Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

[Am]Mn(H2POO)3: A New Family of Hybrid Perovskites Based on the Hypophosphite Ligand

View Author Information
Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
Cite this: J. Am. Chem. Soc. 2017, 139, 47, 16999–17002
Publication Date (Web):October 25, 2017
https://doi.org/10.1021/jacs.7b09417

Copyright © 2017 American Chemical Society. This publication is licensed under CC-BY.

  • Open Access

Article Views

5116

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (2 MB)
Supporting Info (9)»

Abstract

A family of five hybrid ABX3 perovskites has been synthesized using hypophosphite (H2POO) as the X-site ion. These compounds adopt the general formula [Am]Mn(H2POO)3, where Am = guanidinium (GUA), formamidinium (FA), imidazolium, triazolium, and dabconium. We explore the diverse structural and phase transition behavior of these materials through single-crystal diffraction measurements and demonstrate contrasting magnetism in two of the phases, Am = GUA and FA, that arises from structural distortions. The results show that hypophosphite perovskites offer a promising platform for generating new functional materials.

Since the discovery of the first perovskite, CaTiO3, the ABX3 perovskite topology has recurred frequently in materials chemistry and condensed matter physics as a system that is very tolerant to substitution. In recent years, the replacement of the monatomic A or X site ions with molecular ions has given rise to a large family of hybrid (organic–inorganic) perovskites, many of which display exceptional functional properties beyond those of classical perovskites. (1) A key example is the alkylammonium lead halide family, which has revolutionized the field of photovoltaics. (2) In this family, the anisotropic dynamics of alkylammonium ion play an important role in controlling optoelectronic properties. (3) More generally, the anisotropy and greater chemical diversity of possible A- and X-site molecular ions in hybrid perovskites gives the potential for more types of ordering and symmetry-breaking, allowing for more subtle tuning of structure and hence function, compared to inorganic systems.

When both A and X site ions are molecular, a large structural diversity becomes accessible, giving rise to further functionality. The alkylammonium metal(II) formate family (4, 5) is the most extensive and contains ferroelectric (6-8) and multiferroic members. (9-11) Known hybrid perovskite families with molecular X-sites include azides, (12) dicyanamides, (13) dicyanometallates, (14) cyanides, (15) thiocyanates, (16) and borohydrides. (17) Herein we report the synthesis and characterization of a new family of hybrid perovskites where X = (H2POO) (hypophosphite). This new linker has the advantages of being cheap, nontoxic, and earth-abundant. We have previously noted the structural and functional similarities of hypophosphite to formate (Figure 1) that make it a promising platform for new perovskites. (18) We also note the existence of V(H2PO2)3, which has the parent reo topology. (19)

Figure 1

Figure 1. Comparison of formate and hypophosphite.

Using the Goldschmidt tolerance factor modified for hybrid perovskites, (20, 21) we predicted compositions likely to adopt the perovskite structure when X = hypophosphite. We then succeeded in synthesizing perovskites with five different A-site amine cations: guanidinium (GUA), formamidinium (FA), imidazolium (IM), triazolium (TRZ), and 1,4-diazabicyclo[2.2.2]octane-1,4-diium or “DABCOnium” (DAB) (see Supporting Information for details). All of the new phases have tolerance factors in the range 0.86–0.91 (Table 1). In a typical synthesis, manganese carbonate (1 equiv) was dissolved in excess aqueous hypophosphorous acid solution (50% w/w; 6 equiv). The alkylamine or alkylammonium salt (1 equiv) was then added and stirred until dissolved. Using these solutions, crystals were obtained using slow evaporation at 50 °C or through vial-in-vial diffusion (see SI for full synthetic details).

Table 1. Tolerance Factors (α) and Distortion Factors (δ) for Hypophosphite and Formate (bolded) Perovskites
compoundαspace groupδ
[GUA]Mn(H2POO)30.91P0.6%
[GUA]Mn(H2POO)30.91I2/m0.5%
[GUA]Mn(HCOO)30.96Pnna0.3%
[FA]Mn(H2POO)3 (RT)0.86C2/c10.6%
[FA]Mn(H2POO)3 (115 K)0.86P21/c11.1%
[FA]Mn(HCOO)30.90C2/c0.9%
[IM]Mn(H2POO)30.87P21/c1.9%
[IM]Mn(HCOO)30.91P21/n0.2%
[TRZ]Mn(H2POO)30.87P21/c5.4%
[DAB]Mn2(H2POO)6 (RT)0.90R1.7%
[DAB]Mn2(H2POO)6 (120 K)0.90P1.6%

Figure 2 shows the structures of the five [Am]Mn(H2POO)3 perovskites. GUA, FA, IM, and TRZ form conventional ABX3 perovskites, whereas DAB forms an ordered A-site double perovskite of the form AØM2X6 (Ø = vacancy), with DAB2+ cations occupying 50% of the perovskite cages. Mn formate perovskites containing GUA, (5) IM, (22) and FA (23) are known, so hypophosphite might be expected to form structurally similar phases. However, hypophosphite appears to be significantly more flexible and our results show that the hypophosphite perovskites display significantly greater cage distortions, giving rise to additional symmetry-breaking elements in the form of classically forbidden Glazer tilts (24) or and columnar shifts (25) (i.e., shearing of whole columns or sheets of octahedra).

Figure 2

Figure 2. Structural diagrams of [Am]Mn(H2POO)3 phases, including phase transitions. The Mn-(H2POO) frameworks are shown in blue with Mn–O6 octahedra drawn. A-site cations are shown in orange with space-filling representation. All structures are viewed down one axis of the perovskite cage, except [DAB]Mn(H2POO)3 which is viewed down a face diagonal to clarify the A-site ordering.

To highlight the difference between the formate and hypophosphite perovskites, we introduce a “distortion factor”, δ, (eq 1), which compares the actual volume of a single perovskite cage (Vreal) to that of an idealized cubic cage with the average crystallographic M–M′ distance (Videal) in that phase, to show how far that structure departs from the cubic aristotype. Table 1 clearly shows that while δformate reaches a maximum of 1%, δhypophosphite is considerably higher in several cases.(1)

[GUA]Mn(H2POO)3 forms two polymorphs at room temperature: triclinic P1̅ (VRT = 1111.4 Å3) and monoclinic I2/m (VRT = 1121.1 Å3). Both structures are fully ordered, with all six GUA N–H hydrogens H-bonding to the inorganic framework. In the triclinic form, the GUA cations order parallel to two perpendicular planes, whereas in the monoclinic modification the cations all lie parallel to one plane (Figure 2). Single-crystal X-ray diffraction shows an irreversible single-crystal-to-single-crystal transformation of the triclinic to the monoclinic form on heating to 400 K, indicating that the latter is the high temperature modification. It is possible that the triclinic phase is the kinetic phase and converts to the monoclinic phase upon thermal disruption of the GUA H-bonding, or that the less dense monoclinic phase is stabilized by vibrational entropy at high temperatures, as has been observed in other perovskite-related ABX3 polymorphs. (26)

[FA]Mn(H2POO)3 crystallizes in C2/c at room temperature with FA disordered over two positions. It undergoes a reversible order–disorder phase transition at ca. 175 K, with FA ordering in the space group P21/c. This behavior suggests ferroelectric phases could potentially be generated through further chemical tuning. The N–H hydrogens of both forms are fully hydrogen bonded to the framework. This phase has very pronounced layer shearing in one direction, resulting in a distortion parameter, δ, over ten times higher than the corresponding formate phase. This arises from the framework shearing in order to accommodate the highly anisotropic, rod-like FA molecules, highlighting the ability of the Mn–(H2POO) framework to more readily adapt to differences in the shape of the A-site cation compared to the formates.

[IM]Mn(H2POO)3 and [TRZ]Mn(H2POO)3 both crystallize in P21/c and have fully ordered cations with no phase transitions in the 120–450 K temperature range. As both phases hydrogen bond through the N–H hydrogens at the 1 and 4 positions of the heterocycle, similar structures would be expected. However, [TRZ]Mn(H2POO)3 is significantly more distorted (δTRZ = 5.4%, δIM = 1.9%), perhaps due to the higher polarity of TRZ.

[DAB]Mn2(H2POO)6 forms an ordered DAB2+/vacancy A-site double perovskite with rhombohedral symmetry. To our knowledge, the only other A-site vacancy double perovskites are the Ln A-site oxides. (27) This perovskite does not follow any known AA′ ordering patterns, such as rock-salt, columnar, or layered normal to the perovskite [100] axes. (28) Instead, it adopts an unprecedented pattern of alternating double layers of DAB and vacancies normal to the perovskite cage body diagonal. This ordering reflects the 3-fold symmetry of both DAB and perovskite around the body diagonal, with the hypophosphite ligands pointing into the vacant cages to accommodate the bulky DAB in the others. Each N–H hydrogen is within hydrogen bonding distance to three equidistant oxygens of an Mn–O6 octahedral face. The formation of [DAB]Mn2(H2POO)6 appears to be entropically stabilized as it forms on overnight heating of the reaction mixture in air at ca. 50 °C. However, it is metastable at room temperature, degrading to binary Mn hypophosphites over several days. The process is reversible. At low temperatures, [DAB]Mn2(H2POO)6 undergoes a reversible symmetry lowering transition to a triclinic P1̅ phase (measured at 120 K), though the refinement of the triclinic phase is rather modest.

All of the bulk samples contain impurities, but reasonably pure samples of two phases, [GUA]Mn(H2POO)3 and [FA]Mn(H2POO)3, could be obtained through manual separation of single crystals. PXRD data of these two samples showed good purity for the GUA phase and low levels of impurities for the FA phase (see SI for refinements against the PXRD data). Magnetic susceptibility data were collected for these two phases. The results (Figure 3) show that the GUA phase orders antiferromagnetically at low temperatures, with a Néel temperature of 6.5 K; this is very similar to that of [GUA]Mn(HCOO)3, which is 8.8 K. (5) In the paramagnetic region, it follows the Curie–Weiss law, with a negative Weiss constant of −9.9 K and an effective magnetic moment of 6.1 μB (see SI for further details). The expected value of the spin for a high spin d5 ion is 5.92 μB. In the case of the FA phase, there is no magnetic ordering but the system follows the Curie–Weiss law with a Weiss constant of −5.8 K and an effective magnetic moment of 5.0 μB (see SI). We attribute this unusually low moment to the presence of diamagnetic impurities. This behavior is in contrast to [FA]Mn(HCOO)3, which is a weak ferromagnet with Tc = 8.0 K. (23) In order to probe the origin of the different behaviors, we performed density functional calculations, as described below.

Figure 3

Figure 3. Zero field cooled magnetic susceptibilities of [FA]Mn(H2POO)3 (blue) and [GUA]Mn(H2POO)3 (orange). Zoom inset.

Spin-polarized DFT simulations (29) predict that the uniform metal–ligand environments in [GUA]Mn(H2POO)3 should mediate antiferromagnetic (AFM) exchange, as observed in our own work and in other Mn hypophosphites. (18) However, whereas the most uniform of the three metal–ligand–metal environments in [FA]Mn(H2POO)3 shows both similar geometry and magnetic behavior to [GUA]Mn(H2POO)3, the other two metal environments are highly distorted (Figure 4). In simulation, this results in a higher-energy layered AFM state, which is consistent with the negative Weiss constant from the Curie–Weiss fit but probably accounts for the lack of observed ordering (details in SI). Comparative electronic spin density isosurfaces for the two phases are shown in Figure 4.

Figure 4

Figure 4. (Above) Comparison of the symmetry-unique Mn–H2POO bonding geometries in [GUA]Mn(H2POO)3 and [FA]Mn(H2POO)3 and (below) electronic spin density isosurfaces for each phase obtained from spin-polarized density functional theory calculations (opposing spins shown in blue and orange).

In summary, we have synthesized and characterized a family of X = (H2POO) hybrid perovskites with five different A-site amine cations. The rich structural diversity, phase transitions, and magnetic behavior of these phases demonstrate that hypophosphite is a promising candidate for generating chemically tunable functional perovskite materials, such as ferroelectrics and multiferroics. By analogy with other perovskite X-site ions such as formate and azide, it is clear this work could lead to a large family of new hybrid perovskites. The use of other A- and B-site cations presents excellent opportunities for future work, along with solid solution studies and the formation of other double perovskites. X-site solid solutions and ordered mixtures are particularly rare for perovskites, so the similarity in size between formate and hypophosphite presents this as an exciting direction for additional research.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b09417.

  • Further details of experimental and computational methods, crystallography, and tolerance factor calculations (PDF)

  • Data for CCDC 1582415 [FA]Mn(H2POO)3 (115 K) (CIF)

  • Data for CCDC 1582416 [FA]Mn(H2POO)3 (RT) (CIF)

  • Data for CCDC 1582418 [GUA]Mn(H2POO)3 (monoclinic, RT) (CIF)

  • Data for CCDC 1582419 [GUA]Mn(H2POO)3 (triclinic, RT) (CIF)

  • Data for CCDC 1582417 [IM]Mn(H2POO)3 (RT) (CIF)

  • Data for CCDC 1582421 [TRZ]Mn(H2POO)3 (RT) (CIF)

  • Data for CCDC 1582420 [DAB]Mn(H2POO)3 (120 K) (CIF)

  • Data for CCDC 1582414 [DAB]Mn(H2POO)3 (RT) (CIF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Authors
  • Authors
    • Yue Wu - Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United KingdomOrcidhttp://orcid.org/0000-0003-2874-8267
    • Sammy Shaker - Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
    • Federico Brivio - Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United KingdomOrcidhttp://orcid.org/0000-0001-6807-4872
    • Ramaswamy Murugavel - Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, IndiaOrcidhttp://orcid.org/0000-0002-1816-3225
  • Notes
    The authors declare no competing financial interest.

Acknowledgment

ARTICLE SECTIONS
Jump To

Y.W., F.B., and A.K.C. gratefully thank the Ras Al Khaimah Center for Advanced Materials for financial support. S.S. gratefully thanks the Winston Churchill Foundation of the USA for financial support. R.M. thanks SERB, New Delhi for a JC Bose Fellowship. DFT calculations were performed at the Cambridge HPCS and the UK National Supercomputing Service, ARCHER. Access to the latter was obtained via the MCC consortium and funded by EPSRC under Grant No. EP/L000202/1. Magnetic measurements were carried out using the Advanced Materials Characterization Suite, funded by EPSRC Strategic Equipment Grant EP/M000524/1. We thank Dr. M. J. Cliffe and Dr M. W. Gaultois for helpful discussions, and Dr Cliffe for the use of his SQUID TIME code for fitting and plotting magnetic data.

References

ARTICLE SECTIONS
Jump To

This article references 29 other publications.

  1. 1
    Li, W.; Wang, Z.; Deschler, F.; Gao, S.; Friend, R. H.; Cheetham, A. K. Nat. Rev. Mater. 2017, 2 (3) 16099 DOI: 10.1038/natrevmats.2016.99
  2. 2
    Saparov, B.; Mitzi, D. B. Chem. Rev. 2016, 116 (7) 4558 DOI: 10.1021/acs.chemrev.5b00715
  3. 3
    Lee, J.-H.; Bristowe, N. C.; Bristowe, P. D.; Cheetham, A. K. Chem. Commun. 2015, 51 (29) 6434 DOI: 10.1039/C5CC00979K
  4. 4
    Wang, X. Y.; Gan, L.; Zhang, S. W.; Gao, S. Inorg. Chem. 2004, 43 (15) 4615 DOI: 10.1021/ic0498081
  5. 5
    Hu, K. L.; Kurmoo, M.; Wang, Z.; Gao, S. Chem. - Eur. J. 2009, 15 (44) 12050 DOI: 10.1002/chem.200901605
  6. 6
    Chen, S.; Shang, R.; Wang, B. W.; Wang, Z. M.; Gao, S. Angew. Chem., Int. Ed. 2015, 54 (38) 11093 DOI: 10.1002/anie.201504396
  7. 7
    Chen, S.; Shang, R.; Hu, K.-L.; Wang, Z.-M.; Gao, S. Inorg. Chem. Front. 2014, 1, 83 DOI: 10.1039/C3QI00034F
  8. 8
    Jain, P.; Dalal, N. S.; Toby, B. H.; Kroto, H. W.; Cheetham, A. K. J. Am. Chem. Soc. 2008, 130 (32) 10450 DOI: 10.1021/ja801952e
  9. 9
    Jain, P.; Ramachandran, V.; Clark, R. J.; Zhou, H. D.; Toby, B. H.; Dalal, N. S.; Kroto, H. W.; Cheetham, A. K. J. Am. Chem. Soc. 2009, 131 (38) 13625 DOI: 10.1021/ja904156s
  10. 10
    Xu, G.-C.; Zhang, W.; Ma, X.-M.; Chen, Y.-H.; Zhang, L.; Cai, H.-L.; Wang, Z.-M.; Xiong, R.-G.; Gao, S. J. Am. Chem. Soc. 2011, 133 (38) 14948 DOI: 10.1021/ja206891q
  11. 11
    Mączka, M.; Gągor, A.; Ptak, M.; Paraguassu, W.; da Silva, T. A.; Sieradzki, A.; Pikul, A. Chem. Mater. 2017, 29 (5) 2264 DOI: 10.1021/acs.chemmater.6b05249
  12. 12
    Mautner, F. A.; Krischner, H. Z. Kristallogr. - Cryst. Mater. 1986, 175 (1–4) 105 DOI: 10.1524/zkri.1986.175.14.105
  13. 13
    Tong, M.-L.; Ru, J.; Wu, Y.-M.; Chen, X.-M.; Chang, H.-C.; Mochizuki, K.; Kitagawa, S. New J. Chem. 2003, 27 (5) 779 DOI: 10.1039/b300760j
  14. 14
    Hill, J. A.; Thompson, A. L.; Goodwin, A. L. J. Am. Chem. Soc. 2016, 138 (18) 5886 DOI: 10.1021/jacs.5b13446
  15. 15
    Zhang, W.; Cai, Y.; Xiong, R.-G.; Yoshikawa, H.; Awaga, K. Angew. Chem., Int. Ed. 2010, 49 (37) 6608 DOI: 10.1002/anie.201001208
  16. 16
    Thiele, G.; Messer, D. Z. Anorg. Allg. Chem. 1980, 464 (1) 255 DOI: 10.1002/zaac.19804640124
  17. 17
    Schouwink, P.; Ley, M. B.; Tissot, A.; Hagemann, H.; Jensen, T. R.; Smrčok, L’.; Černý, R. Nat. Commun. 2014, 5, 5706 DOI: 10.1038/ncomms6706
  18. 18
    Bhat, G. A.; Vishnoi, P.; Gupta, S. K.; Murugavel, R. Inorg. Chem. Commun. 2015, 59, 84 DOI: 10.1016/j.inoche.2015.07.006
  19. 19
    Maouel, H. A.; Alonzo, V.; Roisnel, T.; Rebbah, H.; Le Fur, E. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2009, 65 (7) i36 DOI: 10.1107/S0108270109021325
  20. 20
    Kieslich, G.; Sun, S.; Cheetham, A. K. Chem. Sci. 2015, 6 (6) 3430 DOI: 10.1039/C5SC00961H
  21. 21
    Kieslich, G.; Sun, S.; Cheetham, A. K. Chem. Sci. 2014, 5 (12) 4712 DOI: 10.1039/C4SC02211D
  22. 22
    Wang, B. Q.; Yan, H. B.; Huang, Z. Q.; Zhang, Z. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2013, 69 (6) 616 DOI: 10.1107/S0108270113012638
  23. 23
    Mączka, M.; Ciupa, A.; Gągor, A.; Sieradzki, A.; Pikul, A.; Macalik, B.; Drozd, M. Inorg. Chem. 2014, 53 (10) 5260 DOI: 10.1021/ic500479e
  24. 24
    Duyker, S. G.; Hill, J. A.; Howard, C. J.; Goodwin, A. L. J. Am. Chem. Soc. 2016, 138 (35) 11121 DOI: 10.1021/jacs.6b06785
  25. 25
    Boström, H. L. B.; Hill, J. A.; Goodwin, A. L. Phys. Chem. Chem. Phys. 2016, 18 (46) 31881 DOI: 10.1039/C6CP05730F
  26. 26
    Kieslich, G.; Kumagai, S.; Butler, K. T.; Okamura, T.; Hendon, C. H.; Sun, S.; Yamashita, M.; Walsh, A.; Cheetham, A. K. Chem. Commun. 2015, 51 (85) 15538 DOI: 10.1039/C5CC06190C
  27. 27
    Howard, C. J.; Zhang, Z. Acta Crystallogr., Sect. B: Struct. Sci. 2004, 60 (2) 249 DOI: 10.1107/S0108768104003714
  28. 28
    Aimi, A.; Mori, D.; Hiraki, K. I.; Takahashi, T.; Shan, Y. J.; Shirako, Y.; Zhou, J.; Inaguma, Y. Chem. Mater. 2014, 26 (8) 2601 DOI: 10.1021/cm500016z
  29. 29
    Hafner, J. J. Comput. Chem. 2008, 29 (13) 2044 DOI: 10.1002/jcc.21057

Cited By

ARTICLE SECTIONS
Jump To

This article is cited by 75 publications.

  1. Zhi-Yuan Yue, Lin Xiang, Na Wang, Liang-Liang Zou, Le-Ping Miao, Heng-Yun Ye, Chao Shi. Series of Cage-Like Double Perovskite-Type Hybrid Perovskites with Reversible Structural Phase Transition and Switchable Dielectric Constant Property. Crystal Growth & Design 2023, 23 (9) , 6860-6865. https://doi.org/10.1021/acs.cgd.3c00693
  2. Ya-Di Zhang, Le Ye, Na Wang, Le-Ping Miao, Heng-Yun Ye, Chao Shi. Structural Diversity and Tunable Ferroelectricity in a Family of Hybrid Perovskites: AM(NO3)3. Crystal Growth & Design 2023, 23 (7) , 5323-5329. https://doi.org/10.1021/acs.cgd.3c00519
  3. Michael L. Tarlton, Suntharalingam Skanthakumar, Danielle Hutchison, Alexander J. Gremillion, Allen G. Oliver, Richard E. Wilson. Synthesis of an Isostructural Series of 12-Coordinate Lanthanide Nitrate Hybrid Double Perovskites with Cubic Symmetry. Inorganic Chemistry 2022, 61 (43) , 17101-17108. https://doi.org/10.1021/acs.inorgchem.2c02546
  4. Xiao-Xian Chen, De-Xuan Liu, Ya-Ping Gong, Sha-Sha Wang, Wei-Xiong Zhang, Xiao-Ming Chen. Above-Room-Temperature Ferroelastic Phase Transitions in Two Tetrafluoroborate-Based Hexagonal Molecular Perovskites. Inorganic Chemistry 2022, 61 (4) , 2219-2226. https://doi.org/10.1021/acs.inorgchem.1c03506
  5. Mirosław Ma̧czka, Andrzej Nowok, Jan K. Zarȩba, Dagmara Stefańska, Anna Ga̧gor, Monika Trzebiatowska, Adam Sieradzki. Near-Infrared Phosphorescent Hybrid Organic–Inorganic Perovskite with High-Contrast Dielectric and Third-Order Nonlinear Optical Switching Functionalities. ACS Applied Materials & Interfaces 2022, 14 (1) , 1460-1471. https://doi.org/10.1021/acsami.1c20557
  6. Mirosław Ma̧czka, Mikołaj Kryś, Szymon Sobczak, Daniel Linhares Militão Vasconcelos, Paulo Tarso Cavalcante Freire, Andrzej Katrusiak. Evidence of Pressure-Induced Phase Transitions and Negative Linear Compressibility in Formamidinium Manganese-Hypophosphite Hybrid Perovskite. The Journal of Physical Chemistry C 2021, 125 (48) , 26958-26966. https://doi.org/10.1021/acs.jpcc.1c08387
  7. Mirosław Mączka, Szymon Sobczak, Mikołaj Kryś, Fabio Furtado Leite, Waldeci Paraguassu, Andrzej Katrusiak. Mechanism of Pressure-Induced Phase Transitions and Structure–Property Relations in Methylhydrazinium Manganese Hypophosphite Perovskites. The Journal of Physical Chemistry C 2021, 125 (18) , 10121-10129. https://doi.org/10.1021/acs.jpcc.1c01998
  8. Hong-Qiang Gao, Wen-Juan Wei, Yu-Hui Tan, Yun-Zhi Tang. Phase Transition and Negative Thermal Expansion in Guanidinium Magnesium-Hypophosphite Hybrid Perovskite. Chemistry of Materials 2020, 32 (16) , 6886-6891. https://doi.org/10.1021/acs.chemmater.0c01654
  9. Monika Trzebiatowska, Mirosław Mączka, Anna Gagor, Adam Sieradzki. Pyrrolidinium-Based Cyanides: Unusual Architecture and Dielectric Switchability Triggered by Order–Disorder Process. Inorganic Chemistry 2020, 59 (13) , 8855-8863. https://doi.org/10.1021/acs.inorgchem.0c00637
  10. Bin-Bin Deng, Chu-Chu Xu, Ting-Ting Cheng, Yi-Ting Yang, Yan-Ting Hu, Pan Wang, Wen-Hui He, Meng-Juan Yang, Wei-Qiang Liao. Homochiral Nickel Nitrite ABX3 (X = NO2–) Perovskite Ferroelectrics. Journal of the American Chemical Society 2020, 142 (15) , 6946-6950. https://doi.org/10.1021/jacs.0c02580
  11. Yu Shang, Rui-Kang Huang, Shao-Li Chen, Chun-Ting He, Zhi-Hong Yu, Zi-Ming Ye, Wei-Xiong Zhang, Xiao-Ming Chen. Metal-Free Molecular Perovskite High-Energetic Materials. Crystal Growth & Design 2020, 20 (3) , 1891-1897. https://doi.org/10.1021/acs.cgd.9b01592
  12. Mantas Šimėnas, Sergejus Balčiu̅nas, Adrian Gonzalez-Nelson, Martynas Kinka, Maciej Ptak, Monique A. van der Veen, Mirosław Mączka, Ju̅ras Banys. Preparation and Dielectric Characterization of P(VDF–TrFE) Copolymer-Based Composites Containing Metal–Formate Frameworks. The Journal of Physical Chemistry C 2019, 123 (26) , 16380-16387. https://doi.org/10.1021/acs.jpcc.9b04235
  13. Monika Trzebiatowska, Mirosław Mączka, Maciej Ptak, Laisvydas Giriunas, Sergejus Balciunas, Mantas Simenas, Daniel Klose, Juras Banys. Spectroscopic Study of Structural Phase Transition and Dynamic Effects in a [(CH3)2NH2][Cd(N3)3] Hybrid Perovskite Framework. The Journal of Physical Chemistry C 2019, 123 (18) , 11840-11849. https://doi.org/10.1021/acs.jpcc.9b01121
  14. Jia-Bin Li, Zhi-Kang Jiang, Rui Wang, Jin-Zhu Zhao, Ruiqiang Wang. Ferroelectric order in hybrid organic-inorganic perovskite NH4PbI3 with non-polar molecules and small tolerance factor. npj Computational Materials 2023, 9 (1) https://doi.org/10.1038/s41524-023-01019-2
  15. Xintong Li, Yongna Guo, Xin Ma, Chao Zhang, Jia Yang, Shuai Wang. A novel phosphinic acid extractant and its application in the effective extraction of Mn2+ from Mn2+-Mg2+ sulfate solution. Hydrometallurgy 2023, 222 , 106172. https://doi.org/10.1016/j.hydromet.2023.106172
  16. M. Mączka, D.L.M. Vasconcelos, P.T.C. Freire. Raman study of pressure-induced phase transitions in imidazolium manganese- hypophosphite hybrid perovskite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2023, 298 , 122768. https://doi.org/10.1016/j.saa.2023.122768
  17. Chumei Ye, Lauren N. McHugh, Celia Chen, Siân E. Dutton, Thomas D. Bennett. Glass Formation in Hybrid Organic‐Inorganic Perovskites. Angewandte Chemie 2023, 135 (28) https://doi.org/10.1002/ange.202302406
  18. Chumei Ye, Lauren N. McHugh, Celia Chen, Siân E. Dutton, Thomas D. Bennett. Glass Formation in Hybrid Organic‐Inorganic Perovskites. Angewandte Chemie International Edition 2023, 62 (28) https://doi.org/10.1002/anie.202302406
  19. Shivani Grover, Stefan Burger, Keith T. Butler, Karina Hemmer, Pia Vervoorts, Gregor Kieslich, Ricardo Grau-Crespo. Tuning the mechanical properties of dicyanