ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Magnetic Field-Activated Sensing of mRNA in Living Cells

View Author Information
Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States
§ Nanostructured Materials Lab, University of Georgia, Athens, Georgia 30602, United States
Department of Biology, Clarkson University, Potsdam, New York 13699-5810, United States
Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900, United States
# Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816-2366, United States
Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova St. 9, 191002 St. Petersburg, Russian Federation
Cite this: J. Am. Chem. Soc. 2017, 139, 35, 12117–12120
Publication Date (Web):August 17, 2017
https://doi.org/10.1021/jacs.7b06022

Copyright © 2017 American Chemical Society. This publication is licensed under these Terms of Use.

  • Open Access

Article Views

9333

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (2 MB)
Supporting Info (2)»

Abstract

Detection of specific mRNA in living cells has attracted significant attention in the past decade. Probes that can be easily delivered into cells and activated at the desired time can contribute to understanding translation, trafficking and degradation of mRNA. Here we report a new strategy termed magnetic field-activated binary deoxyribozyme (MaBiDZ) sensor that enables both efficient delivery and temporal control of mRNA sensing by magnetic field. MaBiDZ uses two species of magnetic beads conjugated with different components of a multicomponent deoxyribozyme (DZ) sensor. The DZ sensor is activated only in the presence of a specific target mRNA and when a magnetic field is applied. Here we demonstrate that MaBiDZ sensor can be internalized in live MCF-7 breast cancer cells and activated by a magnetic field to fluorescently report the presence of specific mRNA, which are cancer biomarkers.

The development of green fluorescent protein (GFP) for intracellular imaging of specific proteins was acknowledged by a Nobel Prize in Chemistry in 2008. (1) Imaging of specific mRNA inside individual cells is another important task that can contribute to both understanding of mRNA processing and to probing the functions of recently discovered noncoding RNAs. (2) A great variety of approaches for targeted sensing of mRNA in live cells has been proposed in recent years including aptamer-protein systems (e.g., MS2 system), (3) aptamer-dye systems (e.g., spinach aptamer), (4) nucleic acid templated chemical reactions, (5) adjacent hybridization probes, (6) molecular beacon (MB) probes (7) and nanoparticle-based approaches, (8, 9) among others. (10) However, the delivery of the probes or expression of fluorescent species within genetically modified cells requires hours of incubation. Development of a probe that could be activated with a remotely applied physical stimulus would enable activation of sensing and quantification of mRNA in cells at the desired time point. Caged MB probes have been suggested for light-activated detection, which can potentially enable temporal control of sensing. (11) However, caged MB probes produce high background fluorescence (11b, 12) and require invasive delivery of the probe inside cells. (13) Moreover, light-dependent activation may result in either incomplete probe activation or photodamage to living cells. Therefore, no efficient approaches for instant, remotely activated sensing of mRNA inside cells are available to date.

Nanomagnetic actuation (14) (activation of biomolecular species bound to magnetic nanoparticles in the presence of an externally applied magnetic field) elegantly addresses the common issues faced by other comparative techniques for the remote sensing and actuation of intracellular processes. Indeed, owing to its high precision and accuracy, the coupling of a magnetic field to a biomolecule-conjugated magnetic nanoparticle has been applied to several areas of biomedical science: for the investigation of cell mechanical properties, (15) mechanosensitive ion channel signaling pathways, (16) and for targeted activation of specific ion channels. (17)

Here we report a new RNA sensing technology based on the principles of nanomagnetic actuation, magnetic field-activated binary deoxyribozyme (MaBiDZ), which enables sensing of a specific mRNA analyte via application of a magnetic field in a remote and noninvasive manner. The technology takes advantage of magnetic beads (MaB) coupled to a binary deoxyribozyme (BiDZ) probe (Scheme 1A), developed earlier. (18) BiDZ consists of three components: the analyte binding arms (DZa and DZb) and a fluorogenic reporter substrate (F-sub). F-sub is an oligonucleotide strand composed of a fluorophore and quencher conjugated to the opposite sides of the cleavage site. DZa and DZb can hybridize to a specific DNA or RNA analyte and form the DZ catalytic core, which cleaves F-sub, thus resulting in separation of the fluorophore and quencher followed by fluorescent signaling. Important advantages of BiDZ over other hybridization probes is its improved sensitivity, single mismatch selectivity at ambient temperatures, simple design, and low cost. (18) In this work, we took advantage of the modular design and high sensitivity of the BiDZ probe for the development of MaBiDZ, a novel magnetic field-activated switch for real time mRNA sensing in live cells.

Scheme 1

Scheme 1. Principle of Magnetic Field-Activated Deoxyribozyme Sensora

Scheme a(A) Binary deoxyribozyme sensor (BiDZ) as reported earlier. (18) DNA strands DZa and DZb hybridize to adjacent position of analyte and form deoxyribozyme catalytic core, which cleaves fluorogenic F-sub and increases sample fluorescence. (B) MaBiDZ developed in this study. Magnetic bead (MaB1)-bound DZa forms a catalytic core with DZb in the presence of analyte. The activated sensor produces signal only when: (i) second species of magnetic beads, MaB2 carrying F-sub is present and (ii) magnetic field that aggregates MaB1 and MaB2 is applied. See the DNA sequences in Table 1.

The magnetic switch consists of two species of 100 nm magnetic beads (MaB), MaB1 and MaB2 (Scheme 1B). MaB is composed of a 15 nm iron oxide (Fe3O4) superparamagnetic core encased in a silica shell. The shell is modified with a grafted polymeric brush of a block copolymer PAA-b-PEGMA composed of poly(acrylic acid) (PAA) and a polymer of poly(ethylene glycol) methyl ether acrylate (PEGMA). The MaB cores have a saturation magnetization value (47 emu/g), (19) which is sufficient for effective utilization of magnetic force. The DNA strands are conjugated to MaB via the polymeric brush using a flexible linker, which is known to improve biocompatibility, facilitate intracellular delivery and prevent nanoparticle aggregation in the absence of a magnetic field, (20) whereas the flexible linker allows mobility of the BiDZ arms.

MaBiDZ consists of the DZb strand, MaB1 conjugated with DZa and MaB2 conjugated with DNA hook strand complementary to F-sub (Scheme 1B, see SI for details of the conjugation procedure). F-sub is incubated with the Hook-MaB2 conjugate, which is then rinsed to remove unbound F-sub. A DNA or RNA analyte hybridized to DZa and DZb strands enables formation of the DZ catalytic core. The catalytic core does not produce the fluorescent signal unless hybridized with F-sub. Application of an external magnetic field induces aggregation of the MaB1 and MaB2, thus bringing the activated BiDZ sensor in close proximity to F-sub, which is followed by F-sub cleavage and amplification of fluorescent signal. Though the 3D motion of MaBiDZ may be restricted under a magnetic field, both the flexible linker and large particle size allow a greater degree of contact points between the two DZ species. To the best of our knowledge this is the first strategy that allows activation of a hybridization sensor by a magnetic field. Another important advantage of this approach is the low background fluorescence due to the low concentration of the F-sub in solution, in comparison with the BiDZ detection (Scheme 1A). Indeed, the amount of F-sub attached to the beads is much lower than that used by BiDZ sensor (typically 200 nM). However, when MaB1 and MaB2 are aggregated, the local concentration of F-sub near the activated sensor is high.

For the proof-of-concept study, we chose to target Twist mRNA. Twist is a helix–loop–helix transcription factor whose overexpression has been shown to contribute to metastasis by promoting an epithelial-mesenchymal transition. (21) Thus, an intracellular sensor that can fluorescently report Twist mRNA levels would be useful to assess metastatic potential of cells in clinical applications. We first optimized the performance of the sensor in in vitro experiments using a synthetic DNA analyte with the sequence of Twist mRNA (see Twist sequence in Table 1).

Table 1. Oligonucleotides Used in the Study
NameaSequences
F-sub5′-CGGT ACA TTG TAG AAG TT AAG GTTFAM TCC TCg uCC CTG GGC A-BHQ1
Twist5′-TAGT GGG ACG CGG ACA TGG ACC AGG CCC CCT CCA TCC TCC AGA CCG AGA AGG CGT AGC TGA GCC GCT CGT GAG CCA CAT AGC TGC A
DZa5′-NH2/AAA AAA AAA AAA AAA AAA AAC GAG CGG CTC AGC TAC GCC T AC AAC CGA GAG AGG AAA C
DZb5′-CCA GGG A GG CTA GCT TCT CGG TCT GGA GGA TGG AG
Hook5′-NH2/AAA AAA AAA AAA AAA AAA AA/iSp9/AAC TTC TAC AAT GTA CCG
a

iSp9 - triethylene glycol linker; FAM attached to the DNA is a fluorescein derivative; BHQ1 - “Black Hole Quencher” is a fluorescence quencher; ribonucleotides are in low case.

The results of in vitro studies demonstrated a near 2-fold enhancement of fluorescent signal when MaBiDZ is switched ON in the presence of the magnetic field compared to the OFF state, for which the signal does not change over time (Figure 1A). Importantly, the signal remained at the background level in the absence of an applied magnetic field (Figure 1A, (c)) and in the absence of analyte (Figure 1A, (b)). Furthermore, the signal response to a noncomplementary target is similar to that of the background fluorescence (see SI for Figure SI5). The results also demonstrate faster activation of MaBiDZ compared to BiDZ, (Figure 1A, compare slopes of lines e and d). Time dependent profiles demonstrate that unlike BiDZ, MaBiDZ does not demonstrate time dependence of fluorescent response, but produces maximum signal within 30 min. These data demonstrate important advantages of MaBiDZ system in comparison with BiDZ: (1) it responds faster upon activation by magnetic field and reaches maximum signal in shorter time, due to, presumably, higher local concentration of F-sub. MaBiDZ’s response does not increase over longer incubation time due to the shortage of F-sub supply, which is limited by contact area between MaB1 and MaB2. Thus, an important feature of the MaBiDZ system is activation at the desired time. (2) The two-probe system allows measurement of Twist in a controlled fashion by separating F-sub and DZa, lowering the background signal generated.

Figure 1

Figure 1. Comparison of in vitro fluorescent response of BiDZ and MaBiDZ sensor systems. (A) Time dependent response of BiDZ and MaBiDZ sensor: (a) without F-sub, (b) without synthetic Twist (see Table1) analyte, (c) response of MaBiDz without magnet applied, (d) response of BiDZ, and (e) MaBiDZ activated with magnetic field in the presence of 1 nM synthetic Twist analyte (see SI for concentrations of all other components of the BiDZ and MaBiDZ probe.) (B) Response of MaBiDZ (d, e, f) compared to BiDZ (a, b, c) in the presence of different concentrations of Twist analyte after 30 (a,d), 60 (b,e) or 120 (c,f) min. All error bars are the result of three independent measurements; some bars are not visible because they are smaller than the labels for the experimental points.

Next we chose to test the sensing ability of MaBiDZ ex vivo in mammalian cell culture. We chose the MCF-7 breast cancer cell line, and human cervical epithelial cells (HCX) isolated from human tissue, which express high (22) and lower levels (23) of Twist mRNA, respectively. Our first aim was to compare the fluorescent response of MaBiDZ in MCF-7 cells with and without exposure to a magnetic field (ON and OFF states, respectively) using confocal laser scanning microscopy (CLSM). Cells were incubated with MaBiDZ at a 40 μg/mL concentration (within the none-toxicity concentration range, see Figure SI9) for 4 h and monitored with CLSM every 30 min. Cells exposed to a magnetic field demonstrated a highly fluorescent response compared to those without a magnetic field (compare green fluorescence in panels A and C, Figure 2). Next, we tested MaBiDZ in its ability to detect different levels of mRNA. CLSM images demonstrated higher fluorescent responses in MCF-7 (panel A and C) than in HCX (panel B and D) cells consistent with the reported differences in Twist mRNA levels. (22, 23)

Figure 2

Figure 2. Intracellular testing of MaBiDZ sensor. CLSM images of (A) Twist-overexpressing MCF-7 cancer cells treated with MaBiDZ sensor with magnetic field applied and (C) no magnetic field applied. Analogously treated cervical epithelial cells (expressing low levels of Twist) with (B) magnetic field applied and (D) without magnetic field. Images were taken after 2.5 h of incubation time. Nuclei are stained with Hoechst nuclear stain and visualized with 408 nm laser. Surfaces are stained with anti-epithelial cell adhesion molecule (EpCAM) antibody and visualized with a 635 nm laser. Fluorescence from the MaBiDZ probe is visualized with the 488 nm laser. Corresponding flow cytometry data are shown as insets below each image. The gates on flow cytometry plots indicate percent of EpCAM positive cells with low and high MaBiDZ fluorescence. The number of internalized particles was estimated to be ca. 1 × 106 MaBiDZ per cell (see Figure SI11). Scale bar is 20 μm.

To quantify the intracellular signaling of the MaBiDZ probe, we examined large population of cells treated with probes using flow cytometry. This method eliminates variations that can be observed using CLSM, which only permits the examination of a small fraction of cells. Flow cytometry results (Figure 2, insets) show that MCF-7 cells treated with MaBiDZ and a magnetic field (ON state) exhibited 4 times greater fluorescence than MaBiDZ-treated MCF-7 cells without a magnetic field (OFF state), thus confirming the magnetic field-dependent switch-like effect of this system (compare insets in Figure 2A,C). When compared to the control noncancerous HCX cells, MCF-7 cells exhibited a 20-fold fluorescence enhancement (compare panel A with B, in Figure 2). It is important to note that significant signaling was apparent after only 2.5 h, as opposed to a previous technique that required an incubation of 12 h before a signal could be detected. (9) To demonstrate the low background of MaBiDZ, we incubated MaB2 (bound to F-sub) alone in MCF-7 cells (see SI, Figure SI6). A signal enhancement was not observed, confirming that MaB-attachment protects F-sub from nuclease-induced cleavage, which would result in high background fluorescence. Earlier, a similar effect was observed for gold nanoparticle-attached fluorescent probes. (8) The fluorescence data from CLSM and flow cytometry measurements of whole cells was validated using fluorescence data of cell lysates (see SI, Figure SI10). This data was in good agreement with measurements of Twist levels from whole cells.

