materials 2019, 2 (7) , 4907-4913. https://doi.org/10.1021/acsaem.9b00610
  26. Benjamin Silcox, Jingjing Zhang, Ilya A. Shkrob, Levi Thompson, Lu Zhang. On Transferability of Performance Metrics for Redox-Active Molecules. The Journal of Physical Chemistry C 2019, 123 (27) , 16516-16524. https://doi.org/10.1021/acs.jpcc.9b02230
  27. Marco A. B. Ferreira, Jordan De Jesus Silva, Samantha Grosslight, Alexey Fedorov, Matthew S. Sigman, Christophe Copéret. Noncovalent Interactions Drive the Efficiency of Molybdenum Imido Alkylidene Catalysts for Olefin Metathesis. Journal of the American Chemical Society 2019, 141 (27) , 10788-10800. https://doi.org/10.1021/jacs.9b04367
  28. Sophia G. Robinson, Yichao Yan, Koen H. Hendriks, Melanie S. Sanford, Matthew S. Sigman. Developing a Predictive Solubility Model for Monomeric and Oligomeric Cyclopropenium-Based Flow Battery Catholytes. Journal of the American Chemical Society 2019, 141 (26) , 10171-10176. https://doi.org/10.1021/jacs.9b04270
  29. N. Harsha Attanayake, Jeffrey A. Kowalski, Katharine V. Greco, Matthew D. Casselman, Jarrod D. Milshtein, Steven J. Chapman, Sean R. Parkin, Fikile R. Brushett, Susan A. Odom. Tailoring Two-Electron-Donating Phenothiazines To Enable High-Concentration Redox Electrolytes for Use in Nonaqueous Redox Flow Batteries. Chemistry of Materials 2019, 31 (12) , 4353-4363. https://doi.org/10.1021/acs.chemmater.8b04770
  30. Patrick W. Antoni, Tim Bruckhoff, Max M. Hansmann. Organic Redox Systems Based on Pyridinium–Carbene Hybrids. Journal of the American Chemical Society 2019, 141 (24) , 9701-9711. https://doi.org/10.1021/jacs.9b04249
  31. Xuan Zhang, Andrew McNally. Cobalt-Catalyzed Alkylation of Drug-Like Molecules and Pharmaceuticals Using Heterocyclic Phosphonium Salts. ACS Catalysis 2019, 9 (6) , 4862-4866. https://doi.org/10.1021/acscatal.9b00851
  32. David P. Hickey, Christopher Sandford, Zayn Rhodes, Tobias Gensch, Lydia R. Fries, Matthew S. Sigman, Shelley D. Minteer. Investigating the Role of Ligand Electronics on Stabilizing Electrocatalytically Relevant Low-Valent Co(I) Intermediates. Journal of the American Chemical Society 2019, 141 (3) , 1382-1392. https://doi.org/10.1021/jacs.8b12634
  33. Paula Navalpotro, Noemí Sierra, Carlos Trujillo, Iciar Montes, Jesus Palma, Rebeca Marcilla. Exploring the Versatility of Membrane-Free Battery Concept Using Different Combinations of Immiscible Redox Electrolytes. ACS Applied Materials & Interfaces 2018, 10 (48) , 41246-41256. https://doi.org/10.1021/acsami.8b11581
  34. Patrick W. Antoni, Max M. Hansmann. Pyrylenes: A New Class of Tunable, Redox-Switchable, Photoexcitable Pyrylium–Carbene Hybrids with Three Stable Redox-States. Journal of the American Chemical Society 2018, 140 (44) , 14823-14835. https://doi.org/10.1021/jacs.8b08545
  35. Miranda J. Baran, Miles N. Braten, Elena C. Montoto, Zachary T. Gossage, Lin Ma, Etienne Chénard, Jeffrey S. Moore, Joaquín Rodríguez-López, Brett A. Helms. Designing Redox-Active Oligomers for Crossover-Free, Nonaqueous Redox-Flow Batteries with High Volumetric Energy Density. Chemistry of Materials 2018, 30 (11) , 3861-3866. https://doi.org/10.1021/acs.chemmater.8b01318
  36. Jingjing Zhang, Jinhua Huang, Lily A. Robertson, Rajeev S. Assary, Ilya A. Shkrob, Lu Zhang. Elucidating Factors Controlling Long-Term Stability of Radical Anions for Negative Charge Storage in Nonaqueous Redox Flow Batteries. The Journal of Physical Chemistry C 2018, 122 (15) , 8116-8127. https://doi.org/10.1021/acs.jpcc.8b01434
  37. Jingjing Zhang, R. E. Corman, Jonathon K. Schuh, Randy H. Ewoldt, Ilya A. Shkrob, Lu Zhang. Solution Properties and Practical Limits of Concentrated Electrolytes for Nonaqueous Redox Flow Batteries. The Journal of Physical Chemistry C 2018, 122 (15) , 8159-8172. https://doi.org/10.1021/acs.jpcc.8b02009
  38. Camden DeBruler, Bo Hu, Jared Moss, Jian Luo, T. Leo Liu. A Sulfonate-Functionalized Viologen Enabling Neutral Cation Exchange, Aqueous Organic Redox Flow Batteries toward Renewable Energy Storage. ACS Energy Letters 2018, 3 (3) , 663-668. https://doi.org/10.1021/acsenergylett.7b01302
  39. Koen H. Hendriks, Sophia G. Robinson, Miles N. Braten, Christo S. Sevov, Brett A. Helms, Matthew S. Sigman, Shelley D. Minteer, and Melanie S. Sanford . High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries. ACS Central Science 2018, 4 (2) , 189-196. https://doi.org/10.1021/acscentsci.7b00544
  40. Yoonsu Park, Zachary L. Niemeyer, Jin-Quan Yu, and Matthew S. Sigman . Quantifying Structural Effects of Amino Acid Ligands in Pd(II)-Catalyzed Enantioselective C–H Functionalization Reactions. Organometallics 2018, 37 (2) , 203-210. https://doi.org/10.1021/acs.organomet.7b00751
  41. Cristian A. Morales-Rivera, Paul E. Floreancig, and Peng Liu . Predictive Model for Oxidative C–H Bond Functionalization Reactivity with 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone. Journal of the American Chemical Society 2017, 139 (49) , 17935-17944. https://doi.org/10.1021/jacs.7b08902
  42. Christo S. Sevov, Koen H. Hendriks, and Melanie S. Sanford . Low-Potential Pyridinium Anolyte for Aqueous Redox Flow Batteries. The Journal of Physical Chemistry C 2017, 121 (44) , 24376-24380. https://doi.org/10.1021/acs.jpcc.7b06247
  43. Jingjing Zhang, Ilya A. Shkrob, Rajeev S. Assary, Siu on Tung, Benjamin Silcox, Larry A. Curtiss, Levi Thompson, and Lu Zhang . Toward Improved Catholyte Materials for Redox Flow Batteries: What Controls Chemical Stability of Persistent Radical Cations?. The Journal of Physical Chemistry C 2017, 121 (42) , 23347-23358. https://doi.org/10.1021/acs.jpcc.7b08281
  44. Koen H. Hendriks, Christo S. Sevov, Monique E. Cook, and Melanie S. Sanford . Multielectron Cycling of a Low-Potential Anolyte in Alkali Metal Electrolytes for Nonaqueous Redox Flow Batteries. ACS Energy Letters 2017, 2 (10) , 2430-2435. https://doi.org/10.1021/acsenergylett.7b00559
  45. Xiaoliang Wei, Wenxiao Pan, Wentao Duan, Aaron Hollas, Zheng Yang, Bin Li, Zimin Nie, Jun Liu, David Reed, Wei Wang, and Vincent Sprenkle . Materials and Systems for Organic Redox Flow Batteries: Status and Challenges. ACS Energy Letters 2017, 2 (9) , 2187-2204. https://doi.org/10.1021/acsenergylett.7b00650
  46. Benjamin D. Silcox, Curt M. Wong, Xiaoliang Wei, Christo Sevov, Levi T. Thompson. Metal Coordination Complexes for Flow Batteries. 2023, 923-949. https://doi.org/10.1002/9783527832767.ch41
  47. Kathryn Toghill, Craig Armstrong. Nonaqueous Metal‐Free Flow Batteries. 2023, 975-1005. https://doi.org/10.1002/9783527832767.ch43
  48. Weiyao Zhang, Xin Yang, Shiyu Zhang. Gaseous Nitrogen Oxides Catholyte for Rechargeable Redox Flow Batteries. Angewandte Chemie 2023, 115 https://doi.org/10.1002/ange.202216889
  49. Weiyao Zhang, Xin Yang, Shiyu Zhang. Gaseous Nitrogen Oxides Catholyte for Rechargeable Redox Flow Batteries. Angewandte Chemie International Edition 2023, 524 https://doi.org/10.1002/anie.202216889
  50. Raghuram Gaddam, Dipobrato Sarbapalli, Jason Howard, Larry A. Curtiss, Rajeev S. Assary, Joaquín Rodríguez‐López. An SECM‐Based Spot Analysis for Redoxmer‐Electrode Kinetics: Identifying Redox Asymmetries on Model Graphitic Carbon Interfaces. Chemistry – An Asian Journal 2022, 42 https://doi.org/10.1002/asia.202201120
  51. Thomas P. Vaid, Monique E. Cook, Jessica D. Scott, Marino Borjesson Carazo, Jonathan Ruchti, Shelley D. Minteer, Matthew S. Sigman, Anne J. McNeil, Melanie S. Sanford. Theoretical and Experimental Investigation of Functionalized Cyanopyridines Yield an Anolyte with an Extremely Low Reduction Potential for Nonaqueous Redox Flow Batteries. Chemistry – A European Journal 2022, 28 (70) https://doi.org/10.1002/chem.202202147
  52. Senthil Velan Venkatesan, Arpita Nandy, Kunal Karan, Stephen R. Larter, Venkataraman Thangadurai. Recent Advances in the Unconventional Design of Electrochemical Energy Storage and Conversion Devices. Electrochemical Energy Reviews 2022, 5 (4) https://doi.org/10.1007/s41918-022-00162-6
  53. Qiting Lin, Ling Chen, Xiujuan Wang, Xiaoming He. Synthesis of 4-electron-accepting carbonyl-N-methylpyridinium species for lithium-organic batteries. STAR Protocols 2022, 3 (4) , 101851. https://doi.org/10.1016/j.xpro.2022.101851
  54. Anton S. Perera, T. Malsha Suduwella, N. Harsha Attanayake, Rahul Kant Jha, William L. Eubanks, Ilya A. Shkrob, Chad Risko, Aman Preet Kaur, Susan A. Odom. Large variability and complexity of isothermal solubility for a series of redox-active phenothiazines. Materials Advances 2022, 3 (23) , 8705-8715. https://doi.org/10.1039/D2MA00598K
  55. Joseph Egitto, Tugba Ceren Gokoglan, Shyam K. Pahari, Jennifer N. Bolibok, Sundar Rajan Aravamuthan, Fuqiang Liu, Xinfang Jin, Patrick J. Cappillino, Ertan Agar. Toward High Energy Density Redox Targeting Flow Batteries With a Mushroom-Derived Electrolyte. Journal of Electrochemical Energy Conversion and Storage 2022, 19 (4) https://doi.org/10.1115/1.4054697
  56. Jungmyung Kim, Heesung Park. Recent advances in porous electrodes for vanadium redox flow batteries in grid-scale energy storage systems: A mass transfer perspective. Journal of Power Sources 2022, 545 , 231904. https://doi.org/10.1016/j.jpowsour.2022.231904
  57. Gloria D. De La Garza, Aman Preet Kaur, Ilya A. Shkrob, Lily A. Robertson, Susan A. Odom, Anne J. McNeil. Soluble and stable symmetric tetrazines as anolytes in redox flow batteries. Journal of Materials Chemistry A 2022, 10 (36) , 18745-18752. https://doi.org/10.1039/D2TA04515J
  58. Alexandra E. Jones, Andinet Ejigu, Bin Wang, Ralph W. Adams, Mark A. Bissett, Robert A.W. Dryfe. Quinone voltammetry for redox-flow battery applications. Journal of Electroanalytical Chemistry 2022, 920 , 116572. https://doi.org/10.1016/j.jelechem.2022.116572
  59. Bing Xue, Xiangkun Wu, Yawei Guo, Chi Zhang, Weiwei Qian, Lan Zhang. Review—Ionic Liquids Applications in Flow Batteries. Journal of The Electrochemical Society 2022, 169 (8) , 080501. https://doi.org/10.1149/1945-7111/ac81f3
  60. Leyuan Zhang, Ruozhu Feng, Wei Wang, Guihua Yu. Emerging chemistries and molecular designs for flow batteries. Nature Reviews Chemistry 2022, 6 (8) , 524-543. https://doi.org/10.1038/s41570-022-00394-6
  61. Shree Sowndarya S. V., Jeffrey N. Law, Charles E. Tripp, Dmitry Duplyakin, Erotokritos Skordilis, David Biagioni, Robert S. Paton, Peter C. St. John. Multi-objective goal-directed optimization of de novo stable organic radicals for aqueous redox flow batteries. Nature Machine Intelligence 2022, 4 (8) , 720-730. https://doi.org/10.1038/s42256-022-00506-3
  62. Xiujuan Wang, Wenhao Xue, Guangyuan Gao, Ling Chen, Thomas Baumgartner, Xiaoming He. Bio-derived 4-electron-accepting carbonyl-N-methylpyridinium species for high-performance lithium-organic batteries. Cell Reports Physical Science 2022, 3 (7) , 100951. https://doi.org/10.1016/j.xcrp.2022.100951
  63. Patrick W. Antoni, Christopher Golz, Max M. Hansmann. Organische Vier‐Elektronen Redox‐Systeme basierend auf Bipyridin‐ und Phenanthrolin‐Carben‐Architekturen. Angewandte Chemie 2022, 134 (24) https://doi.org/10.1002/ange.202203064
  64. Patrick W. Antoni, Christopher Golz, Max M. Hansmann. Organic Four‐Electron Redox Systems Based on Bipyridine and Phenanthroline Carbene Architectures. Angewandte Chemie International Edition 2022, 61 (24) https://doi.org/10.1002/anie.202203064
  65. Yiyang Liu, Jialin Zhang, Shanfu Lu, Yan Xiang. Polyoxometalate-based electrolyte materials in redox flow batteries: Current trends and emerging opportunities. Materials Reports: Energy 2022, 2 (2) , 100094. https://doi.org/10.1016/j.matre.2022.100094
  66. Ziming Zhao, Changkun Zhang, Xianfeng Li. Opportunities and challenges of organic flow battery for electrochemical energy storage technology. Journal of Energy Chemistry 2022, 67 , 621-639. https://doi.org/10.1016/j.jechem.2021.10.037
  67. Claudina X. Kolesnichenko, Harry D. Pratt, Leo J. Small, Travis M. Anderson. Elucidating Instabilities Contributing to Capacity Fade in Bipyridine‐Based Materials for Non‐aqueous Flow Batteries. ChemElectroChem 2022, 9 (6) https://doi.org/10.1002/celc.202101490
  68. Jolene P. Reid. Computational Catalyst Design with Data–Driven Tools – General Approaches and Applications. 2022https://doi.org/10.1016/B978-0-12-821978-2.00009-X
  69. Giyun Kwon, Kyunam Lee, Jaekyun Yoo, Sechan Lee, Jihyeon Kim, Youngsu Kim, Ji Eon Kwon, Soo Young Park, Kisuk Kang. Highly persistent triphenylamine-based catholyte for durable organic redox flow batteries. Energy Storage Materials 2021, 42 , 185-192. https://doi.org/10.1016/j.ensm.2021.07.006
  70. Shikha Sharma, Suman Rathod, Satya Prakash Yadav, Arunavo Chakraborty, Ashok K. Shukla, Nagaphani Aetukuri, Satish Patil. Electrochemical Evaluation of Diketopyrrolopyrrole Derivatives for Nonaqueous Redox Flow Batteries. Chemistry – A European Journal 2021, 27 (47) , 12172-12180. https://doi.org/10.1002/chem.202101516
  71. Ilya A. Shkrob, Lily A. Robertson, Zhou Yu, Rajeev S. Assary, Lei Cheng, Lu Zhang, Erik Sarnello, Xinyi Liu, Tao Li, Aman Preet Kaur, T. Malsha Suduwella, Susan A. Odom, Yilin Wang, Randy H. Ewoldt, Hossam M. Farag, Y Z. Crowded electrolytes containing redoxmers in different states of charge: Solution structure, properties, and fundamental limits on energy density. Journal of Molecular Liquids 2021, 334 , 116533. https://doi.org/10.1016/j.molliq.2021.116533
  72. Xiao Wang, Jingchao Chai, Nilakshi Devi, Amir Lashgari, Ashwin Chaturvedi, Jianbing "Jimmy" Jiang. Two-electron-active tetracyanoethylene for nonaqueous redox flow batteries. Journal of Materials Chemistry A 2021, 9 (24) , 13867-13873. https://doi.org/10.1039/D1TA01365C
  73. Changkun Zhang, Hui Chen, Yumin Qian, Gaole Dai, Yu Zhao, Guihua Yu. General Design Methodology for Organic Eutectic Electrolytes toward High‐Energy‐Density Redox Flow Batteries. Advanced Materials 2021, 33 (15) , 2008560. https://doi.org/10.1002/adma.202008560
  74. M. S. Anantha, D. Anarghya, Chunyan Hu, Narendra Reddy, Krishna Venkatesh, H. B. Muralidhara. Electrochemical performance of graphene oxide modified graphite felt as a positive electrode in all-iron redox flow batteries. Journal of Applied Electrochemistry 2021, 51 (2) , 331-344. https://doi.org/10.1007/s10800-020-01490-5
  75. G. Muthuraman, P. Silambarasan, K. Bae, I. S. Moon. Combination of Acid-Base Electrolyte at Each Half-Cell with a Single Zeolite Membrane for Crossover Free and Possible Increased Energy Density in an All Aqueous Redox Flow Battery. Journal of The Electrochemical Society 2021, 168 (2) , 020531. https://doi.org/10.1149/1945-7111/abe39f
  76. Xiao Wang, Jingchao Chai, Amir Lashgari, Jianbing Jimmy Jiang. Azobenzene‐Based Low‐Potential Anolyte for Nonaqueous Organic Redox Flow Batteries. ChemElectroChem 2021, 8 (1) , 83-89. https://doi.org/10.1002/celc.202001035
  77. Zayn Rhodes, Jaime R. Cabrera‐Pardo, Min Li, Shelley D. Minteer. Electrochemical Advances in Non‐Aqueous Redox Flow Batteries. Israel Journal of Chemistry 2021, 61 (1-2) , 101-112. https://doi.org/10.1002/ijch.202000049
  78. Shree Sowndarya S. V., Peter C. St. John, Robert S. Paton. A quantitative metric for organic radical stability and persistence using thermodynamic and kinetic features. Chemical Science 2021, 11 https://doi.org/10.1039/D1SC02770K
  79. Jeffrey A. Kowalski, Alexis M. Fenton, Bertrand J. Neyhouse, Fikile R. Brushett. A Method for Evaluating Soluble Redox Couple Stability Using Microelectrode Voltammetry. Journal of The Electrochemical Society 2020, 167 (16) , 160513. https://doi.org/10.1149/1945-7111/abb7e9
  80. Bin Liu, Chun Wai Tang, Haoran Jiang, Guocheng Jia, Tianshou Zhao. An aqueous organic redox flow battery employing a trifunctional electroactive compound as anolyte, catholyte and supporting electrolyte. Journal of Power Sources 2020, 477 , 228985. https://doi.org/10.1016/j.jpowsour.2020.228985
  81. Rodrigo P. Carvalho, Cleber F. N. Marchiori, C. Moyses Araujo, Daniel Brandell. Atomic-scale Modelling of Redox-active Organic Molecules and Polymers for Energy Applications. 2020, 93-136. https://doi.org/10.1039/9781788019743-00093
  82. Jingchao Chai, Amir Lashgari, Xiao Wang, Jianbing “Jimmy” Jiang. Extending the Redox Potentials of Metal-Free Anolytes: Towards High Energy Density Redox Flow Batteries. Journal of The Electrochemical Society 2020, 167 (10) , 100556. https://doi.org/10.1149/1945-7111/ab9e84
  83. Min Li, Zayn Rhodes, Jaime R. Cabrera-Pardo, Shelley D. Minteer. Recent advancements in rational design of non-aqueous organic redox flow batteries. Sustainable Energy & Fuels 2020, 4 (9) , 4370-4389. https://doi.org/10.1039/D0SE00800A
  84. Tylan S. Watkins, Dipobrato Sarbapalli, Michael J. Counihan, Andrew S. Danis, Jingjing Zhang, Lu Zhang, Kevin R. Zavadil, Joaquín Rodríguez-López. A combined SECM and electrochemical AFM approach to probe interfacial processes affecting molecular reactivity at redox flow battery electrodes. Journal of Materials Chemistry A 2020, 8 (31) , 15734-15745. https://doi.org/10.1039/D0TA00836B
  85. Lynn Trahey, Fikile R. Brushett, Nitash P. Balsara, Gerbrand Ceder, Lei Cheng, Yet-Ming Chiang, Nathan T. Hahn, Brian J. Ingram, Shelley D. Minteer, Jeffrey S. Moore, Karl T. Mueller, Linda F. Nazar, Kristin A. Persson, Donald J. Siegel, Kang Xu, Kevin R. Zavadil, Venkat Srinivasan, George W. Crabtree. Energy storage emerging: A perspective from the Joint Center for Energy Storage Research. Proceedings of the National Academy of Sciences 2020, 117 (23) , 12550-12557. https://doi.org/10.1073/pnas.1821672117
  86. Simon L. Rössler, Benson J. Jelier, Emmanuel Magnier, Guillaume Dagousset, Erick M. Carreira, Antonio Togni. Pyridiniumsalze als redoxaktive Reagenzien zur Übertragung funktioneller Gruppen. Angewandte Chemie 2020, 132 (24) , 9350-9366. https://doi.org/10.1002/ange.201911660
  87. Simon L. Rössler, Benson J. Jelier, Emmanuel Magnier, Guillaume Dagousset, Erick M. Carreira, Antonio Togni. Pyridinium Salts as Redox‐Active Functional Group Transfer Reagents. Angewandte Chemie International Edition 2020, 59 (24) , 9264-9280. https://doi.org/10.1002/anie.201911660
  88. Camden Debruler, Wenda Wu, Kevin Cox, Brice Vanness, T. Leo Liu. Integrated Saltwater Desalination and Energy Storage through a pH Neutral Aqueous Organic Redox Flow Battery. Advanced Functional Materials 2020, 30 (24) , 2000385. https://doi.org/10.1002/adfm.202000385
  89. Ruiyong Chen. Redox flow batteries for energy storage: Recent advances in using organic active materials. Current Opinion in Electrochemistry 2020, 21 , 40-45. https://doi.org/10.1016/j.coelec.2020.01.003
  90. Anuska Shrestha, Koen H. Hendriks, Mathew S. Sigman, Shelley D. Minteer, Melanie S. Sanford. Realization of an Asymmetric Non‐Aqueous Redox Flow Battery through Molecular Design to Minimize Active Species Crossover and Decomposition. Chemistry – A European Journal 2020, 26 (24) , 5369-5373. https://doi.org/10.1002/chem.202000749
  91. Jeffrey A. Kowalski, Thomas J. Carney, Jinhua Huang, Lu Zhang, Fikile R. Brushett. An investigation on the impact of halidization on substituted dimethoxybenzenes. Electrochimica Acta 2020, 335 , 135580. https://doi.org/10.1016/j.electacta.2019.135580
  92. Jeffrey A. Kowalski, Bertrand J. Neyhouse, Fikile R. Brushett. The impact of bulk electrolysis cycling conditions on the perceived stability of redox active materials. Electrochemistry Communications 2020, 111 , 106625. https://doi.org/10.1016/j.elecom.2019.106625
  93. Xueqi Xing, Qinghua Liu, Baoguo Wang, John P. Lemmon, Wayne Qiang Xu. A low potential solvent-miscible 3-methylbenzophenone anolyte material for high voltage and energy density all-organic flow battery. Journal of Power Sources 2020, 445 , 227330. https://doi.org/10.1016/j.jpowsour.2019.227330
  94. Nagaraj P. Shetti, Savio Dias, Kakarla Raghava Reddy. Nanostructured organic and inorganic materials for Li-ion batteries: A review. Materials Science in Semiconductor Processing 2019, 104 , 104684. https://doi.org/10.1016/j.mssp.2019.104684
  95. Bo Hu, Jian Luo, Maowei Hu, Bing Yuan, T. Leo Liu. A pH‐Neutral, Metal‐Free Aqueous Organic Redox Flow Battery Employing an Ammonium Anthraquinone Anolyte. Angewandte Chemie International Edition 2019, 58 (46) , 16629-16636. https://doi.org/10.1002/anie.201907934
  96. Bo Hu, Jian Luo, Maowei Hu, Bing Yuan, T. Leo Liu. A pH‐Neutral, Metal‐Free Aqueous Organic Redox Flow Battery Employing an Ammonium Anthraquinone Anolyte. Angewandte Chemie 2019, 131 (46) , 16782-16789. https://doi.org/10.1002/ange.201907934
  97. Peng Hu, Xuexia He, Man‐Fai Ng, Jun Ye, Chenyang Zhao, Shancheng Wang, Kejie Tan, Apoorva Chaturvedi, Hui Jiang, Christian Kloc, Wenping Hu, Yi Long. Trisulfide‐Bond Acenes for Organic Batteries. Angewandte Chemie 2019, 131 (38) , 13647-13655. https://doi.org/10.1002/ange.201906301
  98. Peng Hu, Xuexia He, Man‐Fai Ng, Jun Ye, Chenyang Zhao, Shancheng Wang, Kejie Tan, Apoorva Chaturvedi, Hui Jiang, Christian Kloc, Wenping Hu, Yi Long. Trisulfide‐Bond Acenes for Organic Batteries. Angewandte Chemie International Edition 2019, 58 (38) , 13513-13521. https://doi.org/10.1002/anie.201906301
  99. Luis F. Arenas, Carlos Ponce de León, Frank C. Walsh. Redox flow batteries for energy storage: their promise, achievements and challenges. Current Opinion in Electrochemistry 2019, 16 , 117-126. https://doi.org/10.1016/j.coelec.2019.05.007
  100. Grant D. Charlton, Stephanie M. Barbon, Joe B. Gilroy, C. Adam Dyker. A bipolar verdazyl radical for a symmetric all-organic redox flow-type battery. Journal of Energy Chemistry 2019, 34 , 52-56. https://doi.org/10.1016/j.jechem.2018.09.020
Load all citations

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE