Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Taking Advantage of Disorder: Small-Molecule Organic Glasses for Radiation Detection and Particle Discrimination
My Activity

Figure 1Loading Img
    Article

    Taking Advantage of Disorder: Small-Molecule Organic Glasses for Radiation Detection and Particle Discrimination
    Click to copy article linkArticle link copied!

    View Author Information
    Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2017, 139, 28, 9621–9626
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.7b03989
    Published June 20, 2017
    Copyright © 2017 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A series of fluorescent silyl-fluorene molecules were synthesized and studied with respect to their photophysical properties and response toward ionizing neutron and gamma-ray radiation. Optically transparent and stable organic glasses were prepared from these materials using a bulk melt-casting procedure. The prepared organic glass monoliths provided fluorescence quantum yields and radiation detection properties exceeding the highest-performing benchmark materials such as solution-grown trans-stilbene crystals. Co-melts based on blends of two different glass-forming compounds were prepared with the goal of enhancing the stability of the amorphous state. Accelerated aging experiments on co-melt mixtures ranging from 0% to 100% of each component indicated improved resistance to recrystallization in the glass blends, able to remain fully amorphous for >1 month at 60 °C. Secondary dopants comprising singlet fluorophores or iridium organometallic compounds provided further improved detection efficiency, as evaluated by light yield and neutron/gamma particle discrimination measurements. Optimized singlet and triplet doping levels were determined to be 0.05 wt % 1,4-bis(2-methylstyryl)benzene singlet fluorophore and 0.28 wt % Ir3+, respectively.

    Copyright © 2017 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b03989.

    • Experimental procedures for the synthesis and casting of glasses, photoluminescence spectra, radioluminescence data, DSC spectra, and X-ray crystallographic data (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 43 publications.

    1. Loren C. Brown, Andrew J. Peloquin, Nicholas P. Godman, Gary J. Balaich, Scott T. Iacono. Correlation of Structure with Crystalline to Amorphous Phase Transitions of 1,3,6-Substituted Fulvene-Derived Molecular Glasses. The Journal of Organic Chemistry 2020, 85 (17) , 11116-11123. https://doi.org/10.1021/acs.joc.0c01014
    2. Natalia Zaitseva, Leslie Carman, Andrew Glenn, Yongwook Kim, Michael Ford, Gracie Eccleston, Charles Hurlbut, Kyle Shipp. Performance stability of plastics for neutron-gamma pulse shape discrimination. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2024, 1068 , 169731. https://doi.org/10.1016/j.nima.2024.169731
    3. Arash Darafsheh, Sreekrishna Murty Goddu, Jeffrey Williamson, Tiezhi Zhang, Lee G. Sobotka. Radioluminescence Dosimetry in Modern Radiation Therapy. Advanced Photonics Research 2024, 5 (9) https://doi.org/10.1002/adpr.202300350
    4. Guohong Yao, Yanjuan Pan, Fenfang Li, Shengyi Dong. Macrocyclic Supramolecular Glass: New Type of Supramolecular Transparent Materials. Small 2024, 15 https://doi.org/10.1002/smll.202405337
    5. R. Lopez, O. Pakari, S.D. Clarke, S.A. Pozzi. Gamma-ray imaging of Np-237 metal using an organic glass imager. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2024, 1063 , 169254. https://doi.org/10.1016/j.nima.2024.169254
    6. R. Hari Ramprasath, M. S. Kajamuhideen, Babita Tiwari, P. Karuppasamy, Muthu Senthil Pandian, P. Ramasamy, K. Sethuraman. Dopant-induced optical enhancements in methylene blue-doped bibenzyl single crystals for neutron detector applications. Journal of Materials Science: Materials in Electronics 2024, 35 (11) https://doi.org/10.1007/s10854-024-12562-z
    7. Oskari V. Pakari, Andrew Lucas, Flynn B. Darby, Vincent P. Lamirand, Tessa Maurer, Matthew G. Bisbee, Lei R. Cao, Andreas Pautz, Sara A. Pozzi. Gamma-ray Spectroscopy in Low-Power Nuclear Research Reactors. Journal of Nuclear Engineering 2024, 5 (1) , 26-43. https://doi.org/10.3390/jne5010003
    8. S. Clarke, T. E. Maurer, N. D. Stubblefield, P. L. Feng, S. A. Pozzi. Development of a Radioxenon Beta Cell based on Organic Glass Scintillator. 2023, 1-1. https://doi.org/10.1109/NSSMICRTSD49126.2023.10338764
    9. J.F. Perello, T.H. Shin, T. Cutler, K.D. Bartlett, C. Bates, D. Beckman, T.C. Borgwardt, D. Hemsing, D. Mercer, K. Smith. Development of a compact fast-neutron spectrometer for nuclear emergency response applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2023, 1054 , 168468. https://doi.org/10.1016/j.nima.2023.168468
    10. M.I. Pinilla-Orjuela, K.E. Mesick, P.F. Bloser, J.R. Tutt. Performance evaluation of pulse shape discrimination capable organic scintillators for space applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2023, 1053 , 168309. https://doi.org/10.1016/j.nima.2023.168309
    11. Nicholas R. Myllenbeck, Annabelle I. Benin, Gail Frances H. Garcia, Huu M. Tran, Ryan J. Witzke, Patrick L. Feng. Melt Blending: A Tool to Simplify Plastic Scintillator Synthesis. IEEE Transactions on Nuclear Science 2023, 70 (7) , 1398-1403. https://doi.org/10.1109/TNS.2023.3279800
    12. Hongming Chen, Miao Lin, Changbin Zhao, Dongwei Zhang, Yang Zhang, Fuhai Chen, Yong Chen, Xin Fang, Qing Liao, Hong Meng, Meijin Lin. Highly Efficient, Low‐Dose, and Ultrafast Carbazole X‐Ray Scintillators. Advanced Optical Materials 2023, 11 (10) https://doi.org/10.1002/adom.202300365
    13. R. Hari Ramprasath, M. S. Kajamuhideen, Babita Tiwari, K. Sethuraman. Growth, structural, optical, and thermal behavior of bibenzyl organic single crystal for scintillator applications. Journal of Materials Science: Materials in Electronics 2023, 34 (7) https://doi.org/10.1007/s10854-023-10013-9
    14. M. Grodzicka-Kobylka, T. Szczesniak, M. Moszyński, L. Swiderski, K. Brylew, P.L. Feng, L. Nguyen, J.S. Carlson, J.J. Valiente-Dobón, J. Trzuskowski, A. Misiarz, Ł. Talarek, P. Zając. 2 inch molecular organic glass scintillator for neutron–gamma discrimination. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2023, 1047 , 167702. https://doi.org/10.1016/j.nima.2022.167702
    15. Bhasker Pratap Choudhary, N. B. Singh. Phosphate Glasses: Synthesis, Properties and Applications. 2023, 79-112. https://doi.org/10.1007/978-3-031-20266-7_3
    16. Xiao Wang, Guowei Niu, Zixing Zhou, Zhicheng Song, Ke Qin, Xiaokang Yao, Zhijian Yang, Xiaoze Wang, He Wang, Zhuang Liu, Chengzhu Yin, Huili Ma, Kang Shen, Huifang Shi, Jun Yin, Qiushui Chen, Zhongfu An, Wei Huang. Halogenated Thermally Activated Delayed Fluorescence Materials for Efficient Scintillation. Research 2023, 6 https://doi.org/10.34133/research.0090
    17. Ricardo Lopez, Oskari Pakari, Shaun D. Clarke, Sara A. Pozzi. Shielded Californium-252 Measurements Using an Organic Glass Dual Particle Imager. 2022, 1-4. https://doi.org/10.1109/NSS/MIC44845.2022.10399118
    18. Christopher A. Meert, Abbas J. Jinia, Leah M. Clark, Andrew P. Panter, Christian A. Ivine, Shaun D. Clarke, Sara A. Pozzi. Photoneutron Detection with Small Organic Glass Scintillators. 2022, 1-3. https://doi.org/10.1109/NSS/MIC44845.2022.10399178
    19. S. M. Tajudin, Y. Namito, T. Sanami, H. Hirayama, S. Hashim. Doped Plastic Scintillator Properties for Soft Tissue Dosimetry. IEEE Transactions on Nuclear Science 2022, 69 (9) , 2108-2112. https://doi.org/10.1109/TNS.2022.3196353
    20. Lucas Q. Nguyen, Huu M. Tran, Annabelle I. Benin, Joseph S. Carlson, Peter Marleau, Melinda Sweany, Patrick L. Feng. Organic glass scintillator formulations and mold development towards scalable and cast-in-place pixelated fabrications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2022, 1036 , 166835. https://doi.org/10.1016/j.nima.2022.166835
    21. Thibault A. Laplace, Bethany L. Goldblum, Joshua A. Brown, Glenn LeBlanc, Tianyue Li, Juan J. Manfredi, Erik Brubaker. Modeling ionization quenching in organic scintillators. Materials Advances 2022, 3 (14) , 5871-5881. https://doi.org/10.1039/D2MA00388K
    22. Erik B. Johnson, Edgar van Loef, Meghan Kaffine, Charles Sosa. Design of a High-Speed Neutron Imager Using a Boron-Loaded Organic Glass Scintillator. IEEE Transactions on Nuclear Science 2022, 69 (6) , 1317-1321. https://doi.org/10.1109/TNS.2021.3130491
    23. Fabrice Bisaro, Alya Inial, Jérémie Gatignol, Florent Allix, Aurélie Stallivieri, Jean-Luc Renaud, Lynda Achouri, Marian Parlog, Franck Delaunay, Thi-Nhàn Pham, Matthieu Hamel, Sylvain Gaillard. Plastic scintillators with 1-phenyl-3-(mesityl)-2-pyrazoline as unique fluorophore for efficient neutron/gamma pulse shape discrimination. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2022, 1030 , 166469. https://doi.org/10.1016/j.nima.2022.166469
    24. William K. Warburton, Joseph S. Carlson, Patrick L. Feng. Organic glass scintillator (OGS) property comparisons to Stilbene, EJ-276 and BC-404. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2021, 1018 , 165778. https://doi.org/10.1016/j.nima.2021.165778
    25. Urmila Shirwadkar, Edgar van Loef, Tawan Jamdee, Lakshmi Soundara Pandian, Nathaniel Kaneshige, Jarek Glodo, Patrick L. Feng, Lucas Nguyen, Annabelle Benin, Remco G. T. Zegers, Jorge Pereira, Cavan Maher, Kanai S. Shah. Development of Multi-mode Organic Glass Scintillators for Nuclear Physics Applications. 2021, 1-4. https://doi.org/10.1109/NSS/MIC44867.2021.9875655
    26. Nathan P. Giha, William M. Steinberger, Lucas Q. Nguyen, Joseph S. Carlson, Patrick L. Feng, Shaun D. Clarke, Sara A. Pozzi. Organic glass scintillator bars with dual-ended readout. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2021, 1014 , 165676. https://doi.org/10.1016/j.nima.2021.165676
    27. Nicholas R. Myllenbeck, Joseph S. Carlson, McKenzie A. Hunter, Huu M. Tran, Annabelle I. Benin, Patrick L. Feng. Efficient Prompt Scintillation and Fast Neutron-Gamma Ray Discrimination Using Amorphous Blends of Difluorenylsilane Organic Glass and In Situ Polymerized Vinyltoluene. IEEE Transactions on Nuclear Science 2021, 68 (9) , 2400-2406. https://doi.org/10.1109/TNS.2021.3096926
    28. Nicholas Myllenbeck, Neil McIntyre, Alexander M. Long, Danielle Schaper, Donald C. Gautier, Sven C. Vogel, David Welker, Annabelle I. Benin, Christopher L. Reed, Patrick L. Feng, , , . Nano-segmented optical fibers containing molecular organic glass scintillator for fast neutron imaging. 2021, 27. https://doi.org/10.1117/12.2596532
    29. M.A. Wonders, M. Flaska. Application of an added-sinusoid, signal-multiplexing scheme to a compact, multiplexed neutron scatter camera. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2021, 1002 , 165294. https://doi.org/10.1016/j.nima.2021.165294
    30. P. Purushothaman, N. Durairaj, G. Mani, S. Kalainathan. Fluorescence emission, life time, thermal properties of trans-stilbene mixed diphenylacetylene scintillator crystal. Journal of Materials Science: Materials in Electronics 2021, 32 (7) , 8366-8374. https://doi.org/10.1007/s10854-021-05421-8
    31. Lucas Q. Nguyen, Gino Gabella, Bethany L. Goldblum, Thibault A. Laplace, Joseph S. Carlson, Erik Brubaker, Patrick L. Feng. Boron-loaded organic glass scintillators. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2021, 988 , 164898. https://doi.org/10.1016/j.nima.2020.164898
    32. Christophe Dujardin, Matthieu Hamel. Introduction—Overview on Plastic and Inorganic Scintillators. 2021, 3-33. https://doi.org/10.1007/978-3-030-73488-6_1
    33. Patrick L. Feng, Nicholas R. Myllenbeck, Joseph S. Carlson. Organic Glass Scintillators. 2021, 243-283. https://doi.org/10.1007/978-3-030-73488-6_8
    34. T.A. Laplace, B.L. Goldblum, J.E. Bevins, D.L. Bleuel, E. Bourret, J.A. Brown, E.J. Callaghan, J.S. Carlson, P.L. Feng, G. Gabella, K.P. Harrig, J.J. Manfredi, C. Moore, F. Moretti, M. Shinner, A. Sweet, Z.W. Sweger. Comparative scintillation performance of EJ-309, EJ-276, and a novel organic glass. Journal of Instrumentation 2020, 15 (11) , P11020-P11020. https://doi.org/10.1088/1748-0221/15/11/P11020
    35. Nathan P. Giha, William M. Steinberger, Shaun D. Clarke, Sara A. Pozzi, Lucas Q. Nguyen, Joseph S. Carlson, Patrick L. Feng. Melt-Cast Organic Glass Scintillators for a Handheld Dual Particle Imager. 2020, 1-5. https://doi.org/10.1109/NSS/MIC42677.2020.9507862
    36. Tony H. Shin, Patrick L. Feng, Joseph S. Carlson, Shaun D. Clarke, Sara A. Pozzi. Measured neutron light-output response for trans-stilbene and small-molecule organic glass scintillators. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2019, 939 , 36-45. https://doi.org/10.1016/j.nima.2019.05.036
    37. Kathiravan Murugesan, Charles Beromeo Bheeter, Pim R. Linnebank, Anke Spannenberg, Joost N. H. Reek, Rajenahally V. Jagadeesh, Matthias Beller. Nickel‐Catalyzed Stereodivergent Synthesis of E ‐ and Z ‐Alkenes by Hydrogenation of Alkynes. ChemSusChem 2019, 12 (14) , 3363-3369. https://doi.org/10.1002/cssc.201900784
    38. F.D. Becchetti, R.O. Torres-Isea, A. Di Fulvio, S.A. Pozzi, J. Nattress, I. Jovanovic, M. Febbraro, N. Zaitseva, L. Carman. Deuterated stilbene (stilbene-d12): An improved detector for fast neutrons. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2018, 908 , 376-382. https://doi.org/10.1016/j.nima.2018.08.021
    39. Kahoe Ku, Joonyoung F. Joung, Heeyeon Park, Myeong‐Geun Kim, Sungnam Park, Woong Kim. Fluorescent Organic Glass with Unique Optical and Mechanical Properties. Advanced Functional Materials 2018, 28 (39) https://doi.org/10.1002/adfm.201801394
    40. C. Dujardin, E. Auffray, E. Bourret-Courchesne, P. Dorenbos, P. Lecoq, M. Nikl, A. N. Vasil'ev, A. Yoshikawa, R.-Y. Zhu. Needs, Trends, and Advances in Inorganic Scintillators. IEEE Transactions on Nuclear Science 2018, 65 (8) , 1977-1997. https://doi.org/10.1109/TNS.2018.2840160
    41. Narayanan Durairaj, Sivaperuman Kalainathan. Growth and characterization of stilbene doped bibenzyl scintillator crystal by solution growth technique. Journal of Materials Science: Materials in Electronics 2018, 29 (12) , 10480-10486. https://doi.org/10.1007/s10854-018-9112-2
    42. Ezgi AKKAŞOĞLU, Bekir KARASU. Organik Camlar. El-Cezeri Fen ve Mühendislik Dergisi 2018, 5 (2) , 512-536. https://doi.org/10.31202/ecjse.407306
    43. Ali Mirzaei, Jeung-Soo Huh, Sang Sub Kim, Hyoun Woo Kim. Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview. Electronic Materials Letters 2018, 14 (3) , 261-287. https://doi.org/10.1007/s13391-018-0033-2

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2017, 139, 28, 9621–9626
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.7b03989
    Published June 20, 2017
    Copyright © 2017 American Chemical Society

    Article Views

    2450

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.