ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Electrocatalytic CO2 Reduction by Imidazolium-Functionalized Molecular Catalysts

View Author Information
Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
School of Chemistry and Biochemistry, Thapar University, Patiala, Punjab 147004, India
§ Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
Cite this: J. Am. Chem. Soc. 2017, 139, 40, 13993–13996
Publication Date (Web):September 18, 2017
https://doi.org/10.1021/jacs.7b07709
Copyright © 2017 American Chemical Society

Article Views

8570

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
Read OnlinePDF (1 MB)
Supporting Info (3)»

Abstract

Abstract Image

We present the first examples of CO2 electro-reduction catalysts that feature charged imidazolium groups in the secondary coordination sphere. The functionalized Lehn-type catalysts display significant differences in their redox properties and improved catalytic activities as compared to the conventional reference catalyst. Our results suggest that the incorporated imidazolium moieties do not solely function as a charged tag but also alter mechanistic aspects of catalysis.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b07709.

  • Experimental and computational details, including Figures S1–S51 and Tables S1–S4 (PDF)

  • X-ray crystallographic data for 1PF6 (CIF)

  • X-ray crystallographic data for 2PF6 (CIF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 140 publications.

  1. Laura Rotundo, Shahbaz Ahmad, Chiara Cappuccino, Dmitry E. Polyansky, Mehmed Z. Ertem, Gerald F. Manbeck. A Dicationic fac-Re(bpy)(CO)3Cl for CO2 Electroreduction at a Reduced Overpotential. Inorganic Chemistry 2023, 62 (20) , 7877-7889. https://doi.org/10.1021/acs.inorgchem.3c00624
  2. Santanu Pattanayak, Natalia D. Loewen, Louise A. Berben. Using Substituted [Fe4N(CO)12]− as a Platform To Probe the Effect of Cation and Lewis Acid Location on Redox Potential. Inorganic Chemistry 2023, 62 (5) , 1919-1925. https://doi.org/10.1021/acs.inorgchem.2c01556
  3. Sobhan Neyrizi, Joep Kiewiet, Mark A. Hempenius, Guido Mul. What It Takes for Imidazolium Cations to Promote Electrochemical Reduction of CO2. ACS Energy Letters 2022, 7 (10) , 3439-3446. https://doi.org/10.1021/acsenergylett.2c01372
  4. Liliana Capulín Flores, Lucas A. Paul, Inke Siewert, Remco Havenith, Noé Zúñiga-Villarreal, Edwin Otten. Neutral Formazan Ligands Bound to the fac-(CO)3Re(I) Fragment: Structural, Spectroscopic, and Computational Studies. Inorganic Chemistry 2022, 61 (34) , 13532-13542. https://doi.org/10.1021/acs.inorgchem.2c02168
  5. Patricia De La Torre, Jeffrey S. Derrick, Andrew Snider, Peter T. Smith, Matthias Loipersberger, Martin Head-Gordon, Christopher J. Chang. Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction. ACS Catalysis 2022, 12 (14) , 8484-8493. https://doi.org/10.1021/acscatal.2c02072
  6. Etsuko Fujita, David C. Grills, Gerald F. Manbeck, Dmitry E. Polyansky. Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO2 Reduction Using Mn, Re, and Ru Catalysts. Accounts of Chemical Research 2022, 55 (5) , 616-628. https://doi.org/10.1021/acs.accounts.1c00616
  7. Padmanabh B. Joshi, Nawaraj Karki, Andrew J. Wilson. Electrocatalytic CO2 Reduction in Acetonitrile Enhanced by the Local Environment and Mass Transport of H2O. ACS Energy Letters 2022, 7 (2) , 602-609. https://doi.org/10.1021/acsenergylett.1c02667
  8. Paramita Saha, Sk Amanullah, Abhishek Dey. Selectivity in Electrochemical CO2 Reduction. Accounts of Chemical Research 2022, 55 (2) , 134-144. https://doi.org/10.1021/acs.accounts.1c00678
  9. Jeffrey J. Liu, Alon Chapovetsky, Ralf Haiges, Smaranda C. Marinescu. Effects of Protonation State on Electrocatalytic CO2 Reduction by a Cobalt Aminopyridine Macrocyclic Complex. Inorganic Chemistry 2021, 60 (23) , 17517-17528. https://doi.org/10.1021/acs.inorgchem.1c01977
  10. Xiaohui Li, Julien A. Panetier. Computational Study for CO2-to-CO Conversion over Proton Reduction Using [Re[bpyMe(Im-R)](CO)3Cl]+ (R = Me, Me2, and Me4) Electrocatalysts and Comparison with Manganese Analogues. ACS Catalysis 2021, 11 (21) , 12989-13000. https://doi.org/10.1021/acscatal.1c02899
  11. Josh D. B. Koenig, Zachary S. Dubrawski, Keerthan R. Rao, Janina Willkomm, Benjamin S. Gelfand, Chad Risko, Warren E. Piers, Gregory C. Welch. Lowering Electrocatalytic CO2 Reduction Overpotential Using N-Annulated Perylene Diimide Rhenium Bipyridine Dyads with Variable Tether Length. Journal of the American Chemical Society 2021, 143 (40) , 16849-16864. https://doi.org/10.1021/jacs.1c09481
  12. David M. Koshy, Sneha A. Akhade, Adam Shugar, Kabir Abiose, Jingwei Shi, Siwei Liang, James S. Oakdale, Stephen E. Weitzner, Joel B. Varley, Eric B. Duoss, Sarah E. Baker, Christopher Hahn, Zhenan Bao, Thomas F. Jaramillo. Chemical Modifications of Ag Catalyst Surfaces with Imidazolium Ionomers Modulate H2 Evolution Rates during Electrochemical CO2 Reduction. Journal of the American Chemical Society 2021, 143 (36) , 14712-14725. https://doi.org/10.1021/jacs.1c06212
  13. Simran S. Saund, Maxime A. Siegler, V. Sara Thoi. Electrochemical Degradation of a Dicationic Rhenium Complex via Hoffman-Type Elimination. Inorganic Chemistry 2021, 60 (17) , 13011-13020. https://doi.org/10.1021/acs.inorgchem.1c01427
  14. Sk Amanullah, Paramita Saha, Abhishek Dey. Activating the Fe(I) State of Iron Porphyrinoid with Second-Sphere Proton Transfer Residues for Selective Reduction of CO2 to HCOOH via Fe(III/II)–COOH Intermediate(s). Journal of the American Chemical Society 2021, 143 (34) , 13579-13592. https://doi.org/10.1021/jacs.1c04392
  15. Yichao Yan, Sophia G. Robinson, Thomas P. Vaid, Matthew S. Sigman, Melanie S. Sanford. Simultaneously Enhancing the Redox Potential and Stability of Multi-Redox Organic Catholytes by Incorporating Cyclopropenium Substituents. Journal of the American Chemical Society 2021, 143 (33) , 13450-13459. https://doi.org/10.1021/jacs.1c07237
  16. Jeffrey M. Barlow, Joseph W. Ziller, Jenny Y. Yang. Inhibiting the Hydrogen Evolution Reaction (HER) with Proximal Cations: A Strategy for Promoting Selective Electrocatalytic Reduction. ACS Catalysis 2021, 11 (13) , 8155-8164. https://doi.org/10.1021/acscatal.1c01527
  17. Nilakshi Devi, Caroline K. Williams, Ashwin Chaturvedi, Jianbing “Jimmy” Jiang. Homogeneous Electrocatalytic CO2 Reduction Using a Porphyrin Complex with Flexible Triazole Units in the Second Coordination Sphere. ACS Applied Energy Materials 2021, 4 (4) , 3604-3611. https://doi.org/10.1021/acsaem.1c00027
  18. Natalia D. Loewen, Santanu Pattanayak, Rolfe Herber, James C. Fettinger, Louise A. Berben. Quantification of the Electrostatic Effect on Redox Potential by Positive Charges in a Catalyst Microenvironment. The Journal of Physical Chemistry Letters 2021, 12 (12) , 3066-3073. https://doi.org/10.1021/acs.jpclett.1c00406
  19. Weixuan Nie, Drew E. Tarnopol, Charles C. L. McCrory. Enhancing a Molecular Electrocatalyst’s Activity for CO2 Reduction by Simultaneously Modulating Three Substituent Effects. Journal of the American Chemical Society 2021, 143 (10) , 3764-3778. https://doi.org/10.1021/jacs.0c09357
  20. Daniel J. Martin, Samantha I. Johnson, Brandon Q. Mercado, Simone Raugei, James M. Mayer. Intramolecular Electrostatic Effects on O2, CO2, and Acetate Binding to a Cationic Iron Porphyrin. Inorganic Chemistry 2020, 59 (23) , 17402-17414. https://doi.org/10.1021/acs.inorgchem.0c02703
  21. Jeffrey S. Derrick, Matthias Loipersberger, Ruchira Chatterjee, Diana A. Iovan, Peter T. Smith, Khetpakorn Chakarawet, Junko Yano, Jeffrey R. Long, Martin Head-Gordon, Christopher J. Chang. Metal–Ligand Cooperativity via Exchange Coupling Promotes Iron- Catalyzed Electrochemical CO2 Reduction at Low Overpotentials. Journal of the American Chemical Society 2020, 142 (48) , 20489-20501. https://doi.org/10.1021/jacs.0c10664
  22. Yuxuan Wang, Hongyang Su, Yanghua He, Ligui Li, Shangqian Zhu, Hao Shen, Pengfei Xie, Xianbiao Fu, Guangye Zhou, Chen Feng, Dengke Zhao, Fei Xiao, Xiaojing Zhu, Yachao Zeng, Minhua Shao, Shaowei Chen, Gang Wu, Jie Zeng, Chao Wang. Advanced Electrocatalysts with Single-Metal-Atom Active Sites. Chemical Reviews 2020, 120 (21) , 12217-12314. https://doi.org/10.1021/acs.chemrev.0c00594
  23. Elli Vichou, Yun Li, Maria Gomez-Mingot, Marc Fontecave, Carlos M. Sánchez-Sánchez. Imidazolium- and Pyrrolidinium-Based Ionic Liquids as Cocatalysts for CO2 Electroreduction in Model Molecular Electrocatalysis. The Journal of Physical Chemistry C 2020, 124 (43) , 23764-23772. https://doi.org/10.1021/acs.jpcc.0c07556
  24. Alon Chapovetsky, Jeffrey J. Liu, Matthew Welborn, John M. Luna, Thomas Do, Ralf Haiges, Thomas F. Miller III, Smaranda C. Marinescu. Electronically Modified Cobalt Aminopyridine Complexes Reveal an Orthogonal Axis for Catalytic Optimization for CO2 Reduction. Inorganic Chemistry 2020, 59 (18) , 13709-13718. https://doi.org/10.1021/acs.inorgchem.0c02086
  25. Laura Rotundo, Dmitry E. Polyansky, Roberto Gobetto, David C. Grills, Etsuko Fujita, Carlo Nervi, Gerald F. Manbeck. Molecular Catalysts with Intramolecular Re–O Bond for Electrochemical Reduction of Carbon Dioxide. Inorganic Chemistry 2020, 59 (17) , 12187-12199. https://doi.org/10.1021/acs.inorgchem.0c01181
  26. Beatriz Merillas, Elena Cuéllar, Alberto Diez-Varga, Tomás Torroba, Gabriel García-Herbosa, Sergio Fernández, Julio Lloret-Fillol, Jose M. Martín-Alvarez, Daniel Miguel, Fernando Villafañe. Luminescent Rhenium(I)tricarbonyl Complexes Containing Different Pyrazoles and Their Successive Deprotonation Products: CO2 Reduction Electrocatalysts. Inorganic Chemistry 2020, 59 (15) , 11152-11165. https://doi.org/10.1021/acs.inorgchem.0c01654
  27. Yong Yang, Zhenyu Zhang, Xiaoyong Chang, Ya-Qiong Zhang, Rong-Zhen Liao, Lele Duan. Highly Active Manganese-Based CO2 Reduction Catalysts with Bulky NHC Ligands: A Mechanistic Study. Inorganic Chemistry 2020, 59 (14) , 10234-10242. https://doi.org/10.1021/acs.inorgchem.0c01364
  28. Peter T. Smith, Sophia Weng, Christopher J. Chang. An NADH-Inspired Redox Mediator Strategy to Promote Second-Sphere Electron and Proton Transfer for Cooperative Electrochemical CO2 Reduction Catalyzed by Iron Porphyrin. Inorganic Chemistry 2020, 59 (13) , 9270-9278. https://doi.org/10.1021/acs.inorgchem.0c01162
  29. Kallol Talukdar, Sayontani Sinha Roy, Eva Amatya, Elizabeth A. Sleeper, Pierre Le Magueres, Jonah W. Jurss. Enhanced Electrochemical CO2 Reduction by a Series of Molecular Rhenium Catalysts Decorated with Second-Sphere Hydrogen-Bond Donors. Inorganic Chemistry 2020, 59 (9) , 6087-6099. https://doi.org/10.1021/acs.inorgchem.0c00154
  30. David Z. Zee, Michael Nippe, Amanda E. King, Christopher J. Chang, Jeffrey R. Long. Tuning Second Coordination Sphere Interactions in Polypyridyl–Iron Complexes to Achieve Selective Electrocatalytic Reduction of Carbon Dioxide to Carbon Monoxide. Inorganic Chemistry 2020, 59 (7) , 5206-5217. https://doi.org/10.1021/acs.inorgchem.0c00455
  31. Lisa Suntrup, Felix Stein, Johannes Klein, Alexander Wilting, Fraser G. L. Parlane, Christopher M. Brown, Jan Fiedler, Curtis P. Berlinguette, Inke Siewert, Biprajit Sarkar. Rhenium Complexes of Pyridyl-Mesoionic Carbenes: Photochemical Properties and Electrocatalytic CO2 Reduction. Inorganic Chemistry 2020, 59 (7) , 4215-4227. https://doi.org/10.1021/acs.inorgchem.9b02591
  32. Hemanthi D. Manamperi, Suzanne E. Witt, Claudia Turro. Selective Electrocatalytic Conversion of CO2 to HCOOH by a Cationic Rh2(II,II) Complex. ACS Applied Energy Materials 2019, 2 (10) , 7306-7314. https://doi.org/10.1021/acsaem.9b01283
  33. Yasuo Matsubara. Unified Benchmarking of Electrocatalysts in Noninnocent Second Coordination Spheres for CO2 Reduction. ACS Energy Letters 2019, 4 (8) , 1999-2004. https://doi.org/10.1021/acsenergylett.9b01180
  34. Kei Murata, Hayato Tanaka, Kazuyuki Ishii. Electrochemical Reduction of CO2 by a Gas-Diffusion Electrode Composed of fac-Re(diimine)(CO)3Cl and Carbon Nanotubes. The Journal of Physical Chemistry C 2019, 123 (19) , 12073-12080. https://doi.org/10.1021/acs.jpcc.8b12505
  35. Jeffrey M. Barlow, Jenny Y. Yang. Thermodynamic Considerations for Optimizing Selective CO2 Reduction by Molecular Catalysts. ACS Central Science 2019, 5 (4) , 580-588. https://doi.org/10.1021/acscentsci.9b00095
  36. Siyoung Sung, Xiaohui Li, Lucienna M. Wolf, Jeremy R. Meeder, Nattamai S. Bhuvanesh, Kyle A. Grice, Julien A. Panetier, Michael Nippe. Synergistic Effects of Imidazolium-Functionalization on fac-Mn(CO)3 Bipyridine Catalyst Platforms for Electrocatalytic Carbon Dioxide Reduction. Journal of the American Chemical Society 2019, 141 (16) , 6569-6582. https://doi.org/10.1021/jacs.8b13657
  37. Matthew R. Crawley, Karthika J. Kadassery, Amanda N. Oldacre, Alan E. Friedman, David C. Lacy, Timothy R. Cook. Rhenium(I) Phosphazane Complexes for Electrocatalytic CO2 Reduction. Organometallics 2019, 38 (7) , 1664-1676. https://doi.org/10.1021/acs.organomet.9b00138
  38. Eva M. Nichols, Christopher J. Chang. Urea-Based Multipoint Hydrogen-Bond Donor Additive Promotes Electrochemical CO2 Reduction Catalyzed by Nickel Cyclam. Organometallics 2019, 38 (6) , 1213-1218. https://doi.org/10.1021/acs.organomet.8b00308
  39. Emile E. DeLuca, Zhen Xu, Jasper Lam, Michael O. Wolf. Improved Electrocatalytic CO2 Reduction with Palladium bis(NHC) Pincer Complexes Bearing Cationic Side Chains. Organometallics 2019, 38 (6) , 1330-1343. https://doi.org/10.1021/acs.organomet.8b00649
  40. Eynat Haviv, Dima Azaiza-Dabbah, Raanan Carmieli, Liat Avram, Jan M. L. Martin, Ronny Neumann. A Thiourea Tether in the Second Coordination Sphere as a Binding Site for CO2 and a Proton Donor Promotes the Electrochemical Reduction of CO2 to CO Catalyzed by a Rhenium Bipyridine-Type Complex. Journal of the American Chemical Society 2018, 140 (39) , 12451-12456. https://doi.org/10.1021/jacs.8b05658
  41. Weiwei Yang, Sayontani Sinha Roy, Winston C. Pitts, Rebekah L. Nelson, Frank R. Fronczek, Jonah W. Jurss. Electrocatalytic CO2 Reduction with Cis and Trans Conformers of a Rigid Dinuclear Rhenium Complex: Comparing the Monometallic and Cooperative Bimetallic Pathways. Inorganic Chemistry 2018, 57 (15) , 9564-9575. https://doi.org/10.1021/acs.inorgchem.8b01775
  42. Yu Guo, Sheng Mei, Kun Yuan, De-Jiu Wang, Hai-Chao Liu, Chun-Hua Yan, Ya-Wen Zhang. Low-Temperature CO2 Methanation over CeO2-Supported Ru Single Atoms, Nanoclusters, and Nanoparticles Competitively Tuned by Strong Metal–Support Interactions and H-Spillover Effect. ACS Catalysis 2018, 8 (7) , 6203-6215. https://doi.org/10.1021/acscatal.7b04469
  43. Robert Francke, Benjamin Schille, Michael Roemelt. Homogeneously Catalyzed Electroreduction of Carbon Dioxide—Methods, Mechanisms, and Catalysts. Chemical Reviews 2018, 118 (9) , 4631-4701. https://doi.org/10.1021/acs.chemrev.7b00459
  44. Haojie Dai, Rui Cui, Chuanshuang Chen, Jiatian Song, Jinghan Li, Lize Dong, Chunyang Yu, Wenfeng Jiang, Yongfeng Zhou. Polymeric Unimolecular CO Dehydrogenase Mimic with both Inner and Outer Spheres for Enhanced Photocatalytic CO 2 Reduction in Aqueous Solution. Chemistry – A European Journal 2023, 84 https://doi.org/10.1002/chem.202300879
  45. Qinglong Wang, Jinfeng Liu, Qiuye Li, Jianjun Yang. Stability of Photocathodes: A Review on Principles, Design, and Strategies. ChemSusChem 2023, 16 (9) https://doi.org/10.1002/cssc.202202186
  46. Hemlata Agarwala, Xiaoyu Chen, Julien R. Lyonnet, Ben A. Johnson, Mårten Ahlquist, Sascha Ott. Alternating Metal‐Ligand Coordination Improves Electrocatalytic CO 2 Reduction by a Mononuclear Ru Catalyst**. Angewandte Chemie 2023, 135 (17) https://doi.org/10.1002/ange.202218728
  47. Hemlata Agarwala, Xiaoyu Chen, Julien R. Lyonnet, Ben A. Johnson, Mårten Ahlquist, Sascha Ott. Alternating Metal‐Ligand Coordination Improves Electrocatalytic CO 2 Reduction by a Mononuclear Ru Catalyst**. Angewandte Chemie International Edition 2023, 62 (17) https://doi.org/10.1002/anie.202218728
  48. Hong Liu, Haiyuan Zou, Dan Wang, Chuancheng Wang, Fan Li, Hao Dai, Tao Song, Mei Wang, Yongfei Ji, Lele Duan. Second Sphere Effects Promote Formic Acid Dehydrogenation by a Single‐Atom Gold Catalyst Supported on Amino‐Substituted Graphdiyne. Angewandte Chemie 2023, 135 (11) https://doi.org/10.1002/ange.202216739
  49. Hong Liu, Haiyuan Zou, Dan Wang, Chuancheng Wang, Fan Li, Hao Dai, Tao Song, Mei Wang, Yongfei Ji, Lele Duan. Second Sphere Effects Promote Formic Acid Dehydrogenation by a Single‐Atom Gold Catalyst Supported on Amino‐Substituted Graphdiyne. Angewandte Chemie International Edition 2023, 62 (11) https://doi.org/10.1002/anie.202216739
  50. Yinghui Wang, Yingge Zhang, Wenying Yu, Fang Chen, Tianyi Ma, Hongwei Huang. Single-atom catalysts for energy conversion. Journal of Materials Chemistry A 2023, 11 (6) , 2568-2594. https://doi.org/10.1039/D2TA09024D
  51. Jun Zhao, Jiajun Wang, Xuerong Zheng, Haozhi Wang, Jinfeng Zhang, Jia Ding, Xiaopeng Han, Yida Deng, Wenbin Hu. Activating RuOCo Interaction on the a ‐Co(OH) 2 @Ru Interface for Accelerating the Volmer Step of Alkaline Hydrogen Evolution. Small Methods 2023, 7 (2) , 2201362. https://doi.org/10.1002/smtd.202201362
  52. Shriya Saha, Thomas Doughty, Dibyendu Banerjee, Sunil K. Patel, Dibyendu Mallick, E. Siva Subramaniam Iyer, Souvik Roy, Raja Mitra. Electrocatalytic reduction of CO 2 to CO by a series of organometallic Re( i )-tpy complexes. Dalton Transactions 2023, 40 https://doi.org/10.1039/D3DT00441D
  53. Rajashree Bortamuly, Trishanku Kashyap, Pranjal Saikia. Electrocatalytic CO 2 Reduction to Methanol Using Nanocatalysts. 2022, 337-352. https://doi.org/10.1002/9781119772057.ch26
  54. Zhi‐Wen Yang, Jin‐Mei Chen, Li‐Qi Qiu, Wen‐Jun Xie, Liang‐Nian He. Molecular Engineering of Metal Complexes for Electrocatalytic Carbon Dioxide Reduction: From Adjustment of Intrinsic Activity to Molecular Immobilization. Angewandte Chemie International Edition 2022, 61 (44) https://doi.org/10.1002/anie.202205301
  55. Zhi‐Wen Yang, Jin‐Mei Chen, Li‐Qi Qiu, Wen‐Jun Xie, Liang‐Nian He. Molecular Engineering of Metal Complexes for Electrocatalytic Carbon Dioxide Reduction: From Adjustment of Intrinsic Activity to Molecular Immobilization. Angewandte Chemie 2022, 134 (44) https://doi.org/10.1002/ange.202205301
  56. Mina R. Narouz, Patricia De La Torre, Lun An, Christopher J. Chang. Multifunctional Charge and Hydrogen‐Bond Effects of Second‐Sphere Imidazolium Pendants Promote Capture and Electrochemical Reduction of CO 2 in Water Catalyzed by Iron Porphyrins**. Angewandte Chemie International Edition 2022, 61 (37) https://doi.org/10.1002/anie.202207666
  57. Mina R. Narouz, Patricia De La Torre, Lun An, Christopher J. Chang. Multifunctional Charge and Hydrogen‐Bond Effects of Second‐Sphere Imidazolium Pendants Promote Capture and Electrochemical Reduction of CO 2 in Water Catalyzed by Iron Porphyrins**. Angewandte Chemie 2022, 134 (37) https://doi.org/10.1002/ange.202207666
  58. Sayontani Sinha Roy, Kallol Talukdar, Sha Tamanna Sahil, Jonah W. Jurss. Electrochemical and light-driven CO2 reduction by amine-functionalized rhenium catalysts: A comparison between primary and tertiary amine substitutions. Polyhedron 2022, 224 , 115976. https://doi.org/10.1016/j.poly.2022.115976
  59. Ashley N. Hellman, Jeremy A. Intrator, Jeremiah C. Choate, David A. Velazquez, Smaranda C. Marinescu. Primary- and secondary-sphere effects of amine substituent position on rhenium bipyridine electrocatalysts for CO2 reduction. Polyhedron 2022, 223 , 115933. https://doi.org/10.1016/j.poly.2022.115933
  60. Hai-Hua Huang, Ji-Hong Zhang, Miao Dai, Lianglin Liu, Zongren Ye, Jiahao Liu, Di-Chang Zhong, Jia-Wei Wang, Cunyuan Zhao, Zhuofeng Ke. Dual electronic effects achieving a high-performance Ni(II) pincer catalyst for CO 2 photoreduction in a noble-metal-free system. Proceedings of the National Academy of Sciences 2022, 119 (35) https://doi.org/10.1073/pnas.2119267119
  61. Alexander B. Weberg, Ryan P. Murphy, Neil C. Tomson. Oriented internal electrostatic fields: an emerging design element in coordination chemistry and catalysis. Chemical Science 2022, 13 (19) , 5432-5446. https://doi.org/10.1039/D2SC01715F
  62. Weixuan Nie, Charles C. L. McCrory. Strategies for breaking molecular scaling relationships for the electrochemical CO 2 reduction reaction. Dalton Transactions 2022, 51 (18) , 6993-7010. https://doi.org/10.1039/D2DT00333C
  63. Margaret L. Kelty, Andrew J. McNeece, Josh W. Kurutz, Alexander S. Filatov, John S. Anderson. Electrostatic vs. inductive effects in phosphine ligand donor properties and reactivity. Chemical Science 2022, 13 (15) , 4377-4387. https://doi.org/10.1039/D1SC04277G
  64. Marcus W. Drover. A guide to secondary coordination sphere editing. Chemical Society Reviews 2022, 51 (6) , 1861-1880. https://doi.org/10.1039/D2CS00022A
  65. Xiaohui Li, Julien A. Panetier. Mechanistic Study of Tungsten Bipyridyl Tetracarbonyl Electrocatalysts for CO2 Fixation: Exploring the Roles of Explicit Proton Sources and Substituent Effects. Topics in Catalysis 2022, 65 (1-4) , 325-340. https://doi.org/10.1007/s11244-021-01529-7
  66. Josh D. B. Koenig, Warren E. Piers, Gregory C. Welch. Promoting photocatalytic CO 2 reduction through facile electronic modification of N-annulated perylene diimide rhenium bipyridine dyads. Chemical Science 2022, 13 (4) , 1049-1059. https://doi.org/10.1039/D1SC05465A
  67. Brenno A. D. Neto, Alexandre A. M. Lapis, Roberto Y. Souza. Task-Specific Ionic Liquids: Design, Properties, and Applications. 2022, 1273-1283. https://doi.org/10.1007/978-981-33-4221-7_33
  68. Sergio Fernández, Geyla C. Dubed Bandomo, Julio Lloret-Fillol. Recent advances in electrocatalytic CO2 reduction with molecular complexes. 2022, 301-353. https://doi.org/10.1016/bs.adioch.2022.01.001
  69. Xu‐Zhe Wang, Shu‐Lin Meng, Jia‐Yi Chen, Hai‐Xu Wang, Yang Wang, Shuai Zhou, Xu‐Bing Li, Rong‐Zhen Liao, Chen‐Ho Tung, Li‐Zhu Wu. Mechanistic Insights Into Iron(II) Bis(pyridyl)amine‐Bipyridine Skeleton for Selective CO 2 Photoreduction. Angewandte Chemie 2021, 133 (50) , 26276-26283. https://doi.org/10.1002/ange.202107386
  70. Xu‐Zhe Wang, Shu‐Lin Meng, Jia‐Yi Chen, Hai‐Xu Wang, Yang Wang, Shuai Zhou, Xu‐Bing Li, Rong‐Zhen Liao, Chen‐Ho Tung, Li‐Zhu Wu. Mechanistic Insights Into Iron(II) Bis(pyridyl)amine‐Bipyridine Skeleton for Selective CO 2 Photoreduction. Angewandte Chemie International Edition 2021, 60 (50) , 26072-26079. https://doi.org/10.1002/anie.202107386
  71. Nehal S. Idris, Jeffrey M. Barlow, Steven A. Chabolla, Joseph W. Ziller, Jenny Y. Yang. Synthesis and redox properties of heterobimetallic Re(bpyCrown-M)(CO)3Cl complexes, where M = Na+, K+, Ca2+, and Ba2+. Polyhedron 2021, 208 , 115385. https://doi.org/10.1016/j.poly.2021.115385
  72. Hannah S. Shafaat, Jenny Y. Yang. Uniting biological and chemical strategies for selective CO2 reduction. Nature Catalysis 2021, 4 (11) , 928-933. https://doi.org/10.1038/s41929-021-00683-1
  73. Chongrui Zhang, Yong Zhang, Qiang Zhao, Zhigang Xue. Facile fabrication of robust gel poly(ionic liquid) electrolytes via base treatment at room temperature. Polymer Chemistry 2021, 12 (39) , 5631-5639. https://doi.org/10.1039/D1PY00736J
  74. Ganceng Yang, Yanqing Jiao, Haijing Yan, Chungui Tian, Honggang Fu. Electronic Structure Modulation of Non‐Noble‐Metal‐Based Catalysts for Biomass Electrooxidation Reactions. Small Structures 2021, 2 (10) , 2100095. https://doi.org/10.1002/sstr.202100095
  75. Ning-Ning Shi, Xiao-Meng Yin, Wei-Song Gao, Jin-Miao Wang, Shi-Fu Zhang, Yu-Hua Fan, Mei Wang. Competition between electrocatalytic CO2 reduction and H+ reduction by Cu(II), Co(II) complexes containing redox-active ligand. Inorganica Chimica Acta 2021, 526 , 120548. https://doi.org/10.1016/j.ica.2021.120548
  76. Philipp Gotico, Winfried Leibl, Zakaria Halime, Ally Aukauloo. Shaping the Electrocatalytic Performance of Metal Complexes for CO 2 Reduction. ChemElectroChem 2021, 8 (18) , 3472-3481. https://doi.org/10.1002/celc.202100476
  77. Tahir Rasheed, Sameera Shafi, Muhammad Tuoqeer Anwar, Komal Rizwan, Tanveer Ahmad, Muhammad Bilal. Revisiting photo and electro-catalytic modalities for sustainable conversion of CO2. Applied Catalysis A: General 2021, 623 , 118248. https://doi.org/10.1016/j.apcata.2021.118248
  78. Xiaohui Li, Julien A. Panetier. Computational study on the reactivity of imidazolium-functionalized manganese bipyridyl tricarbonyl electrocatalysts [Mn[bpyMe(Im-R)](CO) 3 Br] + (R = Me, Me 2 and Me 4 ) for CO 2 -to-CO conversion over H 2 formation. Physical Chemistry Chemical Physics 2021, 23 (27) , 14940-14951. https://doi.org/10.1039/D1CP01576A
  79. Jonathan R. Dilworth. Rhenium chemistry – Then and Now. Coordination Chemistry Reviews 2021, 436 , 213822. https://doi.org/10.1016/j.ccr.2021.213822
  80. Niklas W. Kinzel, Christophe Werlé, Walter Leitner. Transition Metal Complexes as Catalysts for the Electroconversion of CO 2 : An Organometallic Perspective. Angewandte Chemie International Edition 2021, 60 (21) , 11628-11686. https://doi.org/10.1002/anie.202006988
  81. Niklas W. Kinzel, Christophe Werlé, Walter Leitner. Übergangsmetallkomplexe als Katalysatoren für die elektrische Umwandlung von CO 2 – eine metallorganische Perspektive. Angewandte Chemie 2021, 133 (21) , 11732-11792. https://doi.org/10.1002/ange.202006988
  82. Ashley N. Hellman, Ralf Haiges, Smaranda C. Marinescu. Influence of Intermolecular Hydrogen Bonding Interactions on the Electrocatalytic Reduction of CO 2 to CO by 6,6′‐Amine Substituted Rhenium Bipyridine Complexes. ChemElectroChem 2021, 8 (10) , 1864-1872. https://doi.org/10.1002/celc.202100306
  83. Yong Yang, Ziyun Zhang, Zhenyu Zhang, Chao Tang, Xiaoyong Chang, Lele Duan. Electrocatalytic CO 2 Reduction with Re‐Based Spiro Bipyridine Complexes: Effects of the Local Proton in the Second Coordination Sphere †. Chinese Journal of Chemistry 2021, 39 (5) , 1281-1287. https://doi.org/10.1002/cjoc.202000667
  84. Philipp Gerschel, Anna L. Cordes, Sarah Bimmermann, Daniel Siegmund, Nils Metzler‐Nolte, Ulf‐Peter Apfel. Investigation of Cyclam Based Re‐Complexes as Potential Electrocatalysts for the CO 2 Reduction Reaction. Zeitschrift für anorganische und allgemeine Chemie 2021, 647 (8) , 968-977. https://doi.org/10.1002/zaac.202000450
  85. Yong Yang, Mehmed Z. Ertem, Lele Duan. An amide-based second coordination sphere promotes the dimer pathway of Mn-catalyzed CO 2 -to-CO reduction at low overpotential. Chemical Science 2021, 12 (13) , 4779-4788. https://doi.org/10.1039/D0SC05679K
  86. Sk Amanullah, Paramita Saha, Abhijit Nayek, Md Estak Ahmed, Abhishek Dey. Biochemical and artificial pathways for the reduction of carbon dioxide, nitrite and the competing proton reduction: effect of 2 nd sphere interactions in catalysis. Chemical Society Reviews 2021, 50 (6) , 3755-3823. https://doi.org/10.1039/D0CS01405B
  87. Zhongjun Ma, Xilin Zhang, Xueyun Han, Dapeng Wu, Hongju Wang, Zhiyong Gao, Fang Xu, Kai Jiang. Synergistic adsorption and activation of nickel phthalocyanine anchored onto ketjenblack for CO2 electrochemical reduction. Applied Surface Science 2021, 538 , 148134. https://doi.org/10.1016/j.apsusc.2020.148134
  88. Caleb A. Calvary, Oleksandr Hietsoi, Dillon T. Hofsommer, Henry C. Brun, Alison M. Costello, Mark S. Mashuta, Joshua M. Spurgeon, Robert M. Buchanan, Craig A. Grapperhaus. Copper bis(thiosemicarbazone) Complexes with Pendent Polyamines: Effects of Proton Relays and Charged Moieties on Electrocatalytic HER. European Journal of Inorganic Chemistry 2021, 2021 (3) , 267-275. https://doi.org/10.1002/ejic.202000774
  89. Chokalingam Saravanan, Paulpandian Muthu Mareeswaran. Electrocatalytic CO2 reduction using calix[n]imidazole. Materials Today: Proceedings 2021, 34 , 408-411. https://doi.org/10.1016/j.matpr.2020.02.201
  90. Louise A. Berben, Natalia D. Loewen. Group 7 and 8 Catalysts for Electrocatalytic CO2 Conversion. 2021, 742-773. https://doi.org/10.1016/B978-0-08-102688-5.00034-9
  91. Amir Lashgari, Caroline K. Williams, Jenna L. Glover, Yueshen Wu, Jingchao Chai, Jianbing “Jimmy” Jiang. Enhanced Electrocatalytic Activity of a Zinc Porphyrin for CO 2 Reduction: Cooperative Effects of Triazole Units in the Second Coordination Sphere. Chemistry – A European Journal 2020, 26 (70) , 16774-16781. https://doi.org/10.1002/chem.202002813
  92. Jyotima Mukherjee, Inke Siewert. Manganese and Rhenium Tricarbonyl Complexes Equipped with Proton Relays in the Electrochemical CO 2 Reduction Reaction. European Journal of Inorganic Chemistry 2020, 2020 (46) , 4319-4333. https://doi.org/10.1002/ejic.202000738
  93. Haley A. Petersen, Tessa H. T. Myren, Oana R. Luca. Redox-Active Manganese Pincers for Electrocatalytic CO2 Reduction. Inorganics 2020, 8 (11) , 62. https://doi.org/10.3390/inorganics8110062
  94. Marc Schnierle, Svenja Blickle, Vasileios Filippou, Mark R. Ringenberg. Tetrazine metallation boosts rate and regioselectivity of inverse electron demand Diels–Alder (iEDDA) addition of dienophiles. Chemical Communications 2020, 56 (80) , 12033-12036. https://doi.org/10.1039/D0CC03805A
  95. Caroline K. Williams, Amir Lashgari, Jenny A. Tomb, Jingchao Chai, Jianbing Jimmy Jiang. Atropisomeric Effects of Second Coordination Spheres on Electrocatalytic CO 2 Reduction. ChemCatChem 2020, 12 (19) , 4886-4892. https://doi.org/10.1002/cctc.202000909
  96. Yiwei Zhou, Yunheng Xiao, Jian Zhao. A local proton source from carboxylic acid functionalized metal porphyrins for enhanced electrocatalytic CO 2 reduction. New Journal of Chemistry 2020, 44 (37) , 16062-16068. https://doi.org/10.1039/D0NJ02900A
  97. Júlia R. Diniz, José R. Correa, Daniel F. Scalabrini Machado, Samira L.M. Soares, Claudia C. Gatto, Heibbe C.B. de Oliveira, Paulo E.N. de Souza, Marcelo O. Rodrigues, Brenno A.D. Neto. Indium complex with task-specific ionic liquid ligands: Ligand to ligand charge transfer in the excited state investigation and reliable DFT predictions. Journal of Luminescence 2020, 225 , 117391. https://doi.org/10.1016/j.jlumin.2020.117391
  98. Wu Weihui, Sui Shaohui, Li Jian, Zong Liang, Li Dan, Xiao Yanhua, Wang Lianyuan, Zhu Haiyan, Shen Yonglin, Jiang Zhigang. A fluorescent probe bearing two reactive groups discriminates between fluoride-containing G series and sulfur-containing V series nerve agents. The Analyst 2020, 145 (16) , 5425-5429. https://doi.org/10.1039/D0AN00878H
  99. Caroline K. Williams, Amir Lashgari, Jingchao Chai, Jianbing “Jimmy” Jiang. Enhanced Molecular CO 2 Electroreduction Enabled by a Flexible Hydrophilic Channel for Relay Proton Shuttling. ChemSusChem 2020, 13 (13) , 3412-3417. https://doi.org/10.1002/cssc.202001037
  100. Min‐Jie Mao, Meng‐Di Zhang, Dong‐Li Meng, Jian‐Xin Chen, Chang He, Yuan‐Biao Huang, Rong Cao. Imidazolium‐Functionalized Cationic Covalent Triazine Frameworks Stabilized Copper Nanoparticles for Enhanced CO 2 Electroreduction. ChemCatChem 2020, 12 (13) , 3530-3536. https://doi.org/10.1002/cctc.202000387
Load all citations

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect