ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Optical Control of Dopamine Receptors Using a Photoswitchable Tethered Inverse Agonist

View Author Information
Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
Department of Chemistry and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, Munich 81377, Germany
§ Departments of Psychiatry and Pharmacology, Columbia University, New York, New York 10027, United States
Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032, United States
Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, United States
# Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
Department of Chemistry, New York University, New York, New York 10003, United States
Cite this: J. Am. Chem. Soc. 2017, 139, 51, 18522–18535
Publication Date (Web):November 22, 2017
https://doi.org/10.1021/jacs.7b07659
Copyright © 2017 American Chemical Society

    Article Views

    5623

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (4 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Family A G protein-coupled receptors (GPCRs) control diverse biological processes and are of great clinical relevance. Their archetype rhodopsin becomes naturally light sensitive by binding covalently to the photoswitchable tethered ligand (PTL) retinal. Other GPCRs, however, neither bind covalently to ligands nor are light sensitive. We sought to impart the logic of rhodopsin to light-insensitive Family A GPCRs in order to enable their remote control in a receptor-specific, cell-type-specific, and spatiotemporally precise manner. Dopamine receptors (DARs) are of particular interest for their roles in motor coordination, appetitive, and aversive behavior, as well as neuropsychiatric disorders such as Parkinson’s disease, schizophrenia, mood disorders, and addiction. Using an azobenzene derivative of the well-known DAR ligand 2-(N-phenethyl-N-propyl)amino-5-hydroxytetralin (PPHT), we were able to rapidly, reversibly, and selectively block dopamine D1 and D2 receptors (D1R and D2R) when the PTL was conjugated to an engineered cysteine near the dopamine binding site. Depending on the site of tethering, the ligand behaved as either a photoswitchable tethered neutral antagonist or inverse agonist. Our results indicate that DARs can be chemically engineered for selective remote control by light and provide a template for precision control of Family A GPCRs.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b07659.

    • Experimental procedures and characterization of compounds (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 52 publications.

    1. Belinda E. Hetzler, Prashant Donthamsetti, Zisis Peitsinis, Cherise Stanley, Dirk Trauner, Ehud Y. Isacoff. Optical Control of Dopamine D2-like Receptors with Cell-Specific Fast-Relaxing Photoswitches. Journal of the American Chemical Society 2023, 145 (34) , 18778-18788. https://doi.org/10.1021/jacs.3c02735
    2. Wen Fu, Yunfan Ji, Yanan Zhang, Jiazheng Xu, Zhiping Xu, Jiagao Cheng, Zhong Li, Xusheng Shao. Optical Regulation of Sodium Channels by the Azobenzene Pyrethrins. ACS Agricultural Science & Technology 2022, 2 (6) , 1311-1317. https://doi.org/10.1021/acsagscitech.2c00259
    3. Wen Fu, Zhongli Shao, Xujuan Sun, Cong Zhou, Zhiping Xu, Yang Zhang, Jiagao Cheng, Zhong Li, Xusheng Shao. Reversible Regulation of Succinate Dehydrogenase by Tools of Photopharmacology. Journal of Agricultural and Food Chemistry 2022, 70 (14) , 4279-4290. https://doi.org/10.1021/acs.jafc.1c08198
    4. Prashant Donthamsetti, David B. Konrad, Belinda Hetzler, Zhu Fu, Dirk Trauner, Ehud Y. Isacoff. Selective Photoswitchable Allosteric Agonist of a G Protein-Coupled Receptor. Journal of the American Chemical Society 2021, 143 (24) , 8951-8956. https://doi.org/10.1021/jacs.1c02586
    5. Anna Duran-Corbera, Juanlo Catena, Marta Otero-Viñas, Amadeu Llebaria, Xavier Rovira. Photoswitchable Antagonists for a Precise Spatiotemporal Control of β2-Adrenoceptors. Journal of Medicinal Chemistry 2020, 63 (15) , 8458-8470. https://doi.org/10.1021/acs.jmedchem.0c00831
    6. Yu-Hui Jin, Meng-Chen Lu, Yan Wang, Wen-Xin Shan, Xuan-Yu Wang, Qi-Dong You, Zheng-Yu Jiang. Azo-PROTAC: Novel Light-Controlled Small-Molecule Tool for Protein Knockdown. Journal of Medicinal Chemistry 2020, 63 (9) , 4644-4654. https://doi.org/10.1021/acs.jmedchem.9b02058
    7. Jia-Nan Zhu, Wen-Kang Wang, Yuan Zhu, Yin-Qiu Hu, Sheng-Yin Zhao. Cascade Functionalization of C(sp3)–Br/C(sp2)–H Bonds: Access to Fused Benzo[e]isoindole-1,3,5-trione via Visible-Light-Induced Reductive Radical Relay Strategy. Organic Letters 2019, 21 (16) , 6270-6274. https://doi.org/10.1021/acs.orglett.9b02153
    8. Prashant C. Donthamsetti, Johannes Broichhagen, Vojtech Vyklicky, Cherise Stanley, Zhu Fu, Meike Visel, Joshua L. Levitz, Jonathan A. Javitch, Dirk Trauner, Ehud Y. Isacoff. Genetically Targeted Optical Control of an Endogenous G Protein-Coupled Receptor. Journal of the American Chemical Society 2019, 141 (29) , 11522-11530. https://doi.org/10.1021/jacs.9b02895
    9. Katharina Hüll, Johannes Morstein, Dirk Trauner. In Vivo Photopharmacology. Chemical Reviews 2018, 118 (21) , 10710-10747. https://doi.org/10.1021/acs.chemrev.8b00037
    10. Ryou Kubota, Wataru Nomura, Takuma Iwasaka, Kento Ojima, Shigeki Kiyonaka, Itaru Hamachi. Chemogenetic Approach Using Ni(II) Complex–Agonist Conjugates Allows Selective Activation of Class A G-Protein-Coupled Receptors. ACS Central Science 2018, 4 (9) , 1211-1221. https://doi.org/10.1021/acscentsci.8b00390
    11. Chavdar Slavov, Chong Yang, Andreas H. Heindl, Tim Stauch, Hermann A. Wegner, Andreas Dreuw, Josef Wachtveitl. Twist and Return−Induced Ring Strain Triggers Quick Relaxation of a (Z)-Stabilized Cyclobisazobenzene. The Journal of Physical Chemistry Letters 2018, 9 (16) , 4776-4781. https://doi.org/10.1021/acs.jpclett.8b02159
    12. Wan-Chen Lin, Richard H. Kramer. Light-Switchable Ion Channels and Receptors for Optogenetic Interrogation of Neuronal Signaling. Bioconjugate Chemistry 2018, 29 (4) , 861-869. https://doi.org/10.1021/acs.bioconjchem.7b00803
    13. Ehud Y. Isacoff, Andreas Reiner. Optogenetics. 2023, 179-191. https://doi.org/10.1016/B978-0-12-821618-7.00150-4
    14. Yang Shen, Alessandro Luchetti, Giselle Fernandes, Won Do Heo, Alcino J. Silva. The emergence of molecular systems neuroscience. Molecular Brain 2022, 15 (1) https://doi.org/10.1186/s13041-021-00885-5
    15. Anna Duran-Corbera, Joan Font, Melissa Faria, Eva Prats, Marta Consegal, Juanlo Catena, Lourdes Muñoz, Demetrio Raldua, Antonio Rodriguez-Sinovas, Amadeu Llebaria, Xavier Rovira. Caged-carvedilol as a new tool for visible-light photopharmacology of β-adrenoceptors in native tissues. iScience 2022, 25 (10) , 105128. https://doi.org/10.1016/j.isci.2022.105128
    16. Kasey S. Girven, Leandra Mangieri, Michael R. Bruchas. Emerging approaches for decoding neuropeptide transmission. Trends in Neurosciences 2022, 76 https://doi.org/10.1016/j.tins.2022.09.005
    17. Carlo Matera, Pablo Calvé, Verònica Casadó-Anguera, Rosalba Sortino, Alexandre M. J. Gomila, Estefanía Moreno, Thomas Gener, Cristina Delgado-Sallent, Pau Nebot, Davide Costazza, Sara Conde-Berriozabal, Mercè Masana, Jordi Hernando, Vicent Casadó, M. Victoria Puig, Pau Gorostiza. Reversible Photocontrol of Dopaminergic Transmission in Wild-Type Animals. International Journal of Molecular Sciences 2022, 23 (17) , 10114. https://doi.org/10.3390/ijms231710114
    18. Michael H. Berry, Amy Holt, Johannes Broichhagen, Prashant Donthamsetti, John G. Flannery, Ehud Y. Isacoff. Photopharmacology for vision restoration. Current Opinion in Pharmacology 2022, 65 , 102259. https://doi.org/10.1016/j.coph.2022.102259
    19. Silvia Panarello, Xavier Rovira, Amadeu Llebaria, Xavier Gómez‐Santacana. Photopharmacology of G ‐Protein‐Coupled Receptors. 2022, 921-944. https://doi.org/10.1002/9783527827626.ch37
    20. Marco Brondi, Matteo Bruzzone, Claudia Lodovichi, Marco dal Maschio. Optogenetic Methods to Investigate Brain Alterations in Preclinical Models. Cells 2022, 11 (11) , 1848. https://doi.org/10.3390/cells11111848
    21. Jundong Zhu, Tao Guo, Zheng Wang, Yanjun Zhao. Triggered azobenzene-based prodrugs and drug delivery systems. Journal of Controlled Release 2022, 345 , 475-493. https://doi.org/10.1016/j.jconrel.2022.03.041
    22. Andrea C. Kneuttinger. A guide to designing photocontrol in proteins: methods, strategies and applications. Biological Chemistry 2022, 403 (5-6) , 573-613. https://doi.org/10.1515/hsz-2021-0417
    23. Johannes Morstein, Giovanna Romano, Belinda E. Hetzler, Ambrose Plante, Caleb Haake, Joshua Levitz, Dirk Trauner. Photoswitchable Serotonins for Optical Control of the 5‐HT 2A Receptor**. Angewandte Chemie 2022, 134 (18) https://doi.org/10.1002/ange.202117094
    24. Johannes Morstein, Giovanna Romano, Belinda E. Hetzler, Ambrose Plante, Caleb Haake, Joshua Levitz, Dirk Trauner. Photoswitchable Serotonins for Optical Control of the 5‐HT 2A Receptor**. Angewandte Chemie International Edition 2022, 61 (18) https://doi.org/10.1002/anie.202117094
    25. Lorena Mendive‐Tapia, David Mendive‐Tapia, Can Zhao, Doireann Gordon, Sam Benson, Michael J. Bromley, Wei Wang, Jun Wu, Adelina Kopp, Lutz Ackermann, Marc Vendrell. Rationales Design von Phe‐BODIPY‐Aminosäuren als fluorogene Bausteine für den peptidbasierten Nachweis von Candida ‐Infektionen im Harntrakt. Angewandte Chemie 2022, 134 (17) https://doi.org/10.1002/ange.202117218
    26. Lorena Mendive‐Tapia, David Mendive‐Tapia, Can Zhao, Doireann Gordon, Sam Benson, Michael J. Bromley, Wei Wang, Jun Wu, Adelina Kopp, Lutz Ackermann, Marc Vendrell. Rational Design of Phe‐BODIPY Amino Acids as Fluorogenic Building Blocks for Peptide‐Based Detection of Urinary Tract Candida Infections. Angewandte Chemie International Edition 2022, 61 (17) https://doi.org/10.1002/anie.202117218
    27. Maikel Wijtmans, Ivana Josimovic, Henry F. Vischer, Rob Leurs. Optical control of Class A G protein-coupled receptors with photoswitchable ligands. Current Opinion in Pharmacology 2022, 63 , 102192. https://doi.org/10.1016/j.coph.2022.102192
    28. Johannes Broichhagen, Joshua Levitz. Advances in tethered photopharmacology for precise optical control of signaling proteins. Current Opinion in Pharmacology 2022, 63 , 102196. https://doi.org/10.1016/j.coph.2022.102196
    29. Prashant Donthamsetti, Nils Winter, Adam Hoagland, Cherise Stanley, Meike Visel, Stephan Lammel, Dirk Trauner, Ehud Isacoff. Cell specific photoswitchable agonist for reversible control of endogenous dopamine receptors. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-25003-w
    30. Jana Volarić, Wiktor Szymanski, Nadja A. Simeth, Ben L. Feringa. Molecular photoswitches in aqueous environments. Chemical Society Reviews 2021, 50 (22) , 12377-12449. https://doi.org/10.1039/D0CS00547A
    31. Vanessa A. Gutzeit, Amanda Acosta-Ruiz, Hermany Munguba, Stephanie Häfner, Arnaud Landra-Willm, Bettina Mathes, Jürgen Mony, Dzianis Yarotski, Karl Börjesson, Conor Liston, Guillaume Sandoz, Joshua Levitz, Johannes Broichhagen. A fine-tuned azobenzene for enhanced photopharmacology in vivo. Cell Chemical Biology 2021, 28 (11) , 1648-1663.e16. https://doi.org/10.1016/j.chembiol.2021.02.020
    32. P. D. Bregestovski, D. N. Ponomareva. Photochromic Modulation of Cys-loop Ligand-gated Ion Channels. Journal of Evolutionary Biochemistry and Physiology 2021, 57 (2) , 354-371. https://doi.org/10.1134/S0022093021020162
    33. Liqian Gao, Wei Wang, Xuan Wang, Fen Yang, Liuxing Xie, Jun Shen, Margaret A. Brimble, Qicai Xiao, Shao Q. Yao. Fluorescent probes for bioimaging of potential biomarkers in Parkinson's disease. Chemical Society Reviews 2021, 50 (2) , 1219-1250. https://doi.org/10.1039/D0CS00115E
    34. Sarah Bricault, Ali Barandov, Peter Harvey, Elizabeth DeTienne, Aviad Hai, Alan Jasanoff. Image-guided neural activity manipulation with a paramagnetic drug. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-019-13933-5
    35. Hong‐Guo Hu, Pu‐Guang Chen, Guanyu Wang, Jun‐Jun Wu, Bo‐Dou Zhang, Wen‐Hao Li, Rebecca L. Davis, Yan‐Mei Li. Regulation of Immune Activation by Optical Control of TLR1/2 Heterodimerization. ChemBioChem 2020, 21 (8) , 1150-1154. https://doi.org/10.1002/cbic.201900591
    36. Shai Kellner, Shai Berlin. Two-Photon Excitation of Azobenzene Photoswitches for Synthetic Optogenetics. Applied Sciences 2020, 10 (3) , 805. https://doi.org/10.3390/app10030805
    37. Nohely Abreu, Joshua Levitz. Optogenetic Techniques for Manipulating and Sensing G Protein-Coupled Receptor Signaling. 2020, 21-51. https://doi.org/10.1007/978-1-0716-0755-8_2
    38. Alice E. Berizzi, Cyril Goudet. Strategies and considerations of G-protein-coupled receptor photopharmacology. 2020, 143-172. https://doi.org/10.1016/bs.apha.2019.12.001
    39. Pierre Paoletti, Graham C. R. Ellis-Davies, Alexandre Mourot. Optical control of neuronal ion channels and receptors. Nature Reviews Neuroscience 2019, 20 (9) , 514-532. https://doi.org/10.1038/s41583-019-0197-2
    40. Sarah Mondoloni, Romain Durand-de Cuttoli, Alexandre Mourot. Cell-Specific Neuropharmacology. Trends in Pharmacological Sciences 2019, 40 (9) , 696-710. https://doi.org/10.1016/j.tips.2019.07.007
    41. Philipp Leippe, James Allen Frank. Designing azobenzene-based tools for controlling neurotransmission. Current Opinion in Structural Biology 2019, 57 , 23-30. https://doi.org/10.1016/j.sbi.2019.01.022
    42. Chokri Boumrifak, Chong Yang, Silvia Bellotto, Hermann A. Wegner, Josef Wachtveitl, Andreas Dreuw, Chavdar Slavov. Isomerization Dynamics of Electronically Coupled but Thermodynamically Decoupled Bisazobenzenes. ChemPhotoChem 2019, 3 (6) , 411-417. https://doi.org/10.1002/cptc.201900077
    43. Guanhua Yang, Haiming Wu, Anthony M. S. Pembere, Zhixun Luo. Deep Ultraviolet Laser Radiation Causes Brittle Fracture of C α ‐C β Bonds in Neurotransmitters. ChemistrySelect 2019, 4 (18) , 5235-5239. https://doi.org/10.1002/slct.201900936
    44. Maria Ricart-Ortega, Joan Font, Amadeu Llebaria. GPCR photopharmacology. Molecular and Cellular Endocrinology 2019, 488 , 36-51. https://doi.org/10.1016/j.mce.2019.03.003
    45. Elise Wouters, Adrián Marín, James Dalton, Jesús Giraldo, Christophe Stove. Distinct Dopamine D2 Receptor Antagonists Differentially Impact D2 Receptor Oligomerization. International Journal of Molecular Sciences 2019, 20 (7) , 1686. https://doi.org/10.3390/ijms20071686
    46. Karin Rustler, Steffen Pockes, Burkhard König. Light‐Switchable Antagonists for the Histamine H 1 Receptor at the Isolated Guinea Pig Ileum. ChemMedChem 2019, 14 (6) , 636-644. https://doi.org/10.1002/cmdc.201800815
    47. Amanda Acosta-Ruiz, Johannes Broichhagen, Joshua Levitz. Optical Regulation of Class C GPCRs by Photoswitchable Orthogonal Remotely Tethered Ligands. 2019, 103-136. https://doi.org/10.1007/978-1-4939-9121-1_6
    48. Ryou Kubota, Shigeki Kiyonaka, Itaru Hamachi. On-cell coordination chemistry: Chemogenetic activation of membrane-bound glutamate receptors in living cells. 2019, 411-430. https://doi.org/10.1016/bs.mie.2019.02.033
    49. Karin Rustler, Galyna Maleeva, Piotr Bregestovski, Burkhard König. Azologization of serotonin 5-HT 3 receptor antagonists. Beilstein Journal of Organic Chemistry 2019, 15 , 780-788. https://doi.org/10.3762/bjoc.15.74
    50. Xavier Gómez-Santacana, Sabrina M de Munnik, Tamara A M Mocking, Niels J Hauwert, Shanliang Sun, Prashanna Vijayachandran, Iwan J P de Esch, Henry F Vischer, Maikel Wijtmans, Rob Leurs. A toolbox of molecular photoswitches to modulate the CXCR3 chemokine receptor with light. Beilstein Journal of Organic Chemistry 2019, 15 , 2509-2523. https://doi.org/10.3762/bjoc.15.244
    51. Alan M. Szalai, Natalia G. Armando, Federico M. Barabas, Fernando D. Stefani, Luciana Giordano, Sara E. Bari, Claudio N. Cavasotto, Susana Silberstein, Pedro F. Aramendía. A fluorescence nanoscopy marker for corticotropin-releasing hormone type 1 receptor: computer design, synthesis, signaling effects, super-resolved fluorescence imaging, and in situ affinity constant in cells. Physical Chemistry Chemical Physics 2018, 20 (46) , 29212-29220. https://doi.org/10.1039/C8CP06196C
    52. Mark W. H. Hoorens, Haigen Fu, Ria H. Duurkens, Gianluca Trinco, Valentina Arkhipova, Ben L. Feringa, Gerrit J. Poelarends, Dirk J. Slotboom, Wiktor Szymanski. Glutamate Transporter Inhibitors with Photo‐Controlled Activity. Advanced Therapeutics 2018, 1 (2) https://doi.org/10.1002/adtp.201800028

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect