ACS Publications. Most Trusted. Most Cited. Most Read
Temperature Treatment of Highly Porous Zirconium-Containing Metal–Organic Frameworks Extends Drug Delivery Release
My Activity

Figure 1Loading Img
    Article

    Temperature Treatment of Highly Porous Zirconium-Containing Metal–Organic Frameworks Extends Drug Delivery Release
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, U.K.
    Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
    § Department of Chemistry, University of Cambridge, Cambridge, U.K.
    Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
    Other Access OptionsSupporting Information (3)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2017, 139, 22, 7522–7532
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.7b01451
    Published May 16, 2017
    Copyright © 2017 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Utilizing metal–organic frameworks (MOFs) as a biological carrier can lower the amount of the active pharmaceutical ingredient (API) required in cancer treatments to provide a more efficacious therapy. In this work, we have developed a temperature treatment process for delaying the release of a model drug compound from the pores of NU-1000 and NU-901, while taking care to utilize these MOFs’ large pore volume and size to achieve exceptional model drug loading percentages over 35 wt %. Video-rate super-resolution microscopy reveals movement of MOF particles when located outside of the cell boundary, and their subsequent immobilization when taken up by the cell. Through the use of optical sectioning structured illumination microscopy (SIM), we have captured high-resolution 3D images showing MOF uptake by HeLa cells over a 24 h period. We found that addition of a model drug compound into the MOF and the subsequent temperature treatment process does not affect the rate of MOF uptake by the cell. Endocytosis analysis revealed that MOFs are internalized by active transport and that inhibiting the caveolae-mediated pathway significantly reduced cellular uptake of MOFs. Encapsulation of an anticancer therapeutic, alpha-cyano-4-hydroxycinnamic acid (α-CHC), and subsequent temperature treatment produced loadings of up to 81 wt % and demonstrated efficacy at killing cells beyond the burst release effect.

    Copyright © 2017 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b01451.

    • Structure of NU-1000 and NU-901, N2 adsorption isotherms at 77 K, and thermogravimetry curves under N2 atmosphere (PDF)

    • Reconstruction of a 3D image using the optical sectioning capabilities of SIM showing a HeLa cell with NU-1000 located within its boundaries (MOV)

    • Comparison of the dynamics of MOFs in both inter- and extracellular space with this 2-color 60-s time lapse video showing the movement of NU-1000 in 8× real time (MOV)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 293 publications.

    1. Luojia Wang, Zhongzhong Wang, Wang Luo, Heping Zhao, Guoming Xie. Dynamic Time-Programming Circuit for Encoding Information, Programming Dissipative Systems, and Delaying Release of Cargo. ACS Applied Bio Materials 2024, 7 (12) , 8599-8607. https://doi.org/10.1021/acsabm.4c01366
    2. Bahar Saboorizadeh, Rouholah Zare-Dorabei, Maliheh Safavi, Vahid Safarifard. Applications of Metal–Organic Frameworks (MOFs) in Drug Delivery, Biosensing, and Therapy: A Comprehensive Review. Langmuir 2024, 40 (43) , 22477-22503. https://doi.org/10.1021/acs.langmuir.4c02795
    3. Jiwei Wang, Sainan Liu, Qi Meng, Zhendong Liu, Wenying Zhang, Jia Tan, Binbin Ding, Ping’an Ma, Jun Lin. Dual Regulation of Energy/Electron Transfer in MOF@COP Heterojunctions through Ingenious Molecular Engineering for Enhanced Sonodynamic Cancer Therapy. ACS Materials Letters 2024, 6 (9) , 4302-4311. https://doi.org/10.1021/acsmaterialslett.4c01035
    4. Xiewen Liu, Joanna Obacz, Giulia Emanuelli, Joseph E. Chambers, Susana Abreu, Xu Chen, Emily Linnane, Joshua P. Mehta, Andrew E. H. Wheatley, Stefan J. Marciniak, David Fairen-Jimenez. Enhancing Drug Delivery Efficacy Through Bilayer Coating of Zirconium-Based Metal–Organic Frameworks: Sustained Release and Improved Chemical Stability and Cellular Uptake for Cancer Therapy. Chemistry of Materials 2024, 36 (8) , 3588-3603. https://doi.org/10.1021/acs.chemmater.3c02954
    5. Ziwan Xu, Wenyao Zhen, Caroline McCleary, Taokun Luo, Xiaomin Jiang, Cheng Peng, Ralph R. Weichselbaum, Wenbin Lin. Nanoscale Metal–Organic Framework with an X-ray Triggerable Prodrug for Synergistic Radiotherapy and Chemotherapy. Journal of the American Chemical Society 2023, 145 (34) , 18698-18704. https://doi.org/10.1021/jacs.3c04602
    6. Georgina P. Robertson, Sara Mosca, Celia Castillo-Blas, Florencia A. Son, Omar K. Farha, David A. Keen, Simone Anzellini, Thomas D. Bennett. Survival of Zirconium-Based Metal–Organic Framework Crystallinity at Extreme Pressures. Inorganic Chemistry 2023, 62 (26) , 10092-10099. https://doi.org/10.1021/acs.inorgchem.2c04428
    7. Lawson T. Glasby, Kristian Gubsch, Rosalee Bence, Rama Oktavian, Kesler Isoko, Seyed Mohamad Moosavi, Joan L. Cordiner, Jason C. Cole, Peyman Z. Moghadam. DigiMOF: A Database of Metal–Organic Framework Synthesis Information Generated via Text Mining. Chemistry of Materials 2023, 35 (11) , 4510-4524. https://doi.org/10.1021/acs.chemmater.3c00788
    8. Kaikai Ma, Yuk Ha Cheung, Haomiao Xie, Xingjie Wang, Michael Evangelopoulos, Kent O. Kirlikovali, Shengyi Su, Xiaoliang Wang, Chad A. Mirkin, John H. Xin, Omar K. Farha. Zirconium-Based Metal–Organic Frameworks as Reusable Antibacterial Peroxide Carriers for Protective Textiles. Chemistry of Materials 2023, 35 (6) , 2342-2352. https://doi.org/10.1021/acs.chemmater.2c03288
    9. Ziqi Zhou, Qiaomei Ke, Manni Wu, Ling Zhang, Ke Jiang. Pore Space Partition Approach of ZIF-8 for pH Responsive Codelivery of Ursolic Acid and 5-Fluorouracil. ACS Materials Letters 2023, 5 (2) , 466-472. https://doi.org/10.1021/acsmaterialslett.2c01097
    10. Shanshan Xu, Xiangyu Guo, Zhihua Qiao, Chongli Zhong. Facile in Situ Polymer Functionalization Approach for Constructing Water-Resistant Metal–Organic Frameworks. Industrial & Engineering Chemistry Research 2023, 62 (4) , 1899-1905. https://doi.org/10.1021/acs.iecr.2c03925
    11. Weiwei Liu, Ruolan Ma, Shiyi Lu, Yangyang Wen, Hongyan Li, Jing Wang, Baoguo Sun. Acid-Resistant Mesoporous Metal–Organic Frameworks as Carriers for Targeted Hypoglycemic Peptide Delivery: Peptide Encapsulation, Release, and Bioactivity. ACS Applied Materials & Interfaces 2022, 14 (50) , 55447-55457. https://doi.org/10.1021/acsami.2c18452
    12. Lynne S. Taylor, (Editor-in-Chief, Molecular Pharmaceutics)Doris E. Braun, (Associate Editor, Crystal Growth & Design)Lidia Tajber, Jonathan W. Steed (Editor-in-Chief, Crystal Growth & Design). Crystallizing the Role of Solid-State Form in Drug Delivery. Crystal Growth & Design 2022, 22 (8) , 4663-4665. https://doi.org/10.1021/acs.cgd.2c00760
    13. Lynne S. Taylor, (Editor-in-Chief, Molecular Pharmaceutics)Doris E. Braun, (Associate Editor, Crystal Growth & Design)Lidia Tajber, Jonathan W. Steed (Editor-in-Chief, Crystal Growth & Design). Crystallizing the Role of Solid-State Form in Drug Delivery. Molecular Pharmaceutics 2022, 19 (8) , 2683-2685. https://doi.org/10.1021/acs.molpharmaceut.2c00562
    14. Sanggyu Chong, Sven M. J. Rogge, Jihan Kim. Tunable Electrical Conductivity of Flexible Metal–Organic Frameworks. Chemistry of Materials 2022, 34 (1) , 254-265. https://doi.org/10.1021/acs.chemmater.1c03236
    15. Shabnam Khan Farhat Vakil Mohd Zeeshan M. Shahid . Postsynthetic Modification (PSM) in Metal−Organic Frameworks (MOFs): Icing on the Cake. , 83-115. https://doi.org/10.1021/bk-2021-1393.ch004
    16. Xu Chen, Yunhui Zhuang, Nakul Rampal, Rachel Hewitt, Giorgio Divitini, Christopher A. O’Keefe, Xiewen Liu, Daniel J. Whitaker, John W. Wills, Ravin Jugdaohsingh, Jonathan J. Powell, Han Yu, Clare P. Grey, Oren A. Scherman, David Fairen-Jimenez. Formulation of Metal–Organic Framework-Based Drug Carriers by Controlled Coordination of Methoxy PEG Phosphate: Boosting Colloidal Stability and Redispersibility. Journal of the American Chemical Society 2021, 143 (34) , 13557-13572. https://doi.org/10.1021/jacs.1c03943
    17. Yonghang Yang, Guojian Ren, Weikang Yang, Duoyu Lin, Meiling Li, Ze Chang, Yu Fang, Zhiqiang Liang, Qinhe Pan. Single-Crystal to Single-Crystal Transformation of Metal–Organic Framework Nanoparticles for Encapsulation and pH-Stimulated Release of Camptothecin. ACS Applied Nano Materials 2021, 4 (7) , 7191-7198. https://doi.org/10.1021/acsanm.1c01146
    18. Huiyu Duan, Zhimin Zhao, Jiadan Lu, Wenhui Hu, Yi Zhang, Shasha Li, Mengfei Zhang, Rongmei Zhu, Huan Pang. When Conductive MOFs Meet MnO2: High Electrochemical Energy Storage Performance in an Aqueous Asymmetric Supercapacitor. ACS Applied Materials & Interfaces 2021, 13 (28) , 33083-33090. https://doi.org/10.1021/acsami.1c08161
    19. Navid Rabiee, Mojtaba Bagherzadeh, Maryam Jouyandeh, Payam Zarrintaj, Mohammad Reza Saeb, Masoud Mozafari, Mohammadreza Shokouhimehr, Rajender S. Varma. Natural Polymers Decorated MOF-MXene Nanocarriers for Co-delivery of Doxorubicin/pCRISPR. ACS Applied Bio Materials 2021, 4 (6) , 5106-5121. https://doi.org/10.1021/acsabm.1c00332
    20. Jiangtao Dong, Wang Chen, Jianguo Feng, Xiaoqing Liu, Yang Xu, Chen Wang, Wenchao Yang, Xuezhong Du. Facile, Smart, and Degradable Metal–Organic Framework Nanopesticides Gated with FeIII-Tannic Acid Networks in Response to Seven Biological and Environmental Stimuli. ACS Applied Materials & Interfaces 2021, 13 (16) , 19507-19520. https://doi.org/10.1021/acsami.1c04118
    21. Shane Lawson, Kyle Newport, Neila Pederniera, Ali Asghar Rownaghi, Fateme Rezaei. Curcumin Delivery on Metal–Organic Frameworks: The Effect of the Metal Center on Pharmacokinetics within the M-MOF-74 Family. ACS Applied Bio Materials 2021, 4 (4) , 3423-3432. https://doi.org/10.1021/acsabm.1c00009
    22. Harrison D. Lawson, S. Patrick Walton, Christina Chan. Metal–Organic Frameworks for Drug Delivery: A Design Perspective. ACS Applied Materials & Interfaces 2021, 13 (6) , 7004-7020. https://doi.org/10.1021/acsami.1c01089
    23. Kara E. Metzger, Megan M. Moyer, Brian G. Trewyn. Tandem Catalytic Systems Integrating Biocatalysts and Inorganic Catalysts Using Functionalized Porous Materials. ACS Catalysis 2021, 11 (1) , 110-122. https://doi.org/10.1021/acscatal.0c04488
    24. Haijiao Zheng, Jingchun Zhang, Jiutong Ma, Qiong Jia. Engineering Magnetic Guanidyl-Functionalized Supramolecular Organic Framework for Efficient Enrichment of Global Phosphopeptides. ACS Applied Materials & Interfaces 2020, 12 (51) , 57468-57476. https://doi.org/10.1021/acsami.0c18803
    25. Prince K. Verma, Luke Huelsenbeck, Asa W. Nichols, Timur Islamoglu, Helge Heinrich, Charles W. Machan, Gaurav Giri. Controlling Polymorphism and Orientation of NU-901/NU-1000 Metal–Organic Framework Thin Films. Chemistry of Materials 2020, 32 (24) , 10556-10565. https://doi.org/10.1021/acs.chemmater.0c03539
    26. Helena Montes-Andrés, Pedro Leo, Gisela Orcajo, Antonio Rodríguez-Diéguez, Duane Choquesillo-Lazarte, Carmen Martos, Juan Ángel Botas, Guillermo Calleja. Synthesis, Structural Features, and Hydrogen Adsorption Properties of Three New Flexible Sulfur-Containing Metal–Organic Frameworks. Crystal Growth & Design 2020, 20 (10) , 6707-6714. https://doi.org/10.1021/acs.cgd.0c00857
    27. Xiaodie Zhang, Guojian Ren, Zhuopei He, Weiting Yang, Huihui Li, Yenan Wang, Qinhe Pan, Xiaodong Shi. Luminescent Detection of Cr(VI) and Mn(VII) Based on a Stable Supramolecular Organic Framework. Crystal Growth & Design 2020, 20 (10) , 6888-6895. https://doi.org/10.1021/acs.cgd.0c00941
    28. Mark Kalaj, Seth M. Cohen. Postsynthetic Modification: An Enabling Technology for the Advancement of Metal–Organic Frameworks. ACS Central Science 2020, 6 (7) , 1046-1057. https://doi.org/10.1021/acscentsci.0c00690
    29. Andy Dinh, Huajun Yang, Fang Peng, Tony C. Nguyen, Anh Hong, Pingyun Feng, Xianhui Bu. Isoreticular Three-Dimensional Kagome Metal–Organic Frameworks with Open-Nitrogen-Donor Pillars for Selective Gas Adsorption. Crystal Growth & Design 2020, 20 (5) , 3523-3530. https://doi.org/10.1021/acs.cgd.0c00352
    30. Thomas E. Webber, Sai Puneet Desai, Rebecca L. Combs, Spencer Bingham, Connie C. Lu, R. Lee Penn. Size Control of the MOF NU-1000 through Manipulation of the Modulator/Linker Competition. Crystal Growth & Design 2020, 20 (5) , 2965-2972. https://doi.org/10.1021/acs.cgd.9b01590
    31. Jerika A. Chiong, Jie Zhu, Jake B. Bailey, Mark Kalaj, Rohit H. Subramanian, Wenqian Xu, Seth M. Cohen, F. Akif Tezcan. An Exceptionally Stable Metal–Organic Framework Constructed from Chelate-Based Metal–Organic Polyhedra. Journal of the American Chemical Society 2020, 142 (15) , 6907-6912. https://doi.org/10.1021/jacs.0c01626
    32. Salame Haddad, Isabel Abánades Lázaro, Marcus Fantham, Ajay Mishra, Joaquin Silvestre-Albero, Johannes W. M. Osterrieth, Gabriele S. Kaminski Schierle, Clemens F. Kaminski, Ross S. Forgan, David Fairen-Jimenez. Design of a Functionalized Metal–Organic Framework System for Enhanced Targeted Delivery to Mitochondria. Journal of the American Chemical Society 2020, 142 (14) , 6661-6674. https://doi.org/10.1021/jacs.0c00188
    33. Xiao-Xi Yang, Pengfei Feng, Jing Cao, Weisheng Liu, Yu Tang. Composition-Engineered Metal–Organic Framework-Based Microneedles for Glucose-Mediated Transdermal Insulin Delivery. ACS Applied Materials & Interfaces 2020, 12 (12) , 13613-13621. https://doi.org/10.1021/acsami.9b20774
    34. Fa-Yuan Ge, Guo-Hao Sun, Lei Meng, Shuang-Shuang Ren, He-Gen Zheng. Four New Luminescent Metal–Organic Frameworks as Multifunctional Sensors for Detecting Fe3+, Cr2O72– and Nitromethane. Crystal Growth & Design 2020, 20 (3) , 1898-1904. https://doi.org/10.1021/acs.cgd.9b01593
    35. Claudia Orellana-Tavra, Milan Köppen, Aurelia Li, Norbert Stock, David Fairen-Jimenez. Biocompatible, Crystalline, and Amorphous Bismuth-Based Metal–Organic Frameworks for Drug Delivery. ACS Applied Materials & Interfaces 2020, 12 (5) , 5633-5641. https://doi.org/10.1021/acsami.9b21692
    36. Xujie Wang, Xiaoying Wang, Ying Han, He Li, Qing Kang, Pengcheng Wang, Feimeng Zhou. Immunoassay for Cardiac Troponin I with Fluorescent Signal Amplification by Hydrolyzed Coumarin Released from a Metal–Organic Framework. ACS Applied Nano Materials 2019, 2 (11) , 7170-7177. https://doi.org/10.1021/acsanm.9b01685
    37. Xueyan Zhao, Sainan Liu, Chunling Hu, Ying Liu, Maolin Pang, Jun Lin. Controllable Synthesis of Monodispersed NU-1000 Drug Carrier for Chemotherapy. ACS Applied Bio Materials 2019, 2 (10) , 4436-4441. https://doi.org/10.1021/acsabm.9b00621
    38. Peng Gao, Wei Pan, Na Li, Bo Tang. Boosting Cancer Therapy with Organelle-Targeted Nanomaterials. ACS Applied Materials & Interfaces 2019, 11 (30) , 26529-26558. https://doi.org/10.1021/acsami.9b01370
    39. Caixia Huang, Wenlong Tan, Jing Zheng, Cong Zhu, Jia Huo, Ronghua Yang. Azoreductase-Responsive Metal–Organic Framework-Based Nanodrug for Enhanced Cancer Therapy via Breaking Hypoxia-induced Chemoresistance. ACS Applied Materials & Interfaces 2019, 11 (29) , 25740-25749. https://doi.org/10.1021/acsami.9b08115
    40. Boshra Mirhosseini-Eshkevari, Manzarbanoo Esnaashari, Mohammad Ali Ghasemzadeh. Novel Brönsted Acidic Ionic Liquids Confined in UiO-66 Nanocages for the Synthesis of Dihydropyrido[2,3-d]Pyrimidine Derivatives under Solvent-Free Conditions. ACS Omega 2019, 4 (6) , 10548-10557. https://doi.org/10.1021/acsomega.9b00178
    41. Hung-Li Wang, Hsin Yeh, Bin-Han Li, Chia-Her Lin, Ta-Chih Hsiao, De-Hao Tsai. Zirconium-Based Metal–Organic Framework Nanocarrier for the Controlled Release of Ibuprofen. ACS Applied Nano Materials 2019, 2 (6) , 3329-3334. https://doi.org/10.1021/acsanm.9b00834
    42. Lee Robison, Lin Zhang, Riki J. Drout, Peng Li, Chad R. Haney, Anlil Brikha, Hyunho Noh, B. Layla Mehdi, Nigel D. Browning, Vinayak P. Dravid, Qun Cui, Timur Islamoglu, Omar K. Farha. A Bismuth Metal–Organic Framework as a Contrast Agent for X-ray Computed Tomography. ACS Applied Bio Materials 2019, 2 (3) , 1197-1203. https://doi.org/10.1021/acsabm.8b00778
    43. Bin Luo, Qiang Chen, Jia He, Zhiyu Li, Lingzhu Yu, Fang Lan, Yao Wu. Boronic Acid-Functionalized Magnetic Metal–Organic Frameworks via a Dual-Ligand Strategy for Highly Efficient Enrichment of Phosphopeptides and Glycopeptides. ACS Sustainable Chemistry & Engineering 2019, 7 (6) , 6043-6052. https://doi.org/10.1021/acssuschemeng.8b06171
    44. Kirandeep, Ahmad Husain, Ajit Kumar Kharwar, Ramesh Kataria, Girijesh Kumar. Co(II)-based Metal–Organic Frameworks and Their Application in Gas Sorption and Solvatochromism. Crystal Growth & Design 2019, 19 (3) , 1640-1648. https://doi.org/10.1021/acs.cgd.8b01564
    45. Johannes W. M. Osterrieth, Demelza Wright, Hyunho Noh, Chung-Wei Kung, Diana Vulpe, Aurelia Li, Ji Eun Park, Richard P. Van Duyne, Peyman Z. Moghadam, Jeremy J. Baumberg, Omar K. Farha, David Fairen-Jimenez. Core–Shell Gold Nanorod@Zirconium-Based Metal–Organic Framework Composites as in Situ Size-Selective Raman Probes. Journal of the American Chemical Society 2019, 141 (9) , 3893-3900. https://doi.org/10.1021/jacs.8b11300
    46. Xueyan Zhao, Zhixiang Zhang, Xuechao Cai, Binbin Ding, Chunqiang Sun, Guofeng Liu, Chunling Hu, Shuai Shao, Maolin Pang. Postsynthetic Ligand Exchange of Metal–Organic Framework for Photodynamic Therapy. ACS Applied Materials & Interfaces 2019, 11 (8) , 7884-7892. https://doi.org/10.1021/acsami.9b00740
    47. Yalei Miao, Xubo Zhao, Yudian Qiu, Zhongyi Liu, Wenjing Yang, Xu Jia. Metal–Organic Framework-Assisted Nanoplatform with Hydrogen Peroxide/Glutathione Dual-Sensitive On-Demand Drug Release for Targeting Tumors and Their Microenvironment. ACS Applied Bio Materials 2019, 2 (2) , 895-905. https://doi.org/10.1021/acsabm.8b00741
    48. Satoshi Kato, Ken-ichi Otake, Haoyuan Chen, Isil Akpinar, Cassandra T. Buru, Timur Islamoglu, Randall Q. Snurr, Omar K. Farha. Zirconium-Based Metal–Organic Frameworks for the Removal of Protein-Bound Uremic Toxin from Human Serum Albumin. Journal of the American Chemical Society 2019, 141 (6) , 2568-2576. https://doi.org/10.1021/jacs.8b12525
    49. Subhradeep Mistry, Anupam Sarkar, Srinivasan Natarajan. New Bifunctional Metal–Organic Frameworks and Their Utilization in One-Pot Tandem Catalytic Reactions. Crystal Growth & Design 2019, 19 (2) , 747-755. https://doi.org/10.1021/acs.cgd.8b01327
    50. Zhen Hu, Fei Lu, Yingying Liu, Lei Zhao, Long Yu, Xirong Xu, Weihao Yuan, Qian Zhang, Yudong Huang. Construction of Anti-Ultraviolet “Shielding Clothes” on Poly(p-phenylene benzobisoxazole) Fibers: Metal Organic Framework-Mediated Absorption Strategy. ACS Applied Materials & Interfaces 2018, 10 (49) , 43262-43274. https://doi.org/10.1021/acsami.8b16845
    51. Reza Abazari, Ali Reza Mahjoub, Farangis Ataei, Ali Morsali, Cameron L. Carpenter-Warren, Kayhan Mehdizadeh, Alexandra M. Z. Slawin. Chitosan Immobilization on Bio-MOF Nanostructures: A Biocompatible pH-Responsive Nanocarrier for Doxorubicin Release on MCF-7 Cell Lines of Human Breast Cancer. Inorganic Chemistry 2018, 57 (21) , 13364-13379. https://doi.org/10.1021/acs.inorgchem.8b01955
    52. Hao-Yang Zheng, Xiao Lian, Si-Jia Qin, Bing Yan. Novel “Turn-On” Fluorescent Probe for Highly Selectively Sensing Fluoride in Aqueous Solution Based on Tb3+-Functionalized Metal–Organic Frameworks. ACS Omega 2018, 3 (10) , 12513-12519. https://doi.org/10.1021/acsomega.8b02134
    53. Fazle Haque, Arijit Halder, Debajyoti Ghoshal. Crystalline to Crystalline Phase Transformations in Six Two-Dimensional Dynamic Metal–Organic Frameworks: Syntheses, Characterizations, and Sorption Studies. Crystal Growth & Design 2018, 18 (9) , 5231-5244. https://doi.org/10.1021/acs.cgd.8b00664
    54. Wei-Hai Chen, Guo-Feng Luo, Margarita Vázquez-González, Rémi Cazelles, Yang Sung Sohn, Rachel Nechushtai, Yossi Mandel, Itamar Willner. Glucose-Responsive Metal–Organic-Framework Nanoparticles Act as “Smart” Sense-and-Treat Carriers. ACS Nano 2018, 12 (8) , 7538-7545. https://doi.org/10.1021/acsnano.8b03417
    55. Sada Venkateswarlu, Atanu Panda, Euisoo Kim, Minyoung Yoon. Biopolymer-Coated Magnetite Nanoparticles and Metal–Organic Framework Ternary Composites for Cooperative Pb(II) Adsorption. ACS Applied Nano Materials 2018, 1 (8) , 4198-4210. https://doi.org/10.1021/acsanm.8b00957
    56. Sol Ahn, Scott L. Nauert, Cassandra T. Buru, Martino Rimoldi, Hyeju Choi, Neil M. Schweitzer, Joseph T. Hupp, Omar K. Farha, Justin M. Notestein. Pushing the Limits on Metal–Organic Frameworks as a Catalyst Support: NU-1000 Supported Tungsten Catalysts for o-Xylene Isomerization and Disproportionation. Journal of the American Chemical Society 2018, 140 (27) , 8535-8543. https://doi.org/10.1021/jacs.8b04059
    57. Bingqian Lei, Mengfan Wang, Zelei Jiang, Wei Qi, Rongxin Su, Zhimin He. Constructing Redox-Responsive Metal–Organic Framework Nanocarriers for Anticancer Drug Delivery. ACS Applied Materials & Interfaces 2018, 10 (19) , 16698-16706. https://doi.org/10.1021/acsami.7b19693
    58. Yijing Chen, Peng Li, Justin A. Modica, Riki J. Drout, Omar K. Farha. Acid-Resistant Mesoporous Metal–Organic Framework toward Oral Insulin Delivery: Protein Encapsulation, Protection, and Release. Journal of the American Chemical Society 2018, 140 (17) , 5678-5681. https://doi.org/10.1021/jacs.8b02089
    59. Wenyao Zhang, Dong Yang, Jie Zhao, Lekai Hou, Jonathan L. Sessler, Xiao-Juan Yang, Biao Wu. Controlling the Recognition and Reactivity of Alkyl Ammonium Guests Using an Anion Coordination-Based Tetrahedral Cage. Journal of the American Chemical Society 2018, 140 (15) , 5248-5256. https://doi.org/10.1021/jacs.8b01488
    60. Isabel Abánades Lázaro, Salame Haddad, José M. Rodrigo-Muñoz, Claudia Orellana-Tavra, Victoria del Pozo, David Fairen-Jimenez, and Ross S. Forgan . Mechanistic Investigation into the Selective Anticancer Cytotoxicity and Immune System Response of Surface-Functionalized, Dichloroacetate-Loaded, UiO-66 Nanoparticles. ACS Applied Materials & Interfaces 2018, 10 (6) , 5255-5268. https://doi.org/10.1021/acsami.7b17756
    61. Jungho Lim, Eun Ji Lee, Jae Sun Choi, and Nak Cheon Jeong . Diffusion Control in the in Situ Synthesis of Iconic Metal–Organic Frameworks within an Ionic Polymer Matrix. ACS Applied Materials & Interfaces 2018, 10 (4) , 3793-3800. https://doi.org/10.1021/acsami.7b17662
    62. Yongwei Chen, Houxiao Wu, Zewei Liu, Xuejiao Sun, Qibin Xia, and Zhong Li . Liquid-Assisted Mechanochemical Synthesis of Copper Based MOF-505 for the Separation of CO2 over CH4 or N2. Industrial & Engineering Chemistry Research 2018, 57 (2) , 703-709. https://doi.org/10.1021/acs.iecr.7b03712
    63. Sebastian Friebe, Alexander Mundstock, Kai Volgmann, and Jürgen Caro . On the Better Understanding of the Surprisingly High Performance of Metal−Organic Framework-Based Mixed-Matrix Membranes Using the Example of UiO-66 and Matrimid. ACS Applied Materials & Interfaces 2017, 9 (47) , 41553-41558. https://doi.org/10.1021/acsami.7b13037
    64. Zhiyue Dong, Yangzesheng Sun, Jun Chu, Xianzheng Zhang, and Hexiang Deng . Multivariate Metal–Organic Frameworks for Dialing-in the Binding and Programming the Release of Drug Molecules. Journal of the American Chemical Society 2017, 139 (40) , 14209-14216. https://doi.org/10.1021/jacs.7b07392
    65. Sachin Kumar, Maridula Thakur, Shalima Kumari, Sohini Sharma, Shamsher Singh Kanwar, Neha, Sushila Devi. Chromium-based itaconic acid-functionalized MOF: a microcarrier for sustained drug release, synergistic antibacterial effect with metronidazole, and enhanced infection control. Journal of Sol-Gel Science and Technology 2025, 9 https://doi.org/10.1007/s10971-025-06729-1
    66. Varsha D. Manvatkar, Rajendra S. Dongre. A Comprehensive Review on Fundamental Concepts in the Functionalization of Metal-Organic Frameworks with Schiff Bases. Chemistry Africa 2025, 8 (2) , 419-435. https://doi.org/10.1007/s42250-025-01212-4
    67. Shiwei Feng, Yan Li, Zheng Tan, Shiyang Shen. Current landscape of metal–organic framework-mediated nucleic acid delivery and therapeutics. International Journal of Pharmaceutics 2025, 672 , 125295. https://doi.org/10.1016/j.ijpharm.2025.125295
    68. Aishee Ghosh, Abha Gupta, Snehasmita Jena, Apoorv Kirti, Anmol Choudhury, Utsa Saha, Adrija Sinha, Shalini Kumari, Małgorzata Kujawska, Ajeet Kaushik, Suresh K. Verma. Advances in posterity of visualization in paradigm of nano‐level ultra‐structures for nano–bio interaction studies. VIEW 2025, 6 (1) https://doi.org/10.1002/VIW.20240042
    69. Hoda Badvi, Naader Alizadeh. Electrochemically controlled release and online monitoring of thiopental drug based on conducting polymer coated on a soft substrate surface: Relation between release rate and electrical potential stimulation. Journal of Electroanalytical Chemistry 2025, 979 , 118927. https://doi.org/10.1016/j.jelechem.2024.118927
    70. Esra Yılmaz Mertsoy. Energy-Efficient Synthesis of Copper Terephthalate Metal–Organic Frameworks Using Sorbitol and Choline Chloride-Based Deep Eutectic Solvents for Methylene Blue Removal. Arabian Journal for Science and Engineering 2025, 3 https://doi.org/10.1007/s13369-024-09890-x
    71. Dongyu Gu, Yunxiao Wang, Yi Yang. Rational design of metal organic frameworks as the carriers for improving the efficiency of cancer drug delivery. Journal of Drug Delivery Science and Technology 2024, 102 , 106378. https://doi.org/10.1016/j.jddst.2024.106378
    72. Parinaz Fereydouni, Arash Al Mohaddesin, Sepideh Khaleghi. Targeted biocompatible Zn-metal–organic framework nanocomposites for intelligent chemotherapy of breast cancer cells. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-69457-6
    73. Liao Meng, Xu Zhang, Zhi‐wei Huang, Yuan‐yuan Liang, Kong‐qiu Hu, Ji‐pan Yu, Xin‐peng Wang, Toyohisa Fujita, Wei‐qun Shi, Lei Mei. Heterometallic Uranyl Squarate Compounds with Transition Metal‐Bipyridine Bulky Cations as Structure Directing Components. European Journal of Inorganic Chemistry 2024, 27 (31) https://doi.org/10.1002/ejic.202400429
    74. Haiyang Li, Yong Hao, Zilong Zhang, Lipeng Liu, Huan Wang, Hongmin Ma, Qin Wei. AIEgens-based luminescent metal-organic frameworks as novel electrochemiluminescence emitters Integrated with co-reaction amplification strategy for CA15-3 detection. Chemical Engineering Journal 2024, 500 , 156813. https://doi.org/10.1016/j.cej.2024.156813
    75. Lidia E. Chiñas‐Rojas, José E. Domínguez, Luis Ángel Alfonso Herrera, Francisco E. González‐Jiménez, Raúl Colorado‐Peralta, Jesús Antonio Arenzano Altaif, José María Rivera Villanueva. Exploring Synthesis Strategies and Interactions between MOFs and Drugs for Controlled Drug Loading and Release, Characterizing Interactions through Advanced Techniques. ChemMedChem 2024, 19 (19) https://doi.org/10.1002/cmdc.202400144
    76. Zongsu Han, Muzhaozi Yuan, Nguyen Nguyen, Hong-Cai Zhou, James E. Hubbard, Ya Wang. Brain-specific targeted delivery of therapeutic agents using metal–organic framework-based nanomedicine. Coordination Chemistry Reviews 2024, 514 , 215926. https://doi.org/10.1016/j.ccr.2024.215926
    77. Hafezeh Nabipour, Sohrab Rohani. Metal–Organic Frameworks for Overcoming the Blood–Brain Barrier in the Treatment of Brain Diseases: A Review. Nanomaterials 2024, 14 (17) , 1379. https://doi.org/10.3390/nano14171379
    78. Ge Huang, Marcus Winther Dreisler, Jacob Kæstel‐Hansen, Annette Juma Nielsen, Min Zhang, Nikos S. Hatzakis. Defect‐Engineered Metal–Organic Frameworks as Nanocarriers for Pharmacotherapy: Insights into Intracellular Dynamics at The Single Particle Level. Advanced Materials 2024, 36 (35) https://doi.org/10.1002/adma.202405898
    79. Manuela Cedrún‐Morales, Manuel Ceballos, Enrica Soprano, Giulia Zampini, Ester Polo, Beatriz Pelaz, Pablo del Pino. Light‐Responsive Nanoantennas Integrated into Nanoscale Metal–Organic Frameworks for Photothermal Drug Delivery. Small Science 2024, 4 (8) https://doi.org/10.1002/smsc.202400088
    80. Meemansha Mishra, Tapan Dey, Mallya Mishra, Isha Chauhan, Saikat Dutta. RNA Encapsulation in Metal–Organic Frameworks for Targeting Cancer‐Causing Genes. Advanced Therapeutics 2024, 15 https://doi.org/10.1002/adtp.202400144
    81. Jiaxin Ma, Zhimin Chen, Yingyao Diao, Min Ye, Xingyan Liu, Shien Cui, Muyi Zhong, Alireza Nezamzadeh-Ejhieh, Jianqiang Liu, Jie Ouyang. Current and promising applications of UiO-based MOFs in breast cancer therapy. Reactive and Functional Polymers 2024, 200 , 105918. https://doi.org/10.1016/j.reactfunctpolym.2024.105918
    82. Lucimara Rodrigues Carobeli, Ana Beatriz Camillo Santos, Laura Beatriz Marques Martins, Edilson Damke, Marcia Edilaine Lopes Consolaro. Recent advances in photodynamic therapy combined with chemotherapy for cervical cancer: a systematic review. Expert Review of Anticancer Therapy 2024, 24 (5) , 263-282. https://doi.org/10.1080/14737140.2024.2337259
    83. Yanan Zhang, Yanling Song, Bijia Wang, Zhiping Mao, Xiaofeng Sui, Liduo Rong, Meixin Zhao, Xueling Feng. Multifunctional organohydrogels for on-demand controlled drug release. European Polymer Journal 2024, 212 , 113047. https://doi.org/10.1016/j.eurpolymj.2024.113047
    84. Ge Huang, Marcus Winther Dreisler, Jacob Kæstel-Hansen, Annette Juma Nielsen, Min Zhang, Nikos S. Hatzakis. Defect-Engineered Metal-Organic Frameworks as Nanocarriers for Pharmacotherapy: Insights into Intracellular Dynamics at The Single Particle Level. 2024https://doi.org/10.1101/2024.04.19.590224
    85. Yixuan Yang, Xiaofeng Dai. Current status of controlled onco-therapies based on metal organic frameworks. RSC Advances 2024, 14 (18) , 12817-12828. https://doi.org/10.1039/D4RA00375F
    86. Hoa Thi Lai, Nhat Quang Minh Tran, Linh Ho Thuy Nguyen, Thu Bao Nguyen Le, Cuong Chi Nguyen, Anh Tuan Thanh Pham, Tan Le Hoang Doan, Sungkyun Park, Jongill Hong, Gerald Jeffrey Snyder, Thang Bach Phan. Low experimental thermal conductivity of zirconium metal-organic framework UiO-66. Applied Physics Letters 2024, 124 (15) https://doi.org/10.1063/5.0201523
    87. Reza Abazari, Soheila Sanati, Majed A. Bajaber, Muhammad Sufyan Javed, Peter C. Junk, Ashok Kumar Nanjundan, Jinjie Qian, Deepak P. Dubal. Design and Advanced Manufacturing of NU‐1000 Metal–Organic Frameworks with Future Perspectives for Environmental and Renewable Energy Applications. Small 2024, 20 (15) https://doi.org/10.1002/smll.202306353
    88. Prachi Mhettar, Rasika Patil, Dipti Patil, Jidnyasa Pantwalawalkar, Namdeo Jadhav. Metal Organic Frameworks: Synthesis, Characterization and Drug Delivery Applications. Nanoscience & Nanotechnology-Asia 2024, 14 (2) https://doi.org/10.2174/0122106812264809231023072013
    89. Dinesh K. Gupta, Santosh Kumar, Mohmmad Younus Wani. MOF magic: zirconium-based frameworks in theranostic and bio-imaging applications. Journal of Materials Chemistry B 2024, 12 (11) , 2691-2710. https://doi.org/10.1039/D3TB02562D
    90. Mahsa Akbari Oryani, Shamim Nosrati, Hossein Javid, Ali Mehri, Alireza Hashemzadeh, Mehdi Karimi-Shahri. Targeted cancer treatment using folate-conjugated sponge-like ZIF-8 nanoparticles: a review. Naunyn-Schmiedeberg's Archives of Pharmacology 2024, 397 (3) , 1377-1404. https://doi.org/10.1007/s00210-023-02707-y
    91. Fei Xing, Jiawei Xu, Yuxi Zhou, Peiyun Yu, Man Zhe, Zhou Xiang, Xin Duan, Ulrike Ritz. Recent advances in metal–organic frameworks for stimuli-responsive drug delivery. Nanoscale 2024, 16 (9) , 4434-4483. https://doi.org/10.1039/D3NR05776C
    92. Yang Liu, Pengfei Lei, Xuewei Liao, Chen Wang. Nanoscale metal–organic frameworks as smart nanocarriers for cancer therapy. Journal of Nanostructure in Chemistry 2024, 14 (1) , 1-19. https://doi.org/10.1007/s40097-022-00493-2
    93. Xu Chen, Sergio Mercado Argandona, Francesca Melle, Nakul Rampal, David Fairen-Jimenez. Advances in surface functionalization of next-generation metal-organic frameworks for biomedical applications: Design, strategies, and prospects. Chem 2024, 10 (2) , 504-543. https://doi.org/10.1016/j.chempr.2023.09.016
    94. Peng Xu, Qun Li, Weishan Shi, Gang Xing, Zhaogui Wang, Shasha Wang, Chaoqun You, Dejun Hao. Glutathione-responsive abamectin-loaded hollow mesoporous organosilicon nanospheres for their intelligent controlled release. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 683 , 132987. https://doi.org/10.1016/j.colsurfa.2023.132987
    95. Anoopa Thomas, Muthuramalingam Prakash. Properties of interfaces between metal–organic frameworks and ionic liquids. 2024, 776-790. https://doi.org/10.1016/B978-0-323-85669-0.00121-5
    96. Shanza Anzar, Muhammad Waseem Fazal, Muhammad Asad, Farhan Zafar, Naeem Akhtar, Waseem Abbas, Saadat Majeed. Designing and synthesizing metal-organic framework/graphene nanocomposites. 2024, 59-114. https://doi.org/10.1016/B978-0-323-89955-0.00009-1
    97. Bahareh Farasati Far, Mohammad Reza Naimi-Jamal, Hossein Daneshgar, Navid Rabiee. Bioengineered DNA-decorated UiO-66-based nanocarriers for combined administration of doxorubicin and sorafenib: Hepatocellular carcinoma treatment and chemotherapy. Alexandria Engineering Journal 2024, 87 , 114-125. https://doi.org/10.1016/j.aej.2023.11.086
    98. Yuntong Liang, Fengqiong Jiang, Danxia Xu, Lihua Fu, Chuanhui Xu, Guohuan Huang, Baofeng Lin. Construction of a novel mathematical model for predicting pesticide release in soil and its application in rice pest control. Journal of Cleaner Production 2024, 436 , 140646. https://doi.org/10.1016/j.jclepro.2024.140646
    99. Xiaoke Zhang, Guangfa Deng, Mianying Huang, Zhaohui Xu, Jianlin Huang, Xuan Xu, Zhiguang Xu, Maochan Li, Lei Hu, Xiaoming Lin. From charge storage mechanism to performance: A strategy toward boosted lithium/sodium storage through heterostructure optimization. Journal of Energy Chemistry 2024, 88 , 112-124. https://doi.org/10.1016/j.jechem.2023.09.012
    100. Alan Benny, Sunaja Devi Kalathiparambil Rajendra Pai, Dephan Pinheiro, Sony J. Chundattu. Metal organic frameworks in biomedicine: Innovations in drug delivery. Results in Chemistry 2024, 7 , 101414. https://doi.org/10.1016/j.rechem.2024.101414
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2017, 139, 22, 7522–7532
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.7b01451
    Published May 16, 2017
    Copyright © 2017 American Chemical Society

    Article Views

    10k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.