Electrocatalytic CO2 Reduction by Imidazolium-Functionalized Molecular Catalysts
Abstract

We present the first examples of CO2 electro-reduction catalysts that feature charged imidazolium groups in the secondary coordination sphere. The functionalized Lehn-type catalysts display significant differences in their redox properties and improved catalytic activities as compared to the conventional reference catalyst. Our results suggest that the incorporated imidazolium moieties do not solely function as a charged tag but also alter mechanistic aspects of catalysis.
Cited By
This article is cited by 140 publications.
- Laura Rotundo, Shahbaz Ahmad, Chiara Cappuccino, Dmitry E. Polyansky, Mehmed Z. Ertem, Gerald F. Manbeck. A Dicationic fac-Re(bpy)(CO)3Cl for CO2 Electroreduction at a Reduced Overpotential. Inorganic Chemistry 2023, 62 (20) , 7877-7889. https://doi.org/10.1021/acs.inorgchem.3c00624
- Santanu Pattanayak, Natalia D. Loewen, Louise A. Berben. Using Substituted [Fe4N(CO)12]− as a Platform To Probe the Effect of Cation and Lewis Acid Location on Redox Potential. Inorganic Chemistry 2023, 62 (5) , 1919-1925. https://doi.org/10.1021/acs.inorgchem.2c01556
- Sobhan Neyrizi, Joep Kiewiet, Mark A. Hempenius, Guido Mul. What It Takes for Imidazolium Cations to Promote Electrochemical Reduction of CO2. ACS Energy Letters 2022, 7 (10) , 3439-3446. https://doi.org/10.1021/acsenergylett.2c01372
- Liliana Capulín Flores, Lucas A. Paul, Inke Siewert, Remco Havenith, Noé Zúñiga-Villarreal, Edwin Otten. Neutral Formazan Ligands Bound to the fac-(CO)3Re(I) Fragment: Structural, Spectroscopic, and Computational Studies. Inorganic Chemistry 2022, 61 (34) , 13532-13542. https://doi.org/10.1021/acs.inorgchem.2c02168
- Patricia De La Torre, Jeffrey S. Derrick, Andrew Snider, Peter T. Smith, Matthias Loipersberger, Martin Head-Gordon, Christopher J. Chang. Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction. ACS Catalysis 2022, 12 (14) , 8484-8493. https://doi.org/10.1021/acscatal.2c02072
- Etsuko Fujita, David C. Grills, Gerald F. Manbeck, Dmitry E. Polyansky. Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO2 Reduction Using Mn, Re, and Ru Catalysts. Accounts of Chemical Research 2022, 55 (5) , 616-628. https://doi.org/10.1021/acs.accounts.1c00616
- Padmanabh B. Joshi, Nawaraj Karki, Andrew J. Wilson. Electrocatalytic CO2 Reduction in Acetonitrile Enhanced by the Local Environment and Mass Transport of H2O. ACS Energy Letters 2022, 7 (2) , 602-609. https://doi.org/10.1021/acsenergylett.1c02667
- Paramita Saha, Sk Amanullah, Abhishek Dey. Selectivity in Electrochemical CO2 Reduction. Accounts of Chemical Research 2022, 55 (2) , 134-144. https://doi.org/10.1021/acs.accounts.1c00678
- Jeffrey J. Liu, Alon Chapovetsky, Ralf Haiges, Smaranda C. Marinescu. Effects of Protonation State on Electrocatalytic CO2 Reduction by a Cobalt Aminopyridine Macrocyclic Complex. Inorganic Chemistry 2021, 60 (23) , 17517-17528. https://doi.org/10.1021/acs.inorgchem.1c01977
- Xiaohui Li, Julien A. Panetier. Computational Study for CO2-to-CO Conversion over Proton Reduction Using [Re[bpyMe(Im-R)](CO)3Cl]+ (R = Me, Me2, and Me4) Electrocatalysts and Comparison with Manganese Analogues. ACS Catalysis 2021, 11 (21) , 12989-13000. https://doi.org/10.1021/acscatal.1c02899
- Josh D. B. Koenig, Zachary S. Dubrawski, Keerthan R. Rao, Janina Willkomm, Benjamin S. Gelfand, Chad Risko, Warren E. Piers, Gregory C. Welch. Lowering Electrocatalytic CO2 Reduction Overpotential Using N-Annulated Perylene Diimide Rhenium Bipyridine Dyads with Variable Tether Length. Journal of the American Chemical Society 2021, 143 (40) , 16849-16864. https://doi.org/10.1021/jacs.1c09481
- David M. Koshy, Sneha A. Akhade, Adam Shugar, Kabir Abiose, Jingwei Shi, Siwei Liang, James S. Oakdale, Stephen E. Weitzner, Joel B. Varley, Eric B. Duoss, Sarah E. Baker, Christopher Hahn, Zhenan Bao, Thomas F. Jaramillo. Chemical Modifications of Ag Catalyst Surfaces with Imidazolium Ionomers Modulate H2 Evolution Rates during Electrochemical CO2 Reduction. Journal of the American Chemical Society 2021, 143 (36) , 14712-14725. https://doi.org/10.1021/jacs.1c06212
- Simran S. Saund, Maxime A. Siegler, V. Sara Thoi. Electrochemical Degradation of a Dicationic Rhenium Complex via Hoffman-Type Elimination. Inorganic Chemistry 2021, 60 (17) , 13011-13020. https://doi.org/10.1021/acs.inorgchem.1c01427
- Sk Amanullah, Paramita Saha, Abhishek Dey. Activating the Fe(I) State of Iron Porphyrinoid with Second-Sphere Proton Transfer Residues for Selective Reduction of CO2 to HCOOH via Fe(III/II)–COOH Intermediate(s). Journal of the American Chemical Society 2021, 143 (34) , 13579-13592. https://doi.org/10.1021/jacs.1c04392
- Yichao Yan, Sophia G. Robinson, Thomas P. Vaid, Matthew S. Sigman, Melanie S. Sanford. Simultaneously Enhancing the Redox Potential and Stability of Multi-Redox Organic Catholytes by Incorporating Cyclopropenium Substituents. Journal of the American Chemical Society 2021, 143 (33) , 13450-13459. https://doi.org/10.1021/jacs.1c07237
- Jeffrey M. Barlow, Joseph W. Ziller, Jenny Y. Yang. Inhibiting the Hydrogen Evolution Reaction (HER) with Proximal Cations: A Strategy for Promoting Selective Electrocatalytic Reduction. ACS Catalysis 2021, 11 (13) , 8155-8164. https://doi.org/10.1021/acscatal.1c01527
- Nilakshi Devi, Caroline K. Williams, Ashwin Chaturvedi, Jianbing “Jimmy” Jiang. Homogeneous Electrocatalytic CO2 Reduction Using a Porphyrin Complex with Flexible Triazole Units in the Second Coordination Sphere. ACS Applied Energy Materials 2021, 4 (4) , 3604-3611. https://doi.org/10.1021/acsaem.1c00027
- Natalia D. Loewen, Santanu Pattanayak, Rolfe Herber, James C. Fettinger, Louise A. Berben. Quantification of the Electrostatic Effect on Redox Potential by Positive Charges in a Catalyst Microenvironment. The Journal of Physical Chemistry Letters 2021, 12 (12) , 3066-3073. https://doi.org/10.1021/acs.jpclett.1c00406
- Weixuan Nie, Drew E. Tarnopol, Charles C. L. McCrory. Enhancing a Molecular Electrocatalyst’s Activity for CO2 Reduction by Simultaneously Modulating Three Substituent Effects. Journal of the American Chemical Society 2021, 143 (10) , 3764-3778. https://doi.org/10.1021/jacs.0c09357
- Daniel J. Martin, Samantha I. Johnson, Brandon Q. Mercado, Simone Raugei, James M. Mayer. Intramolecular Electrostatic Effects on O2, CO2, and Acetate Binding to a Cationic Iron Porphyrin. Inorganic Chemistry 2020, 59 (23) , 17402-17414. https://doi.org/10.1021/acs.inorgchem.0c02703
- Jeffrey S. Derrick, Matthias Loipersberger, Ruchira Chatterjee, Diana A. Iovan, Peter T. Smith, Khetpakorn Chakarawet, Junko Yano, Jeffrey R. Long, Martin Head-Gordon, Christopher J. Chang. Metal–Ligand Cooperativity via Exchange Coupling Promotes Iron- Catalyzed Electrochemical CO2 Reduction at Low Overpotentials. Journal of the American Chemical Society 2020, 142 (48) , 20489-20501. https://doi.org/10.1021/jacs.0c10664
- Yuxuan Wang, Hongyang Su, Yanghua He, Ligui Li, Shangqian Zhu, Hao Shen, Pengfei Xie, Xianbiao Fu, Guangye Zhou, Chen Feng, Dengke Zhao, Fei Xiao, Xiaojing Zhu, Yachao Zeng, Minhua Shao, Shaowei Chen, Gang Wu, Jie Zeng, Chao Wang. Advanced Electrocatalysts with Single-Metal-Atom Active Sites. Chemical Reviews 2020, 120 (21) , 12217-12314. https://doi.org/10.1021/acs.chemrev.0c00594
- Elli Vichou, Yun Li, Maria Gomez-Mingot, Marc Fontecave, Carlos M. Sánchez-Sánchez. Imidazolium- and Pyrrolidinium-Based Ionic Liquids as Cocatalysts for CO2 Electroreduction in Model Molecular Electrocatalysis. The Journal of Physical Chemistry C 2020, 124 (43) , 23764-23772. https://doi.org/10.1021/acs.jpcc.0c07556
- Alon Chapovetsky, Jeffrey J. Liu, Matthew Welborn, John M. Luna, Thomas Do, Ralf Haiges, Thomas F. Miller III, Smaranda C. Marinescu. Electronically Modified Cobalt Aminopyridine Complexes Reveal an Orthogonal Axis for Catalytic Optimization for CO2 Reduction. Inorganic Chemistry 2020, 59 (18) , 13709-13718. https://doi.org/10.1021/acs.inorgchem.0c02086
- Laura Rotundo, Dmitry E. Polyansky, Roberto Gobetto, David C. Grills, Etsuko Fujita, Carlo Nervi, Gerald F. Manbeck. Molecular Catalysts with Intramolecular Re–O Bond for Electrochemical Reduction of Carbon Dioxide. Inorganic Chemistry 2020, 59 (17) , 12187-12199. https://doi.org/10.1021/acs.inorgchem.0c01181
- Beatriz Merillas, Elena Cuéllar, Alberto Diez-Varga, Tomás Torroba, Gabriel García-Herbosa, Sergio Fernández, Julio Lloret-Fillol, Jose M. Martín-Alvarez, Daniel Miguel, Fernando Villafañe. Luminescent Rhenium(I)tricarbonyl Complexes Containing Different Pyrazoles and Their Successive Deprotonation Products: CO2 Reduction Electrocatalysts. Inorganic Chemistry 2020, 59 (15) , 11152-11165. https://doi.org/10.1021/acs.inorgchem.0c01654
- Yong Yang, Zhenyu Zhang, Xiaoyong Chang, Ya-Qiong Zhang, Rong-Zhen Liao, Lele Duan. Highly Active Manganese-Based CO2 Reduction Catalysts with Bulky NHC Ligands: A Mechanistic Study. Inorganic Chemistry 2020, 59 (14) , 10234-10242. https://doi.org/10.1021/acs.inorgchem.0c01364
- Peter T. Smith, Sophia Weng, Christopher J. Chang. An NADH-Inspired Redox Mediator Strategy to Promote Second-Sphere Electron and Proton Transfer for Cooperative Electrochemical CO2 Reduction Catalyzed by Iron Porphyrin. Inorganic Chemistry 2020, 59 (13) , 9270-9278. https://doi.org/10.1021/acs.inorgchem.0c01162
- Kallol Talukdar, Sayontani Sinha Roy, Eva Amatya, Elizabeth A. Sleeper, Pierre Le Magueres, Jonah W. Jurss. Enhanced Electrochemical CO2 Reduction by a Series of Molecular Rhenium Catalysts Decorated with Second-Sphere Hydrogen-Bond Donors. Inorganic Chemistry 2020, 59 (9) , 6087-6099. https://doi.org/10.1021/acs.inorgchem.0c00154
- David Z. Zee, Michael Nippe, Amanda E. King, Christopher J. Chang, Jeffrey R. Long. Tuning Second Coordination Sphere Interactions in Polypyridyl–Iron Complexes to Achieve Selective Electrocatalytic Reduction of Carbon Dioxide to Carbon Monoxide. Inorganic Chemistry 2020, 59 (7) , 5206-5217. https://doi.org/10.1021/acs.inorgchem.0c00455
- Lisa Suntrup, Felix Stein, Johannes Klein, Alexander Wilting, Fraser G. L. Parlane, Christopher M. Brown, Jan Fiedler, Curtis P. Berlinguette, Inke Siewert, Biprajit Sarkar. Rhenium Complexes of Pyridyl-Mesoionic Carbenes: Photochemical Properties and Electrocatalytic CO2 Reduction. Inorganic Chemistry 2020, 59 (7) , 4215-4227. https://doi.org/10.1021/acs.inorgchem.9b02591
- Hemanthi D. Manamperi, Suzanne E. Witt, Claudia Turro. Selective Electrocatalytic Conversion of CO2 to HCOOH by a Cationic Rh2(II,II) Complex. ACS Applied Energy Materials 2019, 2 (10) , 7306-7314. https://doi.org/10.1021/acsaem.9b01283
- Yasuo Matsubara. Unified Benchmarking of Electrocatalysts in Noninnocent Second Coordination Spheres for CO2 Reduction. ACS Energy Letters 2019, 4 (8) , 1999-2004. https://doi.org/10.1021/acsenergylett.9b01180
- Kei Murata, Hayato Tanaka, Kazuyuki Ishii. Electrochemical Reduction of CO2 by a Gas-Diffusion Electrode Composed of fac-Re(diimine)(CO)3Cl and Carbon Nanotubes. The Journal of Physical Chemistry C 2019, 123 (19) , 12073-12080. https://doi.org/10.1021/acs.jpcc.8b12505
- Jeffrey M. Barlow, Jenny Y. Yang. Thermodynamic Considerations for Optimizing Selective CO2 Reduction by Molecular Catalysts. ACS Central Science 2019, 5 (4) , 580-588. https://doi.org/10.1021/acscentsci.9b00095
- Siyoung Sung, Xiaohui Li, Lucienna M. Wolf, Jeremy R. Meeder, Nattamai S. Bhuvanesh, Kyle A. Grice, Julien A. Panetier, Michael Nippe. Synergistic Effects of Imidazolium-Functionalization on fac-Mn(CO)3 Bipyridine Catalyst Platforms for Electrocatalytic Carbon Dioxide Reduction. Journal of the American Chemical Society 2019, 141 (16) , 6569-6582. https://doi.org/10.1021/jacs.8b13657
- Matthew R. Crawley, Karthika J. Kadassery, Amanda N. Oldacre, Alan E. Friedman, David C. Lacy, Timothy R. Cook. Rhenium(I) Phosphazane Complexes for Electrocatalytic CO2 Reduction. Organometallics 2019, 38 (7) , 1664-1676. https://doi.org/10.1021/acs.organomet.9b00138
- Eva M. Nichols, Christopher J. Chang. Urea-Based Multipoint Hydrogen-Bond Donor Additive Promotes Electrochemical CO2 Reduction Catalyzed by Nickel Cyclam. Organometallics 2019, 38 (6) , 1213-1218. https://doi.org/10.1021/acs.organomet.8b00308
- Emile E. DeLuca, Zhen Xu, Jasper Lam, Michael O. Wolf. Improved Electrocatalytic CO2 Reduction with Palladium bis(NHC) Pincer Complexes Bearing Cationic Side Chains. Organometallics 2019, 38 (6) , 1330-1343. https://doi.org/10.1021/acs.organomet.8b00649
- Eynat Haviv, Dima Azaiza-Dabbah, Raanan Carmieli, Liat Avram, Jan M. L. Martin, Ronny Neumann. A Thiourea Tether in the Second Coordination Sphere as a Binding Site for CO2 and a Proton Donor Promotes the Electrochemical Reduction of CO2 to CO Catalyzed by a Rhenium Bipyridine-Type Complex. Journal of the American Chemical Society 2018, 140 (39) , 12451-12456. https://doi.org/10.1021/jacs.8b05658
- Weiwei Yang, Sayontani Sinha Roy, Winston C. Pitts, Rebekah L. Nelson, Frank R. Fronczek, Jonah W. Jurss. Electrocatalytic CO2 Reduction with Cis and Trans Conformers of a Rigid Dinuclear Rhenium Complex: Comparing the Monometallic and Cooperative Bimetallic Pathways. Inorganic Chemistry 2018, 57 (15) , 9564-9575. https://doi.org/10.1021/acs.inorgchem.8b01775
- Yu Guo, Sheng Mei, Kun Yuan, De-Jiu Wang, Hai-Chao Liu, Chun-Hua Yan, Ya-Wen Zhang. Low-Temperature CO2 Methanation over CeO2-Supported Ru Single Atoms, Nanoclusters, and Nanoparticles Competitively Tuned by Strong Metal–Support Interactions and H-Spillover Effect. ACS Catalysis 2018, 8 (7) , 6203-6215. https://doi.org/10.1021/acscatal.7b04469
- Robert Francke, Benjamin Schille, Michael Roemelt. Homogeneously Catalyzed Electroreduction of Carbon Dioxide—Methods, Mechanisms, and Catalysts. Chemical Reviews 2018, 118 (9) , 4631-4701. https://doi.org/10.1021/acs.chemrev.7b00459
- Haojie Dai, Rui Cui, Chuanshuang Chen, Jiatian Song, Jinghan Li, Lize Dong, Chunyang Yu, Wenfeng Jiang, Yongfeng Zhou. Polymeric Unimolecular CO Dehydrogenase Mimic with both Inner and Outer Spheres for Enhanced Photocatalytic CO 2 Reduction in Aqueous Solution. Chemistry – A European Journal 2023, 84 https://doi.org/10.1002/chem.202300879
- Qinglong Wang, Jinfeng Liu, Qiuye Li, Jianjun Yang. Stability of Photocathodes: A Review on Principles, Design, and Strategies. ChemSusChem 2023, 16 (9) https://doi.org/10.1002/cssc.202202186
- Hemlata Agarwala, Xiaoyu Chen, Julien R. Lyonnet, Ben A. Johnson, Mårten Ahlquist, Sascha Ott. Alternating Metal‐Ligand Coordination Improves Electrocatalytic CO 2 Reduction by a Mononuclear Ru Catalyst**. Angewandte Chemie 2023, 135 (17) https://doi.org/10.1002/ange.202218728
- Hemlata Agarwala, Xiaoyu Chen, Julien R. Lyonnet, Ben A. Johnson, Mårten Ahlquist, Sascha Ott. Alternating Metal‐Ligand Coordination Improves Electrocatalytic CO 2 Reduction by a Mononuclear Ru Catalyst**. Angewandte Chemie International Edition 2023, 62 (17) https://doi.org/10.1002/anie.202218728
- Hong Liu, Haiyuan Zou, Dan Wang, Chuancheng Wang, Fan Li, Hao Dai, Tao Song, Mei Wang, Yongfei Ji, Lele Duan. Second Sphere Effects Promote Formic Acid Dehydrogenation by a Single‐Atom Gold Catalyst Supported on Amino‐Substituted Graphdiyne. Angewandte Chemie 2023, 135 (11) https://doi.org/10.1002/ange.202216739
- Hong Liu, Haiyuan Zou, Dan Wang, Chuancheng Wang, Fan Li, Hao Dai, Tao Song, Mei Wang, Yongfei Ji, Lele Duan. Second Sphere Effects Promote Formic Acid Dehydrogenation by a Single‐Atom Gold Catalyst Supported on Amino‐Substituted Graphdiyne. Angewandte Chemie International Edition 2023, 62 (11) https://doi.org/10.1002/anie.202216739
- Yinghui Wang, Yingge Zhang, Wenying Yu, Fang Chen, Tianyi Ma, Hongwei Huang. Single-atom catalysts for energy conversion. Journal of Materials Chemistry A 2023, 11 (6) , 2568-2594. https://doi.org/10.1039/D2TA09024D
- Jun Zhao, Jiajun Wang, Xuerong Zheng, Haozhi Wang, Jinfeng Zhang, Jia Ding, Xiaopeng Han, Yida Deng, Wenbin Hu. Activating RuOCo Interaction on the a ‐Co(OH) 2 @Ru Interface for Accelerating the Volmer Step of Alkaline Hydrogen Evolution. Small Methods 2023, 7 (2) , 2201362. https://doi.org/10.1002/smtd.202201362
- Shriya Saha, Thomas Doughty, Dibyendu Banerjee, Sunil K. Patel, Dibyendu Mallick, E. Siva Subramaniam Iyer, Souvik Roy, Raja Mitra. Electrocatalytic reduction of CO 2 to CO by a series of organometallic Re( i )-tpy complexes. Dalton Transactions 2023, 40 https://doi.org/10.1039/D3DT00441D
- Rajashree Bortamuly, Trishanku Kashyap, Pranjal Saikia. Electrocatalytic CO 2 Reduction to Methanol Using Nanocatalysts. 2022, 337-352. https://doi.org/10.1002/9781119772057.ch26
- Zhi‐Wen Yang, Jin‐Mei Chen, Li‐Qi Qiu, Wen‐Jun Xie, Liang‐Nian He. Molecular Engineering of Metal Complexes for Electrocatalytic Carbon Dioxide Reduction: From Adjustment of Intrinsic Activity to Molecular Immobilization. Angewandte Chemie International Edition 2022, 61 (44) https://doi.org/10.1002/anie.202205301
- Zhi‐Wen Yang, Jin‐Mei Chen, Li‐Qi Qiu, Wen‐Jun Xie, Liang‐Nian He. Molecular Engineering of Metal Complexes for Electrocatalytic Carbon Dioxide Reduction: From Adjustment of Intrinsic Activity to Molecular Immobilization. Angewandte Chemie 2022, 134 (44) https://doi.org/10.1002/ange.202205301
- Mina R. Narouz, Patricia De La Torre, Lun An, Christopher J. Chang. Multifunctional Charge and Hydrogen‐Bond Effects of Second‐Sphere Imidazolium Pendants Promote Capture and Electrochemical Reduction of CO 2 in Water Catalyzed by Iron Porphyrins**. Angewandte Chemie International Edition 2022, 61 (37) https://doi.org/10.1002/anie.202207666
- Mina R. Narouz, Patricia De La Torre, Lun An, Christopher J. Chang. Multifunctional Charge and Hydrogen‐Bond Effects of Second‐Sphere Imidazolium Pendants Promote Capture and Electrochemical Reduction of CO 2 in Water Catalyzed by Iron Porphyrins**. Angewandte Chemie 2022, 134 (37) https://doi.org/10.1002/ange.202207666
- Sayontani Sinha Roy, Kallol Talukdar, Sha Tamanna Sahil, Jonah W. Jurss. Electrochemical and light-driven CO2 reduction by amine-functionalized rhenium catalysts: A comparison between primary and tertiary amine substitutions. Polyhedron 2022, 224 , 115976. https://doi.org/10.1016/j.poly.2022.115976
- Ashley N. Hellman, Jeremy A. Intrator, Jeremiah C. Choate, David A. Velazquez, Smaranda C. Marinescu. Primary- and secondary-sphere effects of amine substituent position on rhenium bipyridine electrocatalysts for CO2 reduction. Polyhedron 2022, 223 , 115933. https://doi.org/10.1016/j.poly.2022.115933
- Hai-Hua Huang, Ji-Hong Zhang, Miao Dai, Lianglin Liu, Zongren Ye, Jiahao Liu, Di-Chang Zhong, Jia-Wei Wang, Cunyuan Zhao, Zhuofeng Ke. Dual electronic effects achieving a high-performance Ni(II) pincer catalyst for CO 2 photoreduction in a noble-metal-free system. Proceedings of the National Academy of Sciences 2022, 119 (35) https://doi.org/10.1073/pnas.2119267119
- Alexander B. Weberg, Ryan P. Murphy, Neil C. Tomson. Oriented internal electrostatic fields: an emerging design element in coordination chemistry and catalysis. Chemical Science 2022, 13 (19) , 5432-5446. https://doi.org/10.1039/D2SC01715F
- Weixuan Nie, Charles C. L. McCrory. Strategies for breaking molecular scaling relationships for the electrochemical CO 2 reduction reaction. Dalton Transactions 2022, 51 (18) , 6993-7010. https://doi.org/10.1039/D2DT00333C
- Margaret L. Kelty, Andrew J. McNeece, Josh W. Kurutz, Alexander S. Filatov, John S. Anderson. Electrostatic vs. inductive effects in phosphine ligand donor properties and reactivity. Chemical Science 2022, 13 (15) , 4377-4387. https://doi.org/10.1039/D1SC04277G
- Marcus W. Drover. A guide to secondary coordination sphere editing. Chemical Society Reviews 2022, 51 (6) , 1861-1880. https://doi.org/10.1039/D2CS00022A
- Xiaohui Li, Julien A. Panetier. Mechanistic Study of Tungsten Bipyridyl Tetracarbonyl Electrocatalysts for CO2 Fixation: Exploring the Roles of Explicit Proton Sources and Substituent Effects. Topics in Catalysis 2022, 65 (1-4) , 325-340. https://doi.org/10.1007/s11244-021-01529-7
- Josh D. B. Koenig, Warren E. Piers, Gregory C. Welch. Promoting photocatalytic CO 2 reduction through facile electronic modification of N-annulated perylene diimide rhenium bipyridine dyads. Chemical Science 2022, 13 (4) , 1049-1059. https://doi.org/10.1039/D1SC05465A
- Brenno A. D. Neto, Alexandre A. M. Lapis, Roberto Y. Souza. Task-Specific Ionic Liquids: Design, Properties, and Applications. 2022, 1273-1283. https://doi.org/10.1007/978-981-33-4221-7_33
- Sergio Fernández, Geyla C. Dubed Bandomo, Julio Lloret-Fillol. Recent advances in electrocatalytic CO2 reduction with molecular complexes. 2022, 301-353. https://doi.org/10.1016/bs.adioch.2022.01.001
- Xu‐Zhe Wang, Shu‐Lin Meng, Jia‐Yi Chen, Hai‐Xu Wang, Yang Wang, Shuai Zhou, Xu‐Bing Li, Rong‐Zhen Liao, Chen‐Ho Tung, Li‐Zhu Wu. Mechanistic Insights Into Iron(II) Bis(pyridyl)amine‐Bipyridine Skeleton for Selective CO 2 Photoreduction. Angewandte Chemie 2021, 133 (50) , 26276-26283. https://doi.org/10.1002/ange.202107386
- Xu‐Zhe Wang, Shu‐Lin Meng, Jia‐Yi Chen, Hai‐Xu Wang, Yang Wang, Shuai Zhou, Xu‐Bing Li, Rong‐Zhen Liao, Chen‐Ho Tung, Li‐Zhu Wu. Mechanistic Insights Into Iron(II) Bis(pyridyl)amine‐Bipyridine Skeleton for Selective CO 2 Photoreduction. Angewandte Chemie International Edition 2021, 60 (50) , 26072-26079. https://doi.org/10.1002/anie.202107386
- Nehal S. Idris, Jeffrey M. Barlow, Steven A. Chabolla, Joseph W. Ziller, Jenny Y. Yang. Synthesis and redox properties of heterobimetallic Re(bpyCrown-M)(CO)3Cl complexes, where M = Na+, K+, Ca2+, and Ba2+. Polyhedron 2021, 208 , 115385. https://doi.org/10.1016/j.poly.2021.115385
- Hannah S. Shafaat, Jenny Y. Yang. Uniting biological and chemical strategies for selective CO2 reduction. Nature Catalysis 2021, 4 (11) , 928-933. https://doi.org/10.1038/s41929-021-00683-1
- Chongrui Zhang, Yong Zhang, Qiang Zhao, Zhigang Xue. Facile fabrication of robust gel poly(ionic liquid) electrolytes via base treatment at room temperature. Polymer Chemistry 2021, 12 (39) , 5631-5639. https://doi.org/10.1039/D1PY00736J
- Ganceng Yang, Yanqing Jiao, Haijing Yan, Chungui Tian, Honggang Fu. Electronic Structure Modulation of Non‐Noble‐Metal‐Based Catalysts for Biomass Electrooxidation Reactions. Small Structures 2021, 2 (10) , 2100095. https://doi.org/10.1002/sstr.202100095
- Ning-Ning Shi, Xiao-Meng Yin, Wei-Song Gao, Jin-Miao Wang, Shi-Fu Zhang, Yu-Hua Fan, Mei Wang. Competition between electrocatalytic CO2 reduction and H+ reduction by Cu(II), Co(II) complexes containing redox-active ligand. Inorganica Chimica Acta 2021, 526 , 120548. https://doi.org/10.1016/j.ica.2021.120548
- Philipp Gotico, Winfried Leibl, Zakaria Halime, Ally Aukauloo. Shaping the Electrocatalytic Performance of Metal Complexes for CO 2 Reduction. ChemElectroChem 2021, 8 (18) , 3472-3481. https://doi.org/10.1002/celc.202100476
- Tahir Rasheed, Sameera Shafi, Muhammad Tuoqeer Anwar, Komal Rizwan, Tanveer Ahmad, Muhammad Bilal. Revisiting photo and electro-catalytic modalities for sustainable conversion of CO2. Applied Catalysis A: General 2021, 623 , 118248. https://doi.org/10.1016/j.apcata.2021.118248
- Xiaohui Li, Julien A. Panetier. Computational study on the reactivity of imidazolium-functionalized manganese bipyridyl tricarbonyl electrocatalysts [Mn[bpyMe(Im-R)](CO) 3 Br] + (R = Me, Me 2 and Me 4 ) for CO 2 -to-CO conversion over H 2 formation. Physical Chemistry Chemical Physics 2021, 23 (27) , 14940-14951. https://doi.org/10.1039/D1CP01576A
- Jonathan R. Dilworth. Rhenium chemistry – Then and Now. Coordination Chemistry Reviews 2021, 436 , 213822. https://doi.org/10.1016/j.ccr.2021.213822
- Niklas W. Kinzel, Christophe Werlé, Walter Leitner. Transition Metal Complexes as Catalysts for the Electroconversion of CO 2 : An Organometallic Perspective. Angewandte Chemie International Edition 2021, 60 (21) , 11628-11686. https://doi.org/10.1002/anie.202006988
- Niklas W. Kinzel, Christophe Werlé, Walter Leitner. Übergangsmetallkomplexe als Katalysatoren für die elektrische Umwandlung von CO 2 – eine metallorganische Perspektive. Angewandte Chemie 2021, 133 (21) , 11732-11792. https://doi.org/10.1002/ange.202006988
- Ashley N. Hellman, Ralf Haiges, Smaranda C. Marinescu. Influence of Intermolecular Hydrogen Bonding Interactions on the Electrocatalytic Reduction of CO 2 to CO by 6,6′‐Amine Substituted Rhenium Bipyridine Complexes. ChemElectroChem 2021, 8 (10) , 1864-1872. https://doi.org/10.1002/celc.202100306
- Yong Yang, Ziyun Zhang, Zhenyu Zhang, Chao Tang, Xiaoyong Chang, Lele Duan. Electrocatalytic CO 2 Reduction with Re‐Based Spiro Bipyridine Complexes: Effects of the Local Proton in the Second Coordination Sphere †. Chinese Journal of Chemistry 2021, 39 (5) , 1281-1287. https://doi.org/10.1002/cjoc.202000667
- Philipp Gerschel, Anna L. Cordes, Sarah Bimmermann, Daniel Siegmund, Nils Metzler‐Nolte, Ulf‐Peter Apfel. Investigation of Cyclam Based Re‐Complexes as Potential Electrocatalysts for the CO 2 Reduction Reaction. Zeitschrift für anorganische und allgemeine Chemie 2021, 647 (8) , 968-977. https://doi.org/10.1002/zaac.202000450
- Yong Yang, Mehmed Z. Ertem, Lele Duan. An amide-based second coordination sphere promotes the dimer pathway of Mn-catalyzed CO 2 -to-CO reduction at low overpotential. Chemical Science 2021, 12 (13) , 4779-4788. https://doi.org/10.1039/D0SC05679K
- Sk Amanullah, Paramita Saha, Abhijit Nayek, Md Estak Ahmed, Abhishek Dey. Biochemical and artificial pathways for the reduction of carbon dioxide, nitrite and the competing proton reduction: effect of 2 nd sphere interactions in catalysis. Chemical Society Reviews 2021, 50 (6) , 3755-3823. https://doi.org/10.1039/D0CS01405B
- Zhongjun Ma, Xilin Zhang, Xueyun Han, Dapeng Wu, Hongju Wang, Zhiyong Gao, Fang Xu, Kai Jiang. Synergistic adsorption and activation of nickel phthalocyanine anchored onto ketjenblack for CO2 electrochemical reduction. Applied Surface Science 2021, 538 , 148134. https://doi.org/10.1016/j.apsusc.2020.148134
- Caleb A. Calvary, Oleksandr Hietsoi, Dillon T. Hofsommer, Henry C. Brun, Alison M. Costello, Mark S. Mashuta, Joshua M. Spurgeon, Robert M. Buchanan, Craig A. Grapperhaus. Copper bis(thiosemicarbazone) Complexes with Pendent Polyamines: Effects of Proton Relays and Charged Moieties on Electrocatalytic HER. European Journal of Inorganic Chemistry 2021, 2021 (3) , 267-275. https://doi.org/10.1002/ejic.202000774
- Chokalingam Saravanan, Paulpandian Muthu Mareeswaran. Electrocatalytic CO2 reduction using calix[n]imidazole. Materials Today: Proceedings 2021, 34 , 408-411. https://doi.org/10.1016/j.matpr.2020.02.201
- Louise A. Berben, Natalia D. Loewen. Group 7 and 8 Catalysts for Electrocatalytic CO2 Conversion. 2021, 742-773. https://doi.org/10.1016/B978-0-08-102688-5.00034-9
- Amir Lashgari, Caroline K. Williams, Jenna L. Glover, Yueshen Wu, Jingchao Chai, Jianbing “Jimmy” Jiang. Enhanced Electrocatalytic Activity of a Zinc Porphyrin for CO 2 Reduction: Cooperative Effects of Triazole Units in the Second Coordination Sphere. Chemistry – A European Journal 2020, 26 (70) , 16774-16781. https://doi.org/10.1002/chem.202002813
- Jyotima Mukherjee, Inke Siewert. Manganese and Rhenium Tricarbonyl Complexes Equipped with Proton Relays in the Electrochemical CO 2 Reduction Reaction. European Journal of Inorganic Chemistry 2020, 2020 (46) , 4319-4333. https://doi.org/10.1002/ejic.202000738
- Haley A. Petersen, Tessa H. T. Myren, Oana R. Luca. Redox-Active Manganese Pincers for Electrocatalytic CO2 Reduction. Inorganics 2020, 8 (11) , 62. https://doi.org/10.3390/inorganics8110062
- Marc Schnierle, Svenja Blickle, Vasileios Filippou, Mark R. Ringenberg. Tetrazine metallation boosts rate and regioselectivity of inverse electron demand Diels–Alder (iEDDA) addition of dienophiles. Chemical Communications 2020, 56 (80) , 12033-12036. https://doi.org/10.1039/D0CC03805A
- Caroline K. Williams, Amir Lashgari, Jenny A. Tomb, Jingchao Chai, Jianbing Jimmy Jiang. Atropisomeric Effects of Second Coordination Spheres on Electrocatalytic CO 2 Reduction. ChemCatChem 2020, 12 (19) , 4886-4892. https://doi.org/10.1002/cctc.202000909
- Yiwei Zhou, Yunheng Xiao, Jian Zhao. A local proton source from carboxylic acid functionalized metal porphyrins for enhanced electrocatalytic CO 2 reduction. New Journal of Chemistry 2020, 44 (37) , 16062-16068. https://doi.org/10.1039/D0NJ02900A
- Júlia R. Diniz, José R. Correa, Daniel F. Scalabrini Machado, Samira L.M. Soares, Claudia C. Gatto, Heibbe C.B. de Oliveira, Paulo E.N. de Souza, Marcelo O. Rodrigues, Brenno A.D. Neto. Indium complex with task-specific ionic liquid ligands: Ligand to ligand charge transfer in the excited state investigation and reliable DFT predictions. Journal of Luminescence 2020, 225 , 117391. https://doi.org/10.1016/j.jlumin.2020.117391
- Wu Weihui, Sui Shaohui, Li Jian, Zong Liang, Li Dan, Xiao Yanhua, Wang Lianyuan, Zhu Haiyan, Shen Yonglin, Jiang Zhigang. A fluorescent probe bearing two reactive groups discriminates between fluoride-containing G series and sulfur-containing V series nerve agents. The Analyst 2020, 145 (16) , 5425-5429. https://doi.org/10.1039/D0AN00878H
- Caroline K. Williams, Amir Lashgari, Jingchao Chai, Jianbing “Jimmy” Jiang. Enhanced Molecular CO 2 Electroreduction Enabled by a Flexible Hydrophilic Channel for Relay Proton Shuttling. ChemSusChem 2020, 13 (13) , 3412-3417. https://doi.org/10.1002/cssc.202001037
- Min‐Jie Mao, Meng‐Di Zhang, Dong‐Li Meng, Jian‐Xin Chen, Chang He, Yuan‐Biao Huang, Rong Cao. Imidazolium‐Functionalized Cationic Covalent Triazine Frameworks Stabilized Copper Nanoparticles for Enhanced CO 2 Electroreduction. ChemCatChem 2020, 12 (13) , 3530-3536. https://doi.org/10.1002/cctc.202000387