ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.

Figure 1Loading Img

Mediating Reductive Charge Shift Reactions in Electron Transport Chains

View Author Information
Department of Chemistry and Pharmacy & Interdisciplinary Center of Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstr. 3, 91058 Erlangen, Germany
Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
§ Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
Imdea-Nanoscience, C/Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
Faculty of Chemistry & POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
# Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
Department of Chemistry and Pharmacy, Computer Chemistry Centre (CCC), Friedrich-Alexander-University Erlangen-Nuremberg, Nägelsbachstraße 25, 91052 Erlangen, Germany
Cite this: J. Am. Chem. Soc. 2017, 139, 48, 17474–17483
Publication Date (Web):October 13, 2017
Copyright © 2017 American Chemical Society
Article Views
Read OnlinePDF (2 MB)
Supporting Info (1)»


Abstract Image

We report the synthesis of a full-fledged family of covalent electron donor–acceptor1–acceptor2 conjugates and their charge-transfer characterization by means of advanced photophysical assays. By virtue of variable excited state energies and electron donor strengths, either Zn(II)Porphyrins or Zn(II)Phthalocyanines were linked to different electron-transport chains featuring pairs of electron accepting fullerenes, that is, C60 and C70. In this way, a fine-tuned redox gradient is established to power a unidirectional, long-range charge transport from the excited-state electron donor via a transient C60•– toward C70•–. This strategy helps minimize energy losses in the reductive, short-range charge shift from C60 to C70. At the forefront of our investigations are excited-state dynamics deduced from femtosecond transient absorption spectroscopic measurements and subsequent computational deconvolution of the transient absorption spectra. These provide evidence for cascades of short-range charge-transfer processes, including reductive charge shift reactions between the two electron-accepting fullerenes, and for kinetics that are influenced by the nature and length of the respective spacer. Of key importance is the postulate of a mediating state in the charge-shift reaction at weak electronic couplings. Our results point to an intimate relationship between triplet–triplet energy transfer and charge transfer.

Supporting Information

Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b08670.

  • Detailed synthesis and analyses of the products by NMR, MS, and HPLC, electrochemical results, and additional steady state and time-resolved absorption spectra (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system:

Cited By

This article is cited by 29 publications.

  1. Irina Werner, Jan Griebel, Albert Masip-Sánchez, Xavier López, Karol Załęski, Piotr Kozłowski, Axel Kahnt, Martin Boerner, Ziyan Warneke, Jonas Warneke, Kirill Yu. Monakhov. Hybrid Molecular Magnets with Lanthanide- and Countercation-Mediated Interfacial Electron Transfer between Phthalocyanine and Polyoxovanadate. Inorganic Chemistry 2022, Article ASAP.
  2. Christopher B. Larsen, George A. Farrow, Liam D. Smith, Martin V. Appleby, Dimitri Chekulaev, Julia A. Weinstein, Oliver S. Wenger. Solvent-Mediated Activation/Deactivation of Photoinduced Electron-Transfer in a Molecular Dyad. Inorganic Chemistry 2020, 59 (15) , 10430-10438.
  3. Weidong Yu, Bin Li, Yin Zhang, Qianwen Yan, Jun Yan. Discovery of a Fullerene–Polyoxometalate Hybrid Exhibiting Enhanced Photocurrent Response. Inorganic Chemistry 2020, 59 (8) , 5266-5270.
  4. Maximilian Wolf, Joana I. T. Costa, Martin B. Minameyer, Thomas Drewello, Augusto C. Tomé, Dirk M. Guldi. Efficient Low Driving Force Charge Separation in an Electron Deficient Zn-Porphyrin−Fullerene Donor–Acceptor Conjugate. The Journal of Physical Chemistry C 2019, 123 (46) , 28093-28099.
  5. Daniil A. Lukyanov, Alexander S. Konev, Konstantin Amsharov, Alexander F. Khlebnikov, Andreas Hirsch. Diastereospecific and Highly Site-Selective Functionalization of C70 Fullerene by a Reaction with Diethyl N-Arylaziridine-2,3-dicarboxylates. The Journal of Organic Chemistry 2018, 83 (22) , 14146-14151.
  6. Pauline Pieper, Virginie Russo, Benoît Heinrich, Bertrand Donnio, Robert Deschenaux. Liquid-Crystalline Tris[60]fullerodendrimers. The Journal of Organic Chemistry 2018, 83 (6) , 3208-3219.
  7. Merlys Borges-Martínez, Nicolás Montenegro-Pohlhammer, Xiance Zhang, Diego E. Galvez-Aranda, Victor Ponce, Jorge M. Seminario, Gloria Cárdenas-Jirón. Fullerene binding effects in Al(III)/Zn(II) Porphyrin/Phthalocyanine photophysical properties and charge transport. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2022, 269 , 120740.
  8. Masahiko Taniguchi, Jonathan S. Lindsey, David F. Bocian, Dewey Holten. Comprehensive review of photophysical parameters (ε, Φf, τs) of tetraphenylporphyrin (H2TPP) and zinc tetraphenylporphyrin (ZnTPP) – Critical benchmark molecules in photochemistry and photosynthesis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2021, 46 , 100401.
  9. Mingming Su, Yajing Hu, Ao Yu, Zhiyao Peng, Wangtao Long, Shixin Gao, Ping Peng, Bin Su, Fang-Fang Li. Molecular engineering for high-performance fullerene broadband photodetectors. Nanoscale Advances 2021, 3 (4) , 1096-1105.
  10. Giovanni Bottari, Gema de la Torre, Dirk M. Guldi, Tomás Torres. An exciting twenty-year journey exploring porphyrinoid-based photo- and electro-active systems. Coordination Chemistry Reviews 2021, 428 , 213605.
  11. Fabian Plass, Daniil A. Lukyanov, Alexander S. Konev, Axel Kahnt, Konstantin Y. Amsharov, Alexander F. Khlebnikov, Dirk M. Guldi. Controlling the Charge Transfer Mechanism and Efficiency by Means of Different C 70 Regioisomeric Adducts. Small Structures 2020, 1 (3) , 2000012.
  12. Beatrice Berionni Berna, Benedikt Platzer, Maximiliam Wolf, Giulia Lavarda, Sara Nardis, Pierluca Galloni, Tomás Torres, Dirk M. Guldi, Roberto Paolesse. Panchromatic Light Harvesting and Stabilizing Charge‐Separated States in Corrole–Phthalocyanine Conjugates through Coordinating a Subphthalocyanine. Chemistry – A European Journal 2020, 26 (59) , 13451-13461.
  13. Eduardo Anaya‐Plaza, Jan Joseph, Stefan Bauroth, Maximilian Wagner, Christian Dolle, Michael Sekita, Franziska Gröhn, Erdmann Spiecker, Timothy Clark, Andrés Escosura, Dirk M. Guldi, Tomás Torres. Synergie von elektrostatischen und π‐π‐Wechselwirkungen für die Verwirklichung von künstlichen photosynthetischen Modellsystemen auf Nano‐Ebene. Angewandte Chemie 2020, 132 (42) , 18946-18955.
  14. Eduardo Anaya‐Plaza, Jan Joseph, Stefan Bauroth, Maximilian Wagner, Christian Dolle, Michael Sekita, Franziska Gröhn, Erdmann Spiecker, Timothy Clark, Andrés Escosura, Dirk M. Guldi, Tomás Torres. Synergy of Electrostatic and π–π Interactions in the Realization of Nanoscale Artificial Photosynthetic Model Systems. Angewandte Chemie International Edition 2020, 59 (42) , 18786-18794.
  15. Maximilian Wolf, Dominik Lungerich, Stefan Bauroth, Maximilian Popp, Benedikt Platzer, Timothy Clark, Harry L. Anderson, Norbert Jux, Dirk M. Guldi. Panchromatic light funneling through the synergy in hexabenzocoronene–(metallo)porphyrin–fullerene assemblies to realize the separation of charges. Chemical Science 2020, 11 (27) , 7123-7132.
  16. Alessandro Castrogiovanni, Patrick Herr, Christopher B. Larsen, Xingwei Guo, Christof Sparr, Oliver S. Wenger. Shortcuts for Electron‐Transfer through the Secondary Structure of Helical Oligo‐1,2‐Naphthylenes. Chemistry – A European Journal 2019, 25 (72) , 16748-16754.
  17. Valeria Navarro-Pérez, Ana M. Gutiérrez-Vílchez, Javier Ortiz, Ángela Sastre-Santos, Fernando Fernández-Lázaro, Sairaman Seetharaman, M. J. Duffy, Paul A. Karr, Francis D’Souza. A zinc phthalocyanine–benzoperylenetriimide conjugate for solvent dependent ultrafast energy vs. electron transfer. Chemical Communications 2019, 55 (99) , 14946-14949.
  18. Mojtaba Shamsipur, Afshin Pashabadi. What has biomimicry so far brought on mysterious natural oxygen evolution?. Coordination Chemistry Reviews 2019, 401 , 213068.
  19. Jorge Pascual, Silvia Collavini, Sebastian F. Völker, Nga Phung, Elisa Palacios-Lidon, Lourdes Irusta, Hans-Jürgen Grande, Antonio Abate, Ramón Tena-Zaera, Juan Luis Delgado. Unravelling fullerene–perovskite interactions introduces advanced blend films for performance-improved solar cells. Sustainable Energy & Fuels 2019, 3 (10) , 2779-2787.
  20. Betül Küçüköz, B. Adinarayana, Atsuhiro Osuka, Bo Albinsson. Electron transfer reactions in sub-porphyrin–naphthyldiimide dyads. Physical Chemistry Chemical Physics 2019, 21 (30) , 16477-16485.
  21. Jiawang Zhou, Yilei Wu, Indranil Roy, Avik Samanta, J. Fraser Stoddart, Ryan M. Young, Michael R. Wasielewski. Choosing sides: unusual ultrafast charge transfer pathways in an asymmetric electron-accepting cyclophane that binds an electron donor. Chemical Science 2019, 10 (15) , 4282-4292.
  22. Maximilian Wolf, Ayumu Ogawa, Mareike Bechtold, Maxime Vonesch, Jennifer A. Wytko, Koji Oohora, Stéphane Campidelli, Takashi Hayashi, Dirk M. Guldi, Jean Weiss. Light triggers molecular shuttling in rotaxanes: control over proximity and charge recombination. Chemical Science 2019, 10 (13) , 3846-3853.
  23. Yuying Jiang, Tianyu Wang, Ming Bai, Jianzhuang Jiang. Alkali metal ions regulate the supramolecular chirality of interfacial assembly of achiral phthalocyanine. Dyes and Pigments 2018, 157 , 133-139.
  24. Julia Nomrowski, Xingwei Guo, Oliver S. Wenger. Charge Accumulation and Multi‐Electron Photoredox Chemistry with a Sensitizer–Catalyst–Sensitizer Triad. Chemistry – A European Journal 2018, 24 (53) , 14084-14087.
  25. Olga Kataeva, Kirill Metlushka, Kamil Ivshin, Airat Kiiamov, Vladimir Alfonsov, Mikhail Khrizanforov, Yulia Budnikova, Oleg Sinyashin, Yulia Krupskaya, Vladislav Kataev, Bernd Büchner, Martin Knupfer. Electron Transfer and Unusual Chemical Transformations of F4-TCNQ in a Reaction with Mn-Phthalocyanine. European Journal of Inorganic Chemistry 2018, 2018 (28) , 3344-3353.
  26. Peter W. Münich, Pawel Wagner, David L. Officer, Dirk M. Guldi. Use of alkylated, amphiphilic zinc porphyrins to disperse individualized SWCNTs. Journal of Porphyrins and Phthalocyanines 2018, 22 (07) , 573-580.
  27. Christopher B. Larsen, Oliver S. Wenger. Kreisförmiger lichtinduzierter Elektronentransfer in einer Donor‐ Akzeptor‐Akzeptor‐Triade. Angewandte Chemie 2018, 130 (3) , 850-855.
  28. Christopher B. Larsen, Oliver S. Wenger. Circular Photoinduced Electron Transfer in a Donor‐Acceptor‐Acceptor Triad. Angewandte Chemie International Edition 2018, 57 (3) , 841-845.
  29. Vasilis Nikolaou, Fabian Plass, Aurélien Planchat, Asterios Charisiadis, Georgios Charalambidis, Panagiotis A. Angaridis, Axel Kahnt, Fabrice Odobel, Athanassios G. Coutsolelos. Effect of the triazole ring in zinc porphyrin-fullerene dyads on the charge transfer processes in NiO-based devices. Physical Chemistry Chemical Physics 2018, 20 (37) , 24477-24489.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.