ACS Publications. Most Trusted. Most Cited. Most Read
Formation of Oxygen Radical Sites on MoVNbTeOx by Cooperative Electron Redistribution
My Activity

Figure 1Loading Img
    Communication

    Formation of Oxygen Radical Sites on MoVNbTeOx by Cooperative Electron Redistribution
    Click to copy article linkArticle link copied!

    View Author Information
    Physical & Computational Sciences Directorate,§Institute for Integrated Catalysis and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
    Department of Chemistry and Catalysis Research Center, Technische Universität München, Garching 85748, Germany
    National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
    # Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2017, 139, 36, 12342–12345
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.7b05240
    Published August 21, 2017
    Copyright © 2017 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A novel pathway of increasing the surface density of catalytically active oxygen radical sites on a MoVTeNb oxide (M1 phase) catalyst during alkane oxidative dehydrogenation is reported. The novel sites form when a fraction of Te4+ is reduced and emitted from the M1 crystals under catalytic operating conditions, without compromising structural integrity of the catalyst framework. Density functional theory calculations show this Te reduction induces multiple inter-related electron transfers, and the associated cooperative effects lead to the formation of O radicals. The in situ observations identify complex dynamic changes in the catalyst on an atomistic level, highlighting a new way to tailor structure and dynamics for highly active catalysts.

    Copyright © 2017 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b05240.

    • Catalyst synthesis, ESTEM experiment details, additional DFT information and catalyst kinetic test (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 46 publications.

    1. Karnajit Sen, Ansgar Schäfer, Frank Rosowski, Dmitry I. Sharapa, Felix Studt. Quantum Chemical Modeling of the Full Catalytic Cycle for Selective Oxidation of Propane to Propene on the M1 Phase of Mo–Te–Nb–O Mixed-Metal Oxide Catalysts. The Journal of Physical Chemistry C 2024, 128 (34) , 14273-14281. https://doi.org/10.1021/acs.jpcc.4c02899
    2. Liudmyla Masliuk, Kyeonghyeon Nam, Maxwell W. Terban, Yonghyuk Lee, Pierre Kube, Daniel Delgado, Frank Girgsdies, Karsten Reuter, Robert Schlögl, Annette Trunschke, Christoph Scheurer, Mirijam Zobel, Thomas Lunkenbein. Linking Bulk and Surface Structures in Complex Mixed Oxides. ACS Catalysis 2024, 14 (11) , 9018-9033. https://doi.org/10.1021/acscatal.3c05230
    3. Yicong Chai, Yanliang Zhou, Sen Lin, Xiaodong Wang, Jian Lin. Tailoring the Olefin Selectivity in Catalytic Oxidative Dehydrogenation of Light Alkane by the Isolation Strategy. ACS Catalysis 2024, 14 (4) , 2502-2521. https://doi.org/10.1021/acscatal.3c05419
    4. Thi Minh Nha Le, Mimoun Aouine, Jean-Marc M. Millet. Effect of Introducing Thallium in Microporous Vanado-molybdate with Orthorhombic or Trigonal Structures and Catalytic Properties. The Journal of Physical Chemistry C 2022, 126 (46) , 19647-19659. https://doi.org/10.1021/acs.jpcc.2c03892
    5. Shuairen Qian, Yuxin Chen, Yujie Wang, Binhang Yan, Yi Cheng. Identification of the Intrinsic Active Site in Phase-Pure M1 Catalysts for Oxidation Dehydrogenation of Ethane by Density Functional Theory Calculations. The Journal of Physical Chemistry C 2022, 126 (41) , 17536-17543. https://doi.org/10.1021/acs.jpcc.2c04675
    6. Chaojie Wang, Yujia Han, Ming Tian, Lin Li, Jian Lin, Xiaodong Wang, Tao Zhang. Main-Group Catalysts with Atomically Dispersed In Sites for Highly Efficient Oxidative Dehydrogenation. Journal of the American Chemical Society 2022, 144 (37) , 16855-16865. https://doi.org/10.1021/jacs.2c04926
    7. Yanliang Zhou, Yicong Chai, Xiaoyu Li, Zihao Wu, Jian Lin, Yujia Han, Lin Li, Haifeng Qi, Yiming Gu, Leilei Kang, Xiaodong Wang. Defect-Rich TiO2 In Situ Evolved from MXene for the Enhanced Oxidative Dehydrogenation of Ethane to Ethylene. ACS Catalysis 2021, 11 (24) , 15223-15233. https://doi.org/10.1021/acscatal.1c04409
    8. Douglas A. Blom, Thomas Vogt. Detecting Framework Distortions Predicted by Hybrid-DFT: An Opportunity to Improve the M1 Catalyst. The Journal of Physical Chemistry Letters 2021, 12 (45) , 11158-11163. https://doi.org/10.1021/acs.jpclett.1c02941
    9. Boao Song, Yong Yang, Timothy T. Yang, Kun He, Xiaobing Hu, Yifei Yuan, Vinayak P. Dravid, Michael R. Zachariah, Wissam A. Saidi, Yuzi Liu, Reza Shahbazian-Yassar. Revealing High-Temperature Reduction Dynamics of High-Entropy Alloy Nanoparticles via In Situ Transmission Electron Microscopy. Nano Letters 2021, 21 (4) , 1742-1748. https://doi.org/10.1021/acs.nanolett.0c04572
    10. Boao Song, Yong Yang, Muztoba Rabbani, Timothy T. Yang, Kun He, Xiaobing Hu, Yifei Yuan, Pankaj Ghildiyal, Vinayak P. Dravid, Michael R. Zachariah, Wissam A. Saidi, Yuzi Liu, Reza Shahbazian-Yassar. In Situ Oxidation Studies of High-Entropy Alloy Nanoparticles. ACS Nano 2020, 14 (11) , 15131-15143. https://doi.org/10.1021/acsnano.0c05250
    11. Liudmyla Masliuk, Franz-Philipp Schmidt, Walid Hetaba, Milivoj Plodinec, Gudrun Auffermann, Klaus Hermann, Detre Teschner, Frank Girgsdies, Annette Trunschke, Robert Schlögl, Thomas Lunkenbein. Compositional Decoupling of Bulk and Surface in Open-Structured Complex Mixed Oxides. The Journal of Physical Chemistry C 2020, 124 (42) , 23069-23077. https://doi.org/10.1021/acs.jpcc.0c04777
    12. Juan Manuel Arce-Ramos, Alexander Genest, Notker Rösch. How TeO Defects in the MoVNbTeO Catalyst Material Affect the V4+ Distribution: A Computational Study. The Journal of Physical Chemistry C 2020, 124 (34) , 18628-18638. https://doi.org/10.1021/acs.jpcc.0c05447
    13. Yanliang Zhou, Fenfei Wei, Jian Lin, Lin Li, Xiaoyu Li, Haifeng Qi, Xiaoli Pan, Xiaoyan Liu, Chuande Huang, Sen Lin, Xiaodong Wang. Sulfate-Modified NiAl Mixed Oxides as Effective C–H Bond-Breaking Agents for the Sole Production of Ethylene from Ethane. ACS Catalysis 2020, 10 (14) , 7619-7629. https://doi.org/10.1021/acscatal.0c02347
    14. Gregor Koch, Michael Hävecker, Detre Teschner, Spencer J. Carey, Yuanqing Wang, Pierre Kube, Walid Hetaba, Thomas Lunkenbein, Gudrun Auffermann, Olaf Timpe, Frank Rosowski, Robert Schlögl, Annette Trunschke. Surface Conditions That Constrain Alkane Oxidation on Perovskites. ACS Catalysis 2020, 10 (13) , 7007-7020. https://doi.org/10.1021/acscatal.0c01289
    15. Boao Song, Timothy T. Yang, Yifei Yuan, Soroosh Sharifi-Asl, Meng Cheng, Wissam A. Saidi, Yuzi Liu, Reza Shahbazian-Yassar. Revealing Sintering Kinetics of MoS2-Supported Metal Nanocatalysts in Atmospheric Gas Environments via Operando Transmission Electron Microscopy. ACS Nano 2020, 14 (4) , 4074-4086. https://doi.org/10.1021/acsnano.9b08757
    16. Yilang Liu, Leelavathi Annamalai, Prashant Deshlahra. Effects of Lattice O Atom Coordination and Pore Confinement on Selectivity Limitations for Ethane Oxidative Dehydrogenation Catalyzed by Vanadium-Oxo Species. The Journal of Physical Chemistry C 2019, 123 (46) , 28168-28191. https://doi.org/10.1021/acs.jpcc.9b07778
    17. Anna M. Wernbacher, Pierre Kube, Michael Hävecker, Robert Schlögl, Annette Trunschke. Electronic and Dielectric Properties of MoV-Oxide (M1 Phase) under Alkane Oxidation Conditions. The Journal of Physical Chemistry C 2019, 123 (21) , 13269-13282. https://doi.org/10.1021/acs.jpcc.9b01273
    18. Leelavathi Annamalai, Yilang Liu, Sopuruchukwu Ezenwa, Yanliu Dang, Steven L Suib, Prashant Deshlahra. Influence of Tight Confinement on Selective Oxidative Dehydrogenation of Ethane on MoVTeNb Mixed Oxides. ACS Catalysis 2018, 8 (8) , 7051-7067. https://doi.org/10.1021/acscatal.8b01586
    19. Dang D. Nguyen, Bar Mosevitzky Lis, Israel E. Wachs. Oxidative dehydrogenation of ethane (ODHE) to ethylene by bulk MoVNbTe mixed oxide M1 phase catalysts. Applied Catalysis B: Environment and Energy 2025, 371 , 125194. https://doi.org/10.1016/j.apcatb.2025.125194
    20. José G. Rivera, Martin A. Purino, José F. Durán, Carlos Alvarado, Alberto Hernandez, Maarten K. Sabbe, Carlos O. Castillo-Araiza. Multiscale analysis of the M1 MoVNbTeO catalyst for ethylene production via selective ethane oxidation: From atomistic calculations to the industrial reactor. Chemical Engineering Journal 2025, 506 , 159252. https://doi.org/10.1016/j.cej.2025.159252
    21. Changshun Deng, Bingqing Ge, Jun Yao, Taotao Zhao, Chenyang Shen, Zhewei Zhang, Tao Wang, Xiangke Guo, Nianhua Xue, Xuefeng Guo, Luming Peng, Yan Zhu, Weiping Ding. Surface engineering of TeO modification on MoVTeNbO creates a high-performance catalyst for oxidation of toluene homologues to aldehydes. Chinese Journal of Catalysis 2024, 66 , 268-281. https://doi.org/10.1016/S1872-2067(24)60137-3
    22. Bolun Yu, Denan Li, Qianqian Zhu, Shufan Yao, Lifeng Zhang, Yanshuo Li, Zhenxin Zhang. Enhancing catalytic activity of zeolitic octahedral metal oxides through zinc incorporation for ethane oxidative dehydrogenation. Applied Catalysis B: Environmental 2024, 343 , 123463. https://doi.org/10.1016/j.apcatb.2023.123463
    23. Yiwen Wang, Shuangming Li, Jiao Song, Haonan Qu, Sansan Yu. High-pressure hydrothermal dope Ce into MoVTeNbOx for one-step oxidation of propylene to acrylic acid. Catalysis Communications 2024, 187 , 106849. https://doi.org/10.1016/j.catcom.2024.106849
    24. Xuejing Zhang, Jingnan Wang, Yongbin Yao, Qiang Liu, Fei Lu, Xi Wang. Embedding isolated Fe species in titania increases olefins for oxidative propane dehydrogenation. AIChE Journal 2023, 69 (7) https://doi.org/10.1002/aic.18088
    25. Agustín de Arriba, Ginebra Sánchez, Rita Sánchez-Tovar, Patricia Concepción, Ramón Fernández-Domene, Benjamín Solsona, Jose M. López Nieto. On the selectivity to ethylene during ethane ODH over M1-based catalysts. A surface and electrochemical study. Catalysis Today 2023, 418 , 114122. https://doi.org/10.1016/j.cattod.2023.114122
    26. Qian He, Aowen Li, Bingqing Yao, Wu Zhou, Christopher J. Kiely. STEM High Angle Annular Dark-Field Imaging. 2023, 409-448. https://doi.org/10.1007/978-3-031-07125-6_20
    27. Yuxin Chen, Binhang Yan, Yi Cheng. State-of-the-Art Review of Oxidative Dehydrogenation of Ethane to Ethylene over MoVNbTeOx Catalysts. Catalysts 2023, 13 (1) , 204. https://doi.org/10.3390/catal13010204
    28. Yuxin Chen, Shuairen Qian, Kai Feng, Zhengwen Li, Binhang Yan, Yi Cheng. Determination of highly active and selective surface for the oxidative dehydrogenation of ethane over phase-pure M1 MoVNbTeOx catalyst. Journal of Catalysis 2022, 416 , 277-288. https://doi.org/10.1016/j.jcat.2022.11.011
    29. Agustín de Arriba, Benjamin Solsona, Ester García-González, Patricia Concepción, José M.López Nieto. Te-doped MoV-Oxide (M1 phase) for ethane ODH. The role of tellurium on morphology, thermal stability and catalytic behaviour. Applied Catalysis A: General 2022, 643 , 118780. https://doi.org/10.1016/j.apcata.2022.118780
    30. T.M.N. Le, R. Checa, P. Bargiela, M. Aouine, J.M.M. Millet. New synthesis of pure orthorhombic Mo-V-A oxide phases, where A = Sb, Bi and Pb, and testing for the oxidation of light alkanes. Journal of Alloys and Compounds 2022, 910 , 164745. https://doi.org/10.1016/j.jallcom.2022.164745
    31. Satoshi Ishikawa, Wataru Ueda. Mo-V-Based Crystalline Complex Metal Oxide Catalysts. 2022, 101-121. https://doi.org/10.1007/978-981-19-5013-1_4
    32. Chaojie Wang, Bing Yang, Qingqing Gu, Yujia Han, Ming Tian, Yang Su, Xiaoli Pan, Yu Kang, Chuande Huang, Hua Liu, Xiaoyan Liu, Lin Li, Xiaodong Wang. Near 100% ethene selectivity achieved by tailoring dual active sites to isolate dehydrogenation and oxidation. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-25782-2
    33. Juan Manuel Arce-Ramos, Graham Rugg, Alexander Genest, Notker Rösch. Probing the Positions of TeO Moieties in the Channels of the MoVNbTeO M1 Catalyst: A Density Functional Theory Model Study. Catalysis Letters 2021, 151 (10) , 2884-2893. https://doi.org/10.1007/s10562-021-03538-3
    34. Yahya Gambo, Sagir Adamu, Gazali Tanimu, Ibrahim M. Abdullahi, Rahima A. Lucky, Mohammed S. Ba-Shammakh, Mohammad. M. Hossain. CO2-mediated oxidative dehydrogenation of light alkanes to olefins: Advances and perspectives in catalyst design and process improvement. Applied Catalysis A: General 2021, 623 , 118273. https://doi.org/10.1016/j.apcata.2021.118273
    35. Yilang Liu, Adam Twombly, Yanliu Dang, Anne Mirich, Steven L. Suib, Prashant Deshlahra. Roles of Enhancement of C−H Activation and Diminution of C−O Formation Within M1‐Phase Pores in Propane Selective Oxidation. ChemCatChem 2021, 13 (3) , 882-899. https://doi.org/10.1002/cctc.202001642
    36. D.A. Svintsitskiy, T.Yu Kardash, E.V. Lazareva, V.M. Bondareva. X-ray-induced transformations on the surface of MoVNbTe mixed oxide catalyst: An XPS study. Applied Surface Science 2021, 535 , 147676. https://doi.org/10.1016/j.apsusc.2020.147676
    37. Daniel Melzer, Gerhard Mestl, Klaus Wanninger, Andreas Jentys, Maricruz Sanchez-Sanchez, Johannes A. Lercher. On the Promoting Effects of Te and Nb in the Activity and Selectivity of M1 MoV-Oxides for Ethane Oxidative Dehydrogenation. Topics in Catalysis 2020, 63 (19-20) , 1754-1764. https://doi.org/10.1007/s11244-020-01304-0
    38. Thomas Lunkenbein, Liudmyla Masliuk, Milivoj Plodinec, Gerardo Algara-Siller, Sabrina Jung, Mateusz Jastak, Pierre Kube, Annette Trunschke, Robert Schlögl. Site specific and localized structural displacements in open structured multimetallic oxides. Nanoscale 2020, 12 (12) , 6759-6766. https://doi.org/10.1039/C9NR09041J
    39. Philipp J. Donaubauer, Daniel M. Melzer, Klaus Wanninger, Gerhard Mestl, Maricruz Sanchez-Sanchez, Johannes A. Lercher, Olaf Hinrichsen. Intrinsic kinetic model for oxidative dehydrogenation of ethane over MoVTeNb mixed metal oxides: A mechanistic approach. Chemical Engineering Journal 2020, 383 , 123195. https://doi.org/10.1016/j.cej.2019.123195
    40. Yanliang Zhou, Jian Lin, Lin Li, Ming Tian, Xiaoyu Li, Xiaoli Pan, Yang Chen, Xiaodong Wang. Improving the selectivity of Ni-Al mixed oxides with isolated oxygen species for oxidative dehydrogenation of ethane with nitrous oxide. Journal of Catalysis 2019, 377 , 438-448. https://doi.org/10.1016/j.jcat.2019.07.050
    41. Xuan Li, Detre Teschner, Verena Streibel, Thomas Lunkenbein, Liudmyla Masliuk, Teng Fu, Yuanqing Wang, Travis Jones, Friedrich Seitz, Frank Girgsdies, Frank Rosowski, Robert Schlögl, Annette Trunschke. How to control selectivity in alkane oxidation?. Chemical Science 2019, 10 (8) , 2429-2443. https://doi.org/10.1039/C8SC04641G
    42. M. Tonelli, L. Massin, L. Cardenas, F. Ivars-Barcelo, V. Belliere Baca, J.M.M. Millet. Cooperation between redox couples at the surface of molybdates based catalysts used for the selective oxidation of propene. Journal of Catalysis 2019, 370 , 412-423. https://doi.org/10.1016/j.jcat.2018.12.024
    43. Douglas A. Blom, Thomas Vogt. Multi-slice frozen phonon simulations of high-angle annular dark field scanning transmission electron microscopy images of the structurally and compositionally complex Mo–V–Nb–Te oxide catalyst. Advanced Structural and Chemical Imaging 2018, 4 (1) https://doi.org/10.1186/s40679-018-0058-5
    44. Yanliang Zhou, Jian Lin, Lin Li, Xiaoli Pan, Xiucheng Sun, Xiaodong Wang. Enhanced performance of boron nitride catalysts with induction period for the oxidative dehydrogenation of ethane to ethylene. Journal of Catalysis 2018, 365 , 14-23. https://doi.org/10.1016/j.jcat.2018.05.023
    45. Yuanyuan Zhu, Eric Jensen, Petr V. Sushko, Libor Kovarik, Maricruz Sanchez-Sanchez, Johannes A. Lercher, Daniel Melzer, Colin Ophus, Nigel D. Browning. The Merits of In situ Environmental STEM for the Study of Complex Oxide Catalysts at Work. Microscopy and Microanalysis 2018, 24 (S1) , 238-239. https://doi.org/10.1017/S143192761800168X
    46. V. Paunović, M. Artusi, R. Verel, F. Krumeich, R. Hauert, J. Pérez-Ramírez. Lanthanum vanadate catalysts for selective and stable methane oxybromination. Journal of Catalysis 2018, 363 , 69-80. https://doi.org/10.1016/j.jcat.2018.04.001

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2017, 139, 36, 12342–12345
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.7b05240
    Published August 21, 2017
    Copyright © 2017 American Chemical Society

    Article Views

    1847

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.