Our next aim was to investigate the mechanisms that promote the observed signaling efficiency and enhancement of MaBiDz within the cell. We hypothesized that the magnetic field plays a role in enhancing cellular entry and intracellular transport kinetics, based on previous reports. (24) To investigate this, we examined a small window of events upon cellular entry of MaBiDZ, both with (ON) and without (OFF) a magnetic field. Previous studies (25) show that nanoparticles enter cells by endocytosis, and are subsequently either stored in endosomes or lysosomes, or undergo endosomal escape. If these intracellular nanoparticles cannot escape from the endosome or lysosome, they are not available for intracellular sensing. Therefore, we investigated the distribution and colocalization of the oligo-modified MaBs and endosomes by CLSM at various time points. Results indicate that, at the peak of endosomal internalization of MaB, the ON state demonstrated about 50% less colocalization of MaB and endosomes compared to the OFF state (see SI for Figures SI7–8). Though the mechanism is under investigation, the data suggest that a magnetic field mitigates the bottleneck of endosomal sequestering, freeing nanoparticles for sensing functions in the cytoplasm.

In summary, we have designed a fluorescent hybridization MaBiDZ mRNA sensing system that can be activated by a magnetic field at the desired time. MaBiDZ sensing technology produces low backround fluorescence that can be instantly activated by magnetic field. We demonstrated that the sensor can be used for magnetic field-dependent mRNA sensing in living cells. The technology enables detection of specific mRNA in live cells within 2.5 h after applying a magnetic field, which is a significant improvement in comparison with current techniques. We hope that the MaBiDZ technology introduced here will add to the toolbox of techniques for RNA analysis in live cells. The developed approach can find much broader applications than the presently demonstrated cancer biomarker analysis example.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b06022.

  • Details of experimental procedures, complete structure of probe-analyte complex, and control experiments with cell culture (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Authors
  • Authors
    • Saira F. Bakshi - Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States
    • Nataliia Guz - Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States
    • Andrey Zakharchenko - Nanostructured Materials Lab, University of Georgia, Athens, Georgia 30602, United States
    • Han Deng - Department of Biology, Clarkson University, Potsdam, New York 13699-5810, United States
    • Alexei V. Tumanov - Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900, United StatesOrcidhttp://orcid.org/0000-0001-6042-0152
    • Craig D. Woodworth - Department of Biology, Clarkson University, Potsdam, New York 13699-5810, United States
  • Notes
    The authors declare no competing financial interest.

Acknowledgment

ARTICLE SECTIONS
Jump To

This work at Clarkson University (E.K.) and at the University of Georgia (S.M.) was supported by the NSF awards CBET-1403208 and DMR-1309469. The work at University of Central Florida (D.M.K.) and Clarkson (C.D.W.) was supported by NIH awards R15AI10388001A1 and 1R15CA173703-01. D.M.K. was partially supported by the ITMO University Fellowship and Professorship Program.

References

ARTICLE SECTIONS
Jump To

This article references 25 other publications.

  1. 1
    Germond, A.; Fujita, H.; Ichimura, T.; Watanabe, T. M. Biophys. Rev. 2016, 8, 121 138 DOI: 10.1007/s12551-016-0195-9
  2. 2
    (a) Cui, M.; You, L.; Ren, X.; Zhao, W.; Liao, Q.; Zhao, Y. Biochem. Biophys. Res. Commun. 2016, 471, 10 14 DOI: 10.1016/j.bbrc.2015.12.101
    (b) Guo, D.; Barry, L.; Lin, S. S. H.; Huang, V.; Li, L.-C. RNA Biol. 2014, 11, 1221 1225 DOI: 10.4161/15476286.2014.972853
    (c) Qi, X.; Zhang, D.-H.; Wu, N.; Xiao, J.-H.; Wang, X.; Ma, W. J. Med. Genet. 2015, 52, 710 718 DOI: 10.1136/jmedgenet-2015-103334
  3. 3
    Bertrand, E.; Chartrand, P.; Schaefer, M.; Shenoy, S. M.; Singer, R. H.; Long, R. M. Mol. Cell 1998, 2, 437 445 DOI: 10.1016/S1097-2765(00)80143-4
  4. 4
    Paige, J. S.; Wu, K. Y.; Jaffrey, S. R. Science 2011, 333, 642 646 DOI: 10.1126/science.1207339
  5. 5
    (a) Holtzer, L.; Oleinich, I.; Anzola, M.; Lindberg, E.; Sadhu, K. K.; Gonzalez-Gaitan, M.; Winssinger, N. ACS Cent. Sci. 2016, 2, 394 400 DOI: 10.1021/acscentsci.6b00054
    (b) Michaelis, J.; Roloff, A.; Seitz, O. Org. Biomol. Chem. 2014, 12, 2821 2833 DOI: 10.1039/C4OB00096J
    (c) Franzini, R. M.; Kool, E. T. Bioconjugate Chem. 2011, 22, 1869 1877 DOI: 10.1021/bc2003567
  6. 6
    Santangelo, P. J.; Nix, B.; Tsourkas, A.; Bao, G. Nucleic Acids Res. 2004, 32, e57 DOI: 10.1093/nar/gnh062
  7. 7
    (a) Zhao, D.; Yang, Y.; Qu, N.; Chen, M.; Ma, Z.; Krueger, C. J.; Behlke, M. A.; Chen, A. K. Biomaterials 2016, 100, 172 183 DOI: 10.1016/j.biomaterials.2016.05.022
    (b) Giraldo-Vela, J. P.; Kang, W.; McNaughton, R. L.; Zhang, X.; Wile, B. M.; Tsourkas, A.; Bao, G.; Espinosa, H. D. Small 2015, 11, 2386 2391 DOI: 10.1002/smll.201401137
  8. 8
    Seferos, D. S.; Giljohann, D. A.; Hill, H. D.; Prigodich, A. E.; Mirkin, C. A. J. Am. Chem. Soc. 2007, 129, 15477 15479 DOI: 10.1021/ja0776529
    (a) Prigodich, A. E.; Seferos, D. S.; Massich, M. D.; Giljohann, D. A.; Lane, B. C.; Mirkin, C. A. ACS Nano 2009, 3, 2147 2152 DOI: 10.1021/nn9003814
    (b) Zheng, D.; Seferos, D. S.; Giljohann, D. A.; Patel, P. C.; Mirkin, C. A. Nano Lett. 2009, 9, 3258 3261 DOI: 10.1021/nl901517b
    (c) Pan, W.; Li, Y.; Wang, M.; Yang, H.; Li, N.; Tang, B. Chem. Commun. 2016, 52, 4569 4572 DOI: 10.1039/C5CC10147F
  9. 9
    Briley, W. E.; Bondy, M. H.; Randeria, P. S.; Dupper, T. J.; Mirkin, C. A. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 9591 9595 DOI: 10.1073/pnas.1510581112
  10. 10
    (a) Feyder, M.; Goff, L. A. J. Clin. Invest. 2016, 126, 2783 2791 DOI: 10.1172/JCI84422
    (b) Ouellet, J. Front. Chem. 2016, 429 DOI: 10.3389/fchem.2016.00029
    (c) Shigeto, H.; Nakatsuka, K.; Ikeda, T.; Hirota, R.; Kuroda, A.; Funabashi, H. Anal. Chem. 2016, 88, 7894 7898 DOI: 10.1021/acs.analchem.6b02710
    (d) Takahashi, K.; Ito, S.; Nakamoto, K.; Ito, Y.; Ueno, Y. J. Org. Chem. 2015, 80, 8561 8570 DOI: 10.1021/acs.joc.5b01132
    (e) Urbanek, M. O.; Galka-Marciniak, P.; Olejniczak, M.; Krzyzosiak, W. J. RNA Biol. 2014, 11, 1083 1095 DOI: 10.4161/rna.35506
  11. 11
    (a) Wang, C.; Zhu, Z.; Song, Y.; Lin, H.; Yang, C. J.; Tan, W. Chem. Commun. 2011, 47, 5708 5710 DOI: 10.1039/c1cc10481k
    (b) Joshi, K. B.; Vlachos, A.; Mikat, V.; Deller, T.; Heckel, A. Chem. Commun. 2012, 48, 2746 2748 DOI: 10.1039/C2CC16654B
    (c) Rinne, J. S.; Kaminski, T. P.; Kubitscheck, U.; Heckel, A. Chem. Commun. 2013, 49, 5375 5377 DOI: 10.1039/c3cc42420k
  12. 12
    (a) Ruble, B. K.; Yeldell, S. B.; Dmochowski, I. J. J. Inorg. Biochem. 2015, 150, 182 188 DOI: 10.1016/j.jinorgbio.2015.03.010
    (b) Tang, X.; Zhang, J.; Sun, J.; Wang, Y.; Wu, J.; Zhang, L. Org. Biomol. Chem. 2013, 11, 7814 7824 DOI: 10.1039/c3ob41735b
    (c) Bort, G.; Gallavardin, T.; Ogden, D.; Dalko, P. I. Angew. Chem., Int. Ed. 2013, 52, 4526 4537 DOI: 10.1002/anie.201204203
  13. 13
    (a) Luo, D.; Saltzman, W. M. Nat. Biotechnol. 2000, 18, 33 37 DOI: 10.1038/71889
    (b) Patil, S. D.; Rhodes, D. G.; Burgess, D. J. AAPS J. 2005, 7, E61 77 DOI: 10.1208/aapsj070109
    (c) Bishop, C. J.; Kozielski, K. L.; Green, J. J. J. Controlled Release 2015, 219, 488 499 DOI: 10.1016/j.jconrel.2015.09.046
  14. 14
    Dobson, J. Nat. Nanotechnol. 2008, 3, 139 143 DOI: 10.1038/nnano.2008.39
  15. 15
    (a) Wang, N.; Butler, J. P.; Ingber, D. E. Science 1993, 260, 1124 1127 DOI: 10.1126/science.7684161
    (b) Meyer, C. J.; Alenghat, F. J.; Rim, P.; Fong, J. H.-J.; Fabry, B.; Ingber, D. E. Nat. Cell Biol. 2000, 2, 666 668 DOI: 10.1038/35023621
  16. 16
    (a) Bausch, A. R.; Hellerer, U.; Essler, M.; Aepfelbacher, M.; Sackmann, E. Biophys. J. 2001, 80, 2649 2657 DOI: 10.1016/S0006-3495(01)76234-0
    (b) Bausch, A. R.; Möller, W.; Sackmann, E. Biophys. J. 1999, 76, 573 579 DOI: 10.1016/S0006-3495(99)77225-5
    (c) Glogauer, M.; Ferrier, J. Pfluegers Arch. 1997, 435, 320 327 DOI: 10.1007/s004240050518
  17. 17
    Hughes, S.; McBain, S.; Dobson, J.; El Haj, A. J. J. J. R. Soc., Interface 2008, 5, 855 863 DOI: 10.1098/rsif.2007.1274
  18. 18
    (a) Kolpashchikov, D. M. ChemBioChem 2007, 8, 2039 2042 DOI: 10.1002/cbic.200700384
    (b) Mokany, E.; Bone, S. M.; Young, P. E.; Doan, T. B.; Todd, A. V. J. Am. Chem. Soc. 2010, 132, 1051 1059 DOI: 10.1021/ja9076777
    (c) Gerasimova, Y. V.; Cornett, E.; Kolpashchikov, D. M. ChemBioChem 2010, 11, 811 817 DOI: 10.1002/cbic.201000006
    (d) Gerasimova, Y. V.; Kolpashchikov, D. M. Angew. Chem., Int. Ed. 2013, 52, 10586 10588 DOI: 10.1002/anie.201303919
  19. 19
    Bumb, A.; Brechbiel, M. W.; Choyke, P. L.; Fugger, L.; Eggeman, A.; Prabhakaran, D.; Hutchinson, J.; Dobson, P. J. Nanotechnology 2008, 19335601 DOI: 10.1088/0957-4484/19/33/335601
  20. 20
    (a) Gref, R.; Lück, M.; Quellec, P.; Marchand, M.; Dellacherie, E.; Harnisch, S.; Blunk, T.; Müller, R. H. Colloids Surf., B 2000, 18, 301 313 DOI: 10.1016/S0927-7765(99)00156-3
  21. 21
    Cheng, G. Z.; Chan, J.; Wang, Q.; Zhang, W. Z.; Sun, C. D.; Wang, L. H. Cancer Res. 2007, 67, 1979 1987 DOI: 10.1158/0008-5472.CAN-06-1479
  22. 22
    Watanabe, O.; Imamura, H.; Shimizu, T.; Kinoshita, J.; Okabe, T.; Hirano, A.; Yoshimatsu, K.; Konno, S.; Aiba, M.; Ogawa, K. Anticancer Res. 2004, 24, 3851 3856
  23. 23
    Li, Y.; Wang, W.; Wang, W.; Yang, R.; Wang, T.; Su, T.; Weng, D.; Tao, T.; Li, W.; Ma, D.; Wang, S. Gynecol. Oncol. 2012, 124, 112 118 DOI: 10.1016/j.ygyno.2011.09.003
  24. 24
    Plank, C.; Schillinger, U.; Scherer, F.; Bergemann, C.; Rémy, J.-S.; Krötz, F.; Anton, M.; Lausier, J.; Rosenecker, J. Biol. Chem. 2003, 384, 737 747 DOI: 10.1515/BC.2003.082
  25. 25
    Nguyen, J.; Szoka, F. Acc. Chem. Res. 2012, 45, 1153 1162 DOI: 10.1021/ar3000162

Cited By

ARTICLE SECTIONS
Jump To

This article is cited by 43 publications.

  1. Yiren Cao, Hongquan Zhang, X. Chris Le. Split Locations and Secondary Structures of a DNAzyme Critical to Binding-Assembled Multicomponent Nucleic Acid Enzymes for Protein Detection. Analytical Chemistry 2021, 93 (47) , 15712-15719. https://doi.org/10.1021/acs.analchem.1c03617
  2. Cheng Fang, Yuming Li, Song Hu, Hao Wang, Xiaoxia Chen, Xiaoli Zhu. Self-Assembled Growing DNA Tree Mediated by Exosomes for Amplified Imaging of Messenger RNA in Living Cells. Analytical Chemistry 2021, 93 (24) , 8414-8422. https://doi.org/10.1021/acs.analchem.1c00211
  3. Qi Kang, Man He, Beibei Chen, Guangyang Xiao, Bin Hu. MNAzyme-Catalyzed Amplification Assay with Lanthanide Tags for the Simultaneous Detection of Multiple microRNAs by Inductively Coupled Plasma–Mass Spectrometry. Analytical Chemistry 2021, 93 (2) , 737-744. https://doi.org/10.1021/acs.analchem.0c02455
  4. Rongxing Zhou, Changjia Hu, Yanwen Jin, Jie Zhang, Huan Du, Peng Yang, Junbo Chen, Xiandeng Hou, Nansheng Cheng. Spatially Constrained DNA Nanomachines To Accelerate Kinetics in Response to External Input: Design and Bioanalysis. Analytical Chemistry 2020, 92 (13) , 8909-8916. https://doi.org/10.1021/acs.analchem.0c00802
  5. Jian Zhao, Hongqian Chu, Ya Zhao, Yi Lu, Lele Li. A NIR Light Gated DNA Nanodevice for Spatiotemporally Controlled Imaging of MicroRNA in Cells and Animals. Journal of the American Chemical Society 2019, 141 (17) , 7056-7062. https://doi.org/10.1021/jacs.9b01931
  6. Meihua Lin, Xiaoqing Yi, Fujian Huang, Xin Ma, Xiaolei Zuo, Fan Xia. Photoactivated Nanoflares for mRNA Detection in Single Living Cells. Analytical Chemistry 2019, 91 (3) , 2021-2027. https://doi.org/10.1021/acs.analchem.8b04434
  7. Yudie Sun, Tao Li. Composition-Tunable Hollow Au/Ag SERS Nanoprobes Coupled with Target-Catalyzed Hairpin Assembly for Triple-Amplification Detection of miRNA. Analytical Chemistry 2018, 90 (19) , 11614-11621. https://doi.org/10.1021/acs.analchem.8b03067
  8. Bo Tian, Yuanyuan Han, Erik Wetterskog, Marco Donolato, Mikkel Fougt Hansen, Peter Svedlindh, Mattias Strömberg. MicroRNA Detection through DNAzyme-Mediated Disintegration of Magnetic Nanoparticle Assemblies. ACS Sensors 2018, 3 (9) , 1884-1891. https://doi.org/10.1021/acssensors.8b00850
  9. Fujian Huang, Meihua Lin, Ruilin Duan, Xiaoding Lou, Fan Xia, Itamar Willner. Photoactivated Specific mRNA Detection in Single Living Cells by Coupling “Signal-on” Fluorescence and “Signal-off” Electrochemical Signals. Nano Letters 2018, 18 (8) , 5116-5123. https://doi.org/10.1021/acs.nanolett.8b02004
  10. Xin Li, Yue Gao, Helin Li, Jean-Pierre Majoral, Xiangyang Shi, Andrij Pich. Smart and bioinspired systems for overcoming biological barriers and enhancing disease theranostics. Progress in Materials Science 2023, 140 , 101170. https://doi.org/10.1016/j.pmatsci.2023.101170
  11. Wei Xu, Feifei Hu, Jiajing Li, Jinhua Shang, Xiaoqing Liu, Yan Zeng, Qiong Wu, Fuan Wang. External stimulation-controlled dynamic DNA devices for biosensing and biomedical applications. Science China Chemistry 2023, 66 (11) , 3105-3115. https://doi.org/10.1007/s11426-023-1783-5
  12. Qiong Wu, Mengqing Xu, Jinhua Shang, Shizhen He, Xiaoqing Liu, Fuan Wang. Stimuli‐Responsive DNA Circuits for High‐Performance Bioimaging Application. Advanced Sensor Research 2023, 2 (9) https://doi.org/10.1002/adsr.202200102
  13. Jian Wang, Wenjie Zhang, Yating Zhang, Haolin Li. Preparation of Polymer-Based Nano-Assembled Particles with Fe3O4 in the Core. Polymers 2023, 15 (11) , 2498. https://doi.org/10.3390/polym15112498
  14. M. Mustafa Azeem, Muhammad Shafa, Muhammad Aamir, Muhammad Zubair, Basma Souayeh, Mir Waqas Alam. Nucleotide detection mechanism and comparison based on low-dimensional materials: A review. Frontiers in Bioengineering and Biotechnology 2023, 11 https://doi.org/10.3389/fbioe.2023.1117871
  15. Qing Wang, Zeyue Wang, Yuqiu He, Bin Xiong, Yingfu Li, Fuan Wang. Chemical and structural modification of RNA-cleaving DNAzymes for efficient biosensing and biomedical applications. TrAC Trends in Analytical Chemistry 2023, 159 , 116910. https://doi.org/10.1016/j.trac.2022.116910
  16. Shivkanya Fuloria, Vetriselvan Subramaniyan, Gaurav Gupta, Mahendran Sekar, Dhanalekshmi Unnikrishnan Meenakshi, Kathiresan Sathasivam, Kalvatala Sudhakar, Khalid Saad Alharbi, Sultan Saadi Almutairi, Waleed Hassan Almalki, Neeraj Kumar Fuloria. Detection of Circulating Tumor Cells and Epithelial Progenitor Cells: A Comprehensive Study. Journal of Environmental Pathology, Toxicology and Oncology 2023, 42 (3) , 1-29. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2022044456
  17. Aya Shibata, Sayuri L. Higashi, Masato Ikeda. Nucleic acid-based fluorescent sensor systems: a review. Polymer Journal 2022, 54 (6) , 751-766. https://doi.org/10.1038/s41428-022-00623-1
  18. Zhichu Xiang, Jian Zhao, Deyu Yi, Zhenghan Di, Lele Li. Peptide Nucleic Acid (PNA)‐Guided Peptide Engineering of an Aptamer Sensor for Protease‐Triggered Molecular Imaging. Angewandte Chemie 2021, 133 (42) , 22841-22845. https://doi.org/10.1002/ange.202106639
  19. Zhichu Xiang, Jian Zhao, Deyu Yi, Zhenghan Di, Lele Li. Peptide Nucleic Acid (PNA)‐Guided Peptide Engineering of an Aptamer Sensor for Protease‐Triggered Molecular Imaging. Angewandte Chemie International Edition 2021, 60 (42) , 22659-22663. https://doi.org/10.1002/anie.202106639
  20. Erin M. McConnell, Ioana Cozma, Quanbing Mou, John D. Brennan, Yi Lu, Yingfu Li. Biosensing with DNAzymes. Chemical Society Reviews 2021, 50 (16) , 8954-8994. https://doi.org/10.1039/D1CS00240F
  21. Ioana Cozma, Erin M. McConnell, John D. Brennan, Yingfu Li. DNAzymes as key components of biosensing systems for the detection of biological targets. Biosensors and Bioelectronics 2021, 177 , 112972. https://doi.org/10.1016/j.bios.2021.112972
  22. Xue Gong, Ruomeng Li, Jing Wang, Jie Wei, Kang Ma, Xiaoqing Liu, Fuan Wang. A Smart Theranostic Nanocapsule for Spatiotemporally Programmable Photo‐Gene Therapy. Angewandte Chemie 2020, 132 (48) , 21832-21839. https://doi.org/10.1002/ange.202008413
  23. Xue Gong, Ruomeng Li, Jing Wang, Jie Wei, Kang Ma, Xiaoqing Liu, Fuan Wang. A Smart Theranostic Nanocapsule for Spatiotemporally Programmable Photo‐Gene Therapy. Angewandte Chemie International Edition 2020, 59 (48) , 21648-21655. https://doi.org/10.1002/anie.202008413
  24. Xuchu Wang, Zhihua Tao. Expanding the analytical applications of nucleic acid hybridization using junction probes. Analytical Methods 2020, 12 (41) , 4931-4938. https://doi.org/10.1039/D0AY01605E
  25. Lingjie Ren, Xiaoxia Chen, Chang Feng, Lei Ding, Xiaomin Liu, Tianshu Chen, Fan Zhang, Yanli Li, Zhongliang Ma, Bo Tian, Xiaoli Zhu. Visualized and cascade-enhanced gene silencing by smart DNAzyme-graphene nanocomplex. Nano Research 2020, 13 (8) , 2165-2174. https://doi.org/10.1007/s12274-020-2826-5
  26. Jing Li, Shijun Cai, Bing Zhou, Xiangxian Meng, Qiuping Guo, Xiaohai Yang, Jin Huang, Kemin Wang. Photocaged FRET nanoflares for intracellular microRNA imaging. Chemical Communications 2020, 56 (45) , 6126-6129. https://doi.org/10.1039/D0CC02395G
  27. Devleena Samanta, Sasha B. Ebrahimi, Chad A. Mirkin. Nucleic‐Acid Structures as Intracellular Probes for Live Cells. Advanced Materials 2020, 32 (13) https://doi.org/10.1002/adma.201901743
  28. Zhen Zou, Ziling Luo, Xuan Xu, Sheng Yang, Zhihe Qing, Juewen Liu, Ronghua Yang. Photoactivatable fluorescent probes for spatiotemporal-controlled biosensing and imaging. TrAC Trends in Analytical Chemistry 2020, 125 , 115811. https://doi.org/10.1016/j.trac.2020.115811
  29. Aleksandr A. Spelkov, Ekaterina A. Goncharova, Artemii M. Savin, Dmitry M. Kolpashchikov. Bifunctional RNA‐Targeting Deoxyribozyme Nanodevice as a Potential Theranostic Agent. Chemistry – A European Journal 2020, 26 (16) , 3489-3493. https://doi.org/10.1002/chem.201905528
  30. Maria Hepel. Magnetic Nanoparticles for Nanomedicine. Magnetochemistry 2020, 6 (1) , 3. https://doi.org/10.3390/magnetochemistry6010003
  31. Anzhi Sheng, Lihong Su, Mohammed Jalalah, M. S. Al-Assiri, Farid A. Harraz, Juan Zhang. Hydrazone chemistry assisted DNAzyme for the analysis of double targets. Chemical Communications 2020, 56 (5) , 695-698. https://doi.org/10.1039/C9CC09389C
  32. Orakan Hanpanich, Tomoya Oyanagi, Naohiko Shimada, Atsushi Maruyama. Cationic copolymer-chaperoned DNAzyme sensor for microRNA detection. Biomaterials 2019, 225 , 119535. https://doi.org/10.1016/j.biomaterials.2019.119535
  33. Krishnan, Goud. Magnetic Particle Bioconjugates: A Versatile Sensor Approach. Magnetochemistry 2019, 5 (4) , 64. https://doi.org/10.3390/magnetochemistry5040064
  34. Fumiaki Tomoike, Hiroshi Abe. RNA imaging by chemical probes. Advanced Drug Delivery Reviews 2019, 147 , 44-58. https://doi.org/10.1016/j.addr.2019.08.001
  35. Saira Bakshi, Andrey Zakharchenko, Sergiy Minko, Dmitry Kolpashchikov, Evgeny Katz. Towards Nanomaterials for Cancer Theranostics: A System of DNA-Modified Magnetic Nanoparticles for Detection and Suppression of RNA Marker in Cancer Cells. Magnetochemistry 2019, 5 (2) , 24. https://doi.org/10.3390/magnetochemistry5020024
  36. Zejun Wang, Wenhan Liu, Chunhai Fan, Nan Chen. Visualizing mRNA in live mammalian cells. Methods 2019, 161 , 16-23. https://doi.org/10.1016/j.ymeth.2019.03.008
  37. Yaroslav Filipov, Andrey Zakharchenko, Sergiy Minko, Evgeny Katz. Magneto‐Controlled Biocatalytic Cascades with Logically Processed Input Signals – Substrate Channeling versus Free Diffusion. ChemPhysChem 2018, 19 (22) , 3035-3043. https://doi.org/10.1002/cphc.201800851
  38. Roya Tavallaie, Joshua McCarroll, Marion Le Grand, Nicholas Ariotti, Wolfgang Schuhmann, Eric Bakker, Richard David Tilley, David Brynn Hibbert, Maria Kavallaris, John Justin Gooding. Nucleic acid hybridization on an electrically reconfigurable network of gold-coated magnetic nanoparticles enables microRNA detection in blood. Nature Nanotechnology 2018, 13 (11) , 1066-1071. https://doi.org/10.1038/s41565-018-0232-x
  39. Beibei Shan, Yuhan Pu, Yingfan Chen, Mengling Liao, Ming Li. Novel SERS labels: Rational design, functional integration and biomedical applications. Coordination Chemistry Reviews 2018, 371 , 11-37. https://doi.org/10.1016/j.ccr.2018.05.007
  40. Baggio A. Evangelista, Yoon‐Seong Kim, Dmitry M. Kolpashchikov. FaptaSyme: A Strategy for Converting a Monomer/Oligomer‐Nonselective Aptameric Sensor into an Oligomer‐Selective One. ChemBioChem 2018, 19 (11) , 1123-1126. https://doi.org/10.1002/cbic.201800017
  41. M. Zouari, S. Campuzano, J.M. Pingarrón, N. Raouafi. Ultrasensitive determination of microribonucleic acids in cancer cells with nanostructured-disposable electrodes using the viral protein p19 for recognition of ribonucleic acid/microribonucleic acid homoduplexes. Electrochimica Acta 2018, 262 , 39-47. https://doi.org/10.1016/j.electacta.2017.12.190
  42. Saira F. Bakshi, Nataliia Guz, Andrey Zakharchenko, Han Deng, Alexei V. Tumanov, Craig D. Woodworth, Sergiy Minko, Dmitry M. Kolpashchikov, Evgeny Katz. Nanoreactors based on DNAzyme-functionalized magnetic nanoparticles activated by magnetic field. Nanoscale 2018, 10 (3) , 1356-1365. https://doi.org/10.1039/C7NR08581H
  43. Vaisakh V. Mohanan, Balaram Pradhan, Vimala Sridurai, Channabasaveshwar V. Yelamaggad, Ammathnadu S. Achalkumar, Geetha G. Nair. Giant enhancement and facile tuning of photoluminescence in a soft anisotropic magneto-gel. Nanoscale 2018, 10 (33) , 15686-15695. https://doi.org/10.1039/C8NR02725K
  • Abstract

    Scheme 1

    Scheme 1. Principle of Magnetic Field-Activated Deoxyribozyme Sensora

    Scheme a(A) Binary deoxyribozyme sensor (BiDZ) as reported earlier. (18) DNA strands DZa and DZb hybridize to adjacent position of analyte and form deoxyribozyme catalytic core, which cleaves fluorogenic F-sub and increases sample fluorescence. (B) MaBiDZ developed in this study. Magnetic bead (MaB1)-bound DZa forms a catalytic core with DZb in the presence of analyte. The activated sensor produces signal only when: (i) second species of magnetic beads, MaB2 carrying F-sub is present and (ii) magnetic field that aggregates MaB1 and MaB2 is applied. See the DNA sequences in Table 1.

    Figure 1

    Figure 1. Comparison of in vitro fluorescent response of BiDZ and MaBiDZ sensor systems. (A) Time dependent response of BiDZ and MaBiDZ sensor: (a) without F-sub, (b) without synthetic Twist (see Table1) analyte, (c) response of MaBiDz without magnet applied, (d) response of BiDZ, and (e) MaBiDZ activated with magnetic field in the presence of 1 nM synthetic Twist analyte (see SI for concentrations of all other components of the BiDZ and MaBiDZ probe.) (B) Response of MaBiDZ (d, e, f) compared to BiDZ (a, b, c) in the presence of different concentrations of Twist analyte after 30 (a,d), 60 (b,e) or 120 (c,f) min. All error bars are the result of three independent measurements; some bars are not visible because they are smaller than the labels for the experimental points.

    Figure 2

    Figure 2. Intracellular testing of MaBiDZ sensor. CLSM images of (A) Twist-overexpressing MCF-7 cancer cells treated with MaBiDZ sensor with magnetic field applied and (C) no magnetic field applied. Analogously treated cervical epithelial cells (expressing low levels of Twist) with (B) magnetic field applied and (D) without magnetic field. Images were taken after 2.5 h of incubation time. Nuclei are stained with Hoechst nuclear stain and visualized with 408 nm laser. Surfaces are stained with anti-epithelial cell adhesion molecule (EpCAM) antibody and visualized with a 635 nm laser. Fluorescence from the MaBiDZ probe is visualized with the 488 nm laser. Corresponding flow cytometry data are shown as insets below each image. The gates on flow cytometry plots indicate percent of EpCAM positive cells with low and high MaBiDZ fluorescence. The number of internalized particles was estimated to be ca. 1 × 106 MaBiDZ per cell (see Figure SI11). Scale bar is 20 μm.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 25 other publications.

    1. 1
      Germond, A.; Fujita, H.; Ichimura, T.; Watanabe, T. M. Biophys. Rev. 2016, 8, 121 138 DOI: 10.1007/s12551-016-0195-9
    2. 2
      (a) Cui, M.; You, L.; Ren, X.; Zhao, W.; Liao, Q.; Zhao, Y. Biochem. Biophys. Res. Commun. 2016, 471, 10 14 DOI: 10.1016/j.bbrc.2015.12.101
      (b) Guo, D.; Barry, L.; Lin, S. S. H.; Huang, V.; Li, L.-C. RNA Biol. 2014, 11, 1221 1225 DOI: 10.4161/15476286.2014.972853
      (c) Qi, X.; Zhang, D.-H.; Wu, N.; Xiao, J.-H.; Wang, X.; Ma, W. J. Med. Genet. 2015, 52, 710 718 DOI: 10.1136/jmedgenet-2015-103334
    3. 3
      Bertrand, E.; Chartrand, P.; Schaefer, M.; Shenoy, S. M.; Singer, R. H.; Long, R. M. Mol. Cell 1998, 2, 437 445 DOI: 10.1016/S1097-2765(00)80143-4
    4. 4
      Paige, J. S.; Wu, K. Y.; Jaffrey, S. R. Science 2011, 333, 642 646 DOI: 10.1126/science.1207339
    5. 5
      (a) Holtzer, L.; Oleinich, I.; Anzola, M.; Lindberg, E.; Sadhu, K. K.; Gonzalez-Gaitan, M.; Winssinger, N. ACS Cent. Sci. 2016, 2, 394 400 DOI: 10.1021/acscentsci.6b00054
      (b) Michaelis, J.; Roloff, A.; Seitz, O. Org. Biomol. Chem. 2014, 12, 2821 2833 DOI: 10.1039/C4OB00096J
      (c) Franzini, R. M.; Kool, E. T. Bioconjugate Chem. 2011, 22, 1869 1877 DOI: 10.1021/bc2003567
    6. 6
      Santangelo, P. J.; Nix, B.; Tsourkas, A.; Bao, G. Nucleic Acids Res. 2004, 32, e57 DOI: 10.1093/nar/gnh062
    7. 7
      (a) Zhao, D.; Yang, Y.; Qu, N.; Chen, M.; Ma, Z.; Krueger, C. J.; Behlke, M. A.; Chen, A. K. Biomaterials 2016, 100, 172 183 DOI: 10.1016/j.biomaterials.2016.05.022
      (b) Giraldo-Vela, J. P.; Kang, W.; McNaughton, R. L.; Zhang, X.; Wile, B. M.; Tsourkas, A.; Bao, G.; Espinosa, H. D. Small 2015, 11, 2386 2391 DOI: 10.1002/smll.201401137
    8. 8
      Seferos, D. S.; Giljohann, D. A.; Hill, H. D.; Prigodich, A. E.; Mirkin, C. A. J. Am. Chem. Soc. 2007, 129, 15477 15479 DOI: 10.1021/ja0776529
      (a) Prigodich, A. E.; Seferos, D. S.; Massich, M. D.; Giljohann, D. A.; Lane, B. C.; Mirkin, C. A. ACS Nano 2009, 3, 2147 2152 DOI: 10.1021/nn9003814
      (b) Zheng, D.; Seferos, D. S.; Giljohann, D. A.; Patel, P. C.; Mirkin, C. A. Nano Lett. 2009, 9, 3258 3261 DOI: 10.1021/nl901517b
      (c) Pan, W.; Li, Y.; Wang, M.; Yang, H.; Li, N.; Tang, B. Chem. Commun. 2016, 52, 4569 4572 DOI: 10.1039/C5CC10147F
    9. 9
      Briley, W. E.; Bondy, M. H.; Randeria, P. S.; Dupper, T. J.; Mirkin, C. A. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 9591 9595 DOI: 10.1073/pnas.1510581112
    10. 10
      (a) Feyder, M.; Goff, L. A. J. Clin. Invest. 2016, 126, 2783 2791 DOI: 10.1172/JCI84422
      (b) Ouellet, J. Front. Chem. 2016, 429 DOI: 10.3389/fchem.2016.00029
      (c) Shigeto, H.; Nakatsuka, K.; Ikeda, T.; Hirota, R.; Kuroda, A.; Funabashi, H. Anal. Chem. 2016, 88, 7894 7898 DOI: 10.1021/acs.analchem.6b02710
      (d) Takahashi, K.; Ito, S.; Nakamoto, K.; Ito, Y.; Ueno, Y. J. Org. Chem. 2015, 80, 8561 8570 DOI: 10.1021/acs.joc.5b01132
      (e) Urbanek, M. O.; Galka-Marciniak, P.; Olejniczak, M.; Krzyzosiak, W. J. RNA Biol. 2014, 11, 1083 1095 DOI: 10.4161/rna.35506
    11. 11
      (a) Wang, C.; Zhu, Z.; Song, Y.; Lin, H.; Yang, C. J.; Tan, W. Chem. Commun. 2011, 47, 5708 5710 DOI: 10.1039/c1cc10481k
      (b) Joshi, K. B.; Vlachos, A.; Mikat, V.; Deller, T.; Heckel, A. Chem. Commun. 2012, 48, 2746 2748 DOI: 10.1039/C2CC16654B
      (c) Rinne, J. S.; Kaminski, T. P.; Kubitscheck, U.; Heckel, A. Chem. Commun. 2013, 49, 5375 5377 DOI: 10.1039/c3cc42420k
    12. 12
      (a) Ruble, B. K.; Yeldell, S. B.; Dmochowski, I. J. J. Inorg. Biochem. 2015, 150, 182 188 DOI: 10.1016/j.jinorgbio.2015.03.010
      (b) Tang, X.; Zhang, J.; Sun, J.; Wang, Y.; Wu, J.; Zhang, L. Org. Biomol. Chem. 2013, 11, 7814 7824 DOI: 10.1039/c3ob41735b
      (c) Bort, G.; Gallavardin, T.; Ogden, D.; Dalko, P. I. Angew. Chem., Int. Ed. 2013, 52, 4526 4537 DOI: 10.1002/anie.201204203
    13. 13
      (a) Luo, D.; Saltzman, W. M. Nat. Biotechnol. 2000, 18, 33 37 DOI: 10.1038/71889
      (b) Patil, S. D.; Rhodes, D. G.; Burgess, D. J. AAPS J. 2005, 7, E61 77 DOI: 10.1208/aapsj070109
      (c) Bishop, C. J.; Kozielski, K. L.; Green, J. J. J. Controlled Release 2015, 219, 488 499 DOI: 10.1016/j.jconrel.2015.09.046
    14. 14
      Dobson, J. Nat. Nanotechnol. 2008, 3, 139 143 DOI: 10.1038/nnano.2008.39
    15. 15
      (a) Wang, N.; Butler, J. P.; Ingber, D. E. Science 1993, 260, 1124 1127 DOI: 10.1126/science.7684161
      (b) Meyer, C. J.; Alenghat, F. J.; Rim, P.; Fong, J. H.-J.; Fabry, B.; Ingber, D. E. Nat. Cell Biol. 2000, 2, 666 668 DOI: 10.1038/35023621
    16. 16
      (a) Bausch, A. R.; Hellerer, U.; Essler, M.; Aepfelbacher, M.; Sackmann, E. Biophys. J. 2001, 80, 2649 2657 DOI: 10.1016/S0006-3495(01)76234-0
      (b) Bausch, A. R.; Möller, W.; Sackmann, E. Biophys. J. 1999, 76, 573 579 DOI: 10.1016/S0006-3495(99)77225-5
      (c) Glogauer, M.; Ferrier, J. Pfluegers Arch. 1997, 435, 320 327 DOI: 10.1007/s004240050518
    17. 17
      Hughes, S.; McBain, S.; Dobson, J.; El Haj, A. J. J. J. R. Soc., Interface 2008, 5, 855 863 DOI: 10.1098/rsif.2007.1274
    18. 18
      (a) Kolpashchikov, D. M. ChemBioChem 2007, 8, 2039 2042 DOI: 10.1002/cbic.200700384
      (b) Mokany, E.; Bone, S. M.; Young, P. E.; Doan, T. B.; Todd, A. V. J. Am. Chem. Soc. 2010, 132, 1051 1059 DOI: 10.1021/ja9076777
      (c) Gerasimova, Y. V.; Cornett, E.; Kolpashchikov, D. M. ChemBioChem 2010, 11, 811 817 DOI: 10.1002/cbic.201000006
      (d) Gerasimova, Y. V.; Kolpashchikov, D. M. Angew. Chem., Int. Ed. 2013, 52, 10586 10588 DOI: 10.1002/anie.201303919
    19. 19
      Bumb, A.; Brechbiel, M. W.; Choyke, P. L.; Fugger, L.; Eggeman, A.; Prabhakaran, D.; Hutchinson, J.; Dobson, P. J. Nanotechnology 2008, 19335601 DOI: 10.1088/0957-4484/19/33/335601
    20. 20
      (a) Gref, R.; Lück, M.; Quellec, P.; Marchand, M.; Dellacherie, E.; Harnisch, S.; Blunk, T.; Müller, R. H. Colloids Surf., B 2000, 18, 301 313 DOI: 10.1016/S0927-7765(99)00156-3
    21. 21
      Cheng, G. Z.; Chan, J.; Wang, Q.; Zhang, W. Z.; Sun, C. D.; Wang, L. H. Cancer Res. 2007, 67, 1979 1987 DOI: 10.1158/0008-5472.CAN-06-1479
    22. 22
      Watanabe, O.; Imamura, H.; Shimizu, T.; Kinoshita, J.; Okabe, T.; Hirano, A.; Yoshimatsu, K.; Konno, S.; Aiba, M.; Ogawa, K. Anticancer Res. 2004, 24, 3851 3856
    23. 23
      Li, Y.; Wang, W.; Wang, W.; Yang, R.; Wang, T.; Su, T.; Weng, D.; Tao, T.; Li, W.; Ma, D.; Wang, S. Gynecol. Oncol. 2012, 124, 112 118 DOI: 10.1016/j.ygyno.2011.09.003
    24. 24
      Plank, C.; Schillinger, U.; Scherer, F.; Bergemann, C.; Rémy, J.-S.; Krötz, F.; Anton, M.; Lausier, J.; Rosenecker, J. Biol. Chem. 2003, 384, 737 747 DOI: 10.1515/BC.2003.082
    25. 25
      Nguyen, J.; Szoka, F. Acc. Chem. Res. 2012, 45, 1153 1162 DOI: 10.1021/ar3000162
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b06022.

    • Details of experimental procedures, complete structure of probe-analyte complex, and control experiments with cell culture (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect