ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Figure 1Loading Img

Structural Monitoring of the Onset of Excited-State Aromaticity in a Liquid Crystal Phase

View Author Information
Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
§ JST-PRESTO, Kawaguchi 332-0012, Japan
School of Science, Tokyo Institute of Technology, Yokohama 226-8502, Japan
Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
# Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
Otto Diels-Institute for Organic Chemistry, Christian-Albrechts University Kiel, Kiel 24119, Germany
Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Hamburg Centre for Ultrafast Imaging, University of Hamburg, Hamburg 22761, Germany
Departments of Chemistry and Physics, University of Toronto, Toronto M5S 3H6, Canada
Cite this: J. Am. Chem. Soc. 2017, 139, 44, 15792–15800
Publication Date (Web):October 16, 2017
https://doi.org/10.1021/jacs.7b08021
Copyright © 2017 American Chemical Society
Article Views
3558
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (4 MB)
Supporting Info (1)»

Abstract

Abstract Image

Aromaticity of photoexcited molecules is an important concept in organic chemistry. Its theory, Baird’s rule for triplet aromaticity since 1972 gives the rationale of photoinduced conformational changes and photochemical reactivities of cyclic π-conjugated systems. However, it is still challenging to monitor the dynamic structural change induced by the excited-state aromaticity, particularly in condensed materials. Here we report direct structural observation of a molecular motion and a subsequent packing deformation accompanied by the excited-state aromaticity. Photoactive liquid crystal (LC) molecules featuring a π-expanded cyclooctatetraene core unit are orientationally ordered but loosely packed in a columnar LC phase, and therefore a photoinduced conformational planarization by the excited-state aromaticity has been successfully observed by time-resolved electron diffractometry and vibrational spectroscopy. The structural change took place in the vicinity of excited molecules, producing a twisted stacking structure. A nanoscale torque driven by the excited-state aromaticity can be used as the working mechanism of new photoresponsive materials.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b08021.

  • Synthesis of π-COT: Figure S1, S2; Static characterization: Figure S3, S4, Table S1; Optical measurements: Figure S5–S9; Mid-IR vibrational spectroscopy: Figure S10–S15, Table S2, S3; Time-resolved electron diffraction: Figure S16–S18, Table S4–S7; Calculations: Figure S19–S34, Table S8–S25 (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 48 publications.

  1. Toshiki Shimizu, Dominik Lungerich, Koji Harano, Eiichi Nakamura. Time-Resolved Imaging of Stochastic Cascade Reactions over a Submillisecond to Second Time Range at the Angstrom Level. Journal of the American Chemical Society 2022, 144 (22) , 9797-9805. https://doi.org/10.1021/jacs.2c02297
  2. Tsubasa Aoki, Michihisa Ueda, Takuzo Aida, Yoshimitsu Itoh. Supramolecular Polymerization of a Photo-Fluttering Chiral Monomer: A Temporarily Suspendable Chain Growth by Light. Journal of the American Chemical Society 2022, 144 (16) , 7080-7084. https://doi.org/10.1021/jacs.2c02176
  3. Yuushi Shimoda, Kiyoshi Miyata, Masataka Funaki, Takumi Ehara, Tatsuki Morimoto, Shunsuke Nozawa, Shin-ichi Adachi, Osamu Ishitani, Ken Onda. Determining Excited-State Structures and Photophysical Properties in Phenylphosphine Rhenium(I) Diimine Biscarbonyl Complexes Using Time-Resolved Infrared and X-ray Absorption Spectroscopies. Inorganic Chemistry 2021, 60 (11) , 7773-7784. https://doi.org/10.1021/acs.inorgchem.1c00146
  4. Masaki Hada, Yuta Nishina, Takashi Kato. Exploring Structures and Dynamics of Molecular Assemblies: Ultrafast Time-Resolved Electron Diffraction Measurements. Accounts of Chemical Research 2021, 54 (3) , 731-743. https://doi.org/10.1021/acs.accounts.0c00576
  5. Rabia Ayub, Ouissam El Bakouri, Joshua R. Smith, Kjell Jorner, Henrik Ottosson. Triplet State Baird Aromaticity in Macrocycles: Scope, Limitations, and Complications. The Journal of Physical Chemistry A 2021, 125 (2) , 570-584. https://doi.org/10.1021/acs.jpca.0c08926
  6. Ryota Kotani, Li Liu, Pardeep Kumar, Hikaru Kuramochi, Tahei Tahara, Pengpeng Liu, Atsuhiro Osuka, Peter B. Karadakov, Shohei Saito. Controlling the S1 Energy Profile by Tuning Excited-State Aromaticity. Journal of the American Chemical Society 2020, 142 (35) , 14985-14992. https://doi.org/10.1021/jacs.0c05611
  7. Baswanth Oruganti, Péter Pál Kalapos, Varada Bhargav, Gábor London, Bo Durbeej. Photoinduced Changes in Aromaticity Facilitate Electrocyclization of Dithienylbenzene Switches. Journal of the American Chemical Society 2020, 142 (32) , 13941-13953. https://doi.org/10.1021/jacs.0c06327
  8. Zheng Li, Sandeep Gyawali, Anatoly A. Ischenko, Stuart Hayes, R. J. Dwayne Miller. Mapping Atomic Motions with Electrons: Toward the Quantum Limit to Imaging Chemistry. ACS Photonics 2020, 7 (2) , 296-320. https://doi.org/10.1021/acsphotonics.9b01008
  9. Masaki Hada, Kiyoshi Miyata, Satoshi Ohmura, Yusuke Arashida, Kohei Ichiyanagi, Ikufumi Katayama, Takayuki Suzuki, Wang Chen, Shota Mizote, Takayoshi Sawa, Takayoshi Yokoya, Toshio Seki, Jiro Matsuo, Tomoharu Tokunaga, Chihiro Itoh, Kenji Tsuruta, Ryo Fukaya, Shunsuke Nozawa, Shin-ichi Adachi, Jun Takeda, Ken Onda, Shin-ya Koshihara, Yasuhiko Hayashi, Yuta Nishina. Selective Reduction Mechanism of Graphene Oxide Driven by the Photon Mode versus the Thermal Mode. ACS Nano 2019, 13 (9) , 10103-10112. https://doi.org/10.1021/acsnano.9b03060
  10. Kealan J. Fallon, Peter Budden, Enrico Salvadori, Alex M. Ganose, Christopher N. Savory, Lissa Eyre, Simon Dowland, Qianxiang Ai, Stephen Goodlett, Chad Risko, David O. Scanlon, Christopher W. M. Kay, Akshay Rao, Richard H. Friend, Andrew J. Musser, Hugo Bronstein. Exploiting Excited-State Aromaticity To Design Highly Stable Singlet Fission Materials. Journal of the American Chemical Society 2019, 141 (35) , 13867-13876. https://doi.org/10.1021/jacs.9b06346
  11. Takashi Takeda, Masataka Ozawa, Tomoyuki Akutagawa. Dynamic Motion of Twisted π System-Induced Temperature-Dependent Dielectric Response in the Neat Liquid State. The Journal of Physical Chemistry C 2019, 123 (33) , 20152-20159. https://doi.org/10.1021/acs.jpcc.9b06071
  12. Martin D. Peeks, Juliane Q. Gong, Kirstie McLoughlin, Takayuki Kobatake, Renée Haver, Laura M. Herz, Harry L. Anderson. Aromaticity and Antiaromaticity in the Excited States of Porphyrin Nanorings. The Journal of Physical Chemistry Letters 2019, 10 (8) , 2017-2022. https://doi.org/10.1021/acs.jpclett.9b00623
  13. Masaki Hada, Yuho Shigeeda, Shin-ya Koshihara, Takeshi Nishikawa, Yoshifumi Yamashita, Yasuhiko Hayashi. Bond Dissociation Triggering Molecular Disorder in Amorphous H2O. The Journal of Physical Chemistry A 2018, 122 (49) , 9579-9584. https://doi.org/10.1021/acs.jpca.8b08455
  14. Juwon Oh, Young Mo Sung, Yongseok Hong, Dongho Kim. Spectroscopic Diagnosis of Excited-State Aromaticity: Capturing Electronic Structures and Conformations upon Aromaticity Reversal. Accounts of Chemical Research 2018, 51 (6) , 1349-1358. https://doi.org/10.1021/acs.accounts.7b00629
  15. Takuya Yamakado, Kazuya Otsubo, Atsuhiro Osuka, Shohei Saito. Compression of a Flapping Mechanophore Accompanied by Thermal Void Collapse in a Crystalline Phase. Journal of the American Chemical Society 2018, 140 (20) , 6245-6248. https://doi.org/10.1021/jacs.8b03833
  16. Lucas J. Karas, Judy I. Wu. Baird’s rules at the tipping point. Nature Chemistry 2022, 14 (7) , 723-725. https://doi.org/10.1038/s41557-022-00988-z
  17. Junya Uchida, Bartolome Soberats, Monika Gupta, Takashi Kato. Advanced Functional Liquid Crystals. Advanced Materials 2022, 34 (23) , 2109063. https://doi.org/10.1002/adma.202109063
  18. Zhen Yu, Hari Krishna Bisoyi, Xu‐Man Chen, Zhen‐Zhou Nie, Meng Wang, Hong Yang, Quan Li. An Artificial Light‐Harvesting System with Controllable Efficiency Enabled by an Annulene‐Based Anisotropic Fluid. Angewandte Chemie 2022, 134 (16) https://doi.org/10.1002/ange.202200466
  19. Zhen Yu, Hari Krishna Bisoyi, Xu‐Man Chen, Zhen‐Zhou Nie, Meng Wang, Hong Yang, Quan Li. An Artificial Light‐Harvesting System with Controllable Efficiency Enabled by an Annulene‐Based Anisotropic Fluid. Angewandte Chemie International Edition 2022, 61 (16) https://doi.org/10.1002/anie.202200466
  20. Zheng Zhou, Yikun Zhu, Zheng Wei, John Bergner, Christian Neiß, Susanne Doloczki, Andreas Görling, Milan Kivala, Marina A. Petrukhina. Reversible structural rearrangement of π-expanded cyclooctatetraene upon two-fold reduction with alkali metals. Chemical Communications 2022, 58 (19) , 3206-3209. https://doi.org/10.1039/D2CC00218C
  21. Ryo Kimura, Hidetsugu Kitakado, Takuya Yamakado, Hiroyuki Yoshida, Shohei Saito. Probing a microviscosity change at the nematic–isotropic liquid crystal phase transition by a ratiometric flapping fluorophore. Chemical Communications 2022, 58 (13) , 2128-2131. https://doi.org/10.1039/D1CC06111A
  22. Enrique M. Arpa, Bo Durbeej. Transient changes in aromaticity and their effect on excited-state proton transfer reactions. Physical Chemistry Chemical Physics 2022, 94 https://doi.org/10.1039/D2CP00494A
  23. Kai Zhang, Guangqian Ji, Niu Zhang, Nan Wang, Xiaodong Yin, Quansong Li, Pangkuan Chen. Responsive organoboranes with dynamic conformation of octacyclophane-type scaffolds: synthesis, AIE and temperature-dependent dual emissions. Journal of Materials Chemistry C 2021, 9 (39) , 13851-13859. https://doi.org/10.1039/D1TC02713A
  24. Colin A. Gould, Jonathan Marbey, Veacheslav Vieru, David A. Marchiori, R. David Britt, Liviu F. Chibotaru, Stephen Hill, Jeffrey R. Long. Isolation of a triplet benzene dianion. Nature Chemistry 2021, 13 (10) , 1001-1005. https://doi.org/10.1038/s41557-021-00737-8
  25. Lucas José Karas, Judy I-Chia Wu. Antiaromatic compounds: a brief history, applications, and the many ways they escape antiaromaticity. 2021,,, 319-338. https://doi.org/10.1016/B978-0-12-822723-7.00010-8
  26. Seyed Mohammad Ghazi, Fahimeh Behzadi, Roohollah Aliabadi. Second-Virial Onsager Theory and Its Limitations in the Prediction of the Ordering Transitions of Confined Hard Rods between Two Parallel Hard Walls. Journal of the Physical Society of Japan 2020, 89 (11) , 114601. https://doi.org/10.7566/JPSJ.89.114601
  27. Guangchen Sun, Yu‐Chen Wei, Zhiyun Zhang, Jia‐An Lin, Zong‐Ying Liu, Wei Chen, Jianhua Su, Pi‐Tai Chou, He Tian. Diversified Excited‐State Relaxation Pathways of Donor–Linker–Acceptor Dyads Controlled by a Bent‐to‐Planar Motion of the Donor. Angewandte Chemie 2020, 132 (42) , 18770-18777. https://doi.org/10.1002/ange.202005466
  28. Guangchen Sun, Yu‐Chen Wei, Zhiyun Zhang, Jia‐An Lin, Zong‐Ying Liu, Wei Chen, Jianhua Su, Pi‐Tai Chou, He Tian. Diversified Excited‐State Relaxation Pathways of Donor–Linker–Acceptor Dyads Controlled by a Bent‐to‐Planar Motion of the Donor. Angewandte Chemie International Edition 2020, 59 (42) , 18611-18618. https://doi.org/10.1002/anie.202005466
  29. Lucas J. Karas, Chia-Hua Wu, Henrik Ottosson, Judy I. Wu. Electron-driven proton transfer relieves excited-state antiaromaticity in photoexcited DNA base pairs. Chemical Science 2020, 11 (37) , 10071-10077. https://doi.org/10.1039/D0SC02294B
  30. Ryo Kimura, Hikaru Kuramochi, Pengpeng Liu, Takuya Yamakado, Atsuhiro Osuka, Tahei Tahara, Shohei Saito. Flapping Peryleneimide as a Fluorogenic Dye with High Photostability and Strong Visible‐Light Absorption. Angewandte Chemie International Edition 2020, 59 (38) , 16430-16435. https://doi.org/10.1002/anie.202006198
  31. Ryo Kimura, Hikaru Kuramochi, Pengpeng Liu, Takuya Yamakado, Atsuhiro Osuka, Tahei Tahara, Shohei Saito. Flapping Peryleneimide as a Fluorogenic Dye with High Photostability and Strong Visible‐Light Absorption. Angewandte Chemie 2020, 132 (38) , 16572-16577. https://doi.org/10.1002/ange.202006198
  32. Aisha SM. Hossan. Synthesis, modelling and molecular docking of new 5-arylazo-2-chloroacetamido thiazole derivatives as antioxidant agent. Journal of Molecular Structure 2020, 1206 , 127712. https://doi.org/10.1016/j.molstruc.2020.127712
  33. Zheng Zhao, Xiaoyan Zheng, Lili Du, Yu Xiong, Wei He, Xiuxiu Gao, Chunli Li, Yingjie Liu, Bin Xu, Jing Zhang, Fengyan Song, Ying Yu, Xueqian Zhao, Yuanjing Cai, Xuewen He, Ryan T. K. Kwok, Jacky W. Y. Lam, Xuhui Huang, David Lee Phillips, Hua Wang, Ben Zhong Tang. Non-aromatic annulene-based aggregation-induced emission system via aromaticity reversal process. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-10818-5
  34. Masaki Hada, Daisuke Yamaguchi, Tadahiko Ishikawa, Takayoshi Sawa, Kenji Tsuruta, Ken Ishikawa, Shin-ya Koshihara, Yasuhiko Hayashi, Takashi Kato. Ultrafast isomerization-induced cooperative motions to higher molecular orientation in smectic liquid-crystalline azobenzene molecules. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-12116-6
  35. Youhei Takeda, Hiroaki Mizuno, Yusuke Okada, Masato Okazaki, Satoshi Minakata, Thomas Penfold, Gaku Fukuhara. Hydrostatic Pressure‐Controlled Ratiometric Luminescence Responses of a Dibenzo[ a,j ]phenazine‐Cored Mechanoluminophore. ChemPhotoChem 2019, 3 (12) , 1203-1211. https://doi.org/10.1002/cptc.201900190
  36. Ikuo Kawashima, Hiroaki Imoto, Masatoshi Ishida, Hiroyuki Furuta, Shunsuke Yamamoto, Masaya Mitsuishi, Susumu Tanaka, Toshiki Fujii, Kensuke Naka. Dibenzoarsepins: Planarization of 8π‐Electron System in the Lowest Singlet Excited State. Angewandte Chemie 2019, 131 (34) , 11812-11816. https://doi.org/10.1002/ange.201904882
  37. Ikuo Kawashima, Hiroaki Imoto, Masatoshi Ishida, Hiroyuki Furuta, Shunsuke Yamamoto, Masaya Mitsuishi, Susumu Tanaka, Toshiki Fujii, Kensuke Naka. Dibenzoarsepins: Planarization of 8π‐Electron System in the Lowest Singlet Excited State. Angewandte Chemie International Edition 2019, 58 (34) , 11686-11690. https://doi.org/10.1002/anie.201904882
  38. Josene Toldo, Ouissam El Bakouri, Miquel Solà, Per‐Ola Norrby, Henrik Ottosson. Is Excited‐State Aromaticity a Driving Force for Planarization of Dibenzannelated 8π‐Electron Heterocycles?. ChemPlusChem 2019, 84 (6) , 712-721. https://doi.org/10.1002/cplu.201900066
  39. Jun Wang, Baswanth Oruganti, Bo Durbeej. A Straightforward Route to Aromatic Excited States in Molecular Motors that Improves Photochemical Efficiency. ChemPhotoChem 2019, 3 (6) , 450-460. https://doi.org/10.1002/cptc.201800268
  40. Masaki HADA. Ultrafast Time-resolved Electron Diffraction Applying for Amorphous H2O Molecules. Nihon Kessho Gakkaishi 2019, 61 (1) , 23-28. https://doi.org/10.5940/jcrsj.61.23
  41. Elisah J. VandenBussche, David J. Flannigan. Sources of error in Debye–Waller-effect measurements relevant to studies of photoinduced structural dynamics. Ultramicroscopy 2019, 196 , 111-120. https://doi.org/10.1016/j.ultramic.2018.10.002
  42. Bo Durbeej, Jun Wang, Baswanth Oruganti. Molecular Photoswitching Aided by Excited-State Aromaticity. ChemPlusChem 2018, 83 (11) , 958-967. https://doi.org/10.1002/cplu.201800307
  43. Zhiyun Zhang, Chi-Lin Chen, Yi-An Chen, Yu-Chen Wei, Jianhua Su, He Tian, Pi-Tai Chou. Tuning the Conformation and Color of Conjugated Polyheterocyclic Skeletons by Installing ortho -Methyl Groups. Angewandte Chemie 2018, 130 (31) , 10028-10032. https://doi.org/10.1002/ange.201806385
  44. Zhiyun Zhang, Chi-Lin Chen, Yi-An Chen, Yu-Chen Wei, Jianhua Su, He Tian, Pi-Tai Chou. Tuning the Conformation and Color of Conjugated Polyheterocyclic Skeletons by Installing ortho -Methyl Groups. Angewandte Chemie International Edition 2018, 57 (31) , 9880-9884. https://doi.org/10.1002/anie.201806385
  45. Takuya Yamakado, Shota Takahashi, Kazuya Watanabe, Yoshiyasu Matsumoto, Atsuhiro Osuka, Shohei Saito. Conformational Planarization versus Singlet Fission: Distinct Excited‐State Dynamics of Cyclooctatetraene‐Fused Acene Dimers. Angewandte Chemie International Edition 2018, 57 (19) , 5438-5443. https://doi.org/10.1002/anie.201802185
  46. Takuya Yamakado, Shota Takahashi, Kazuya Watanabe, Yoshiyasu Matsumoto, Atsuhiro Osuka, Shohei Saito. Conformational Planarization versus Singlet Fission: Distinct Excited‐State Dynamics of Cyclooctatetraene‐Fused Acene Dimers. Angewandte Chemie 2018, 130 (19) , 5536-5541. https://doi.org/10.1002/ange.201802185
  47. Shohei Saito, , , , . Fluorescent molecular force probes for rheology and mechanobiology. 2018,,, 15. https://doi.org/10.1117/12.2322936
  48. Kjell Jorner, Burkhard O. Jahn, Patrick Bultinck, Henrik Ottosson. Triplet state homoaromaticity: concept, computational validation and experimental relevance. Chemical Science 2018, 9 (12) , 3165-3176. https://doi.org/10.1039/C7SC05009G

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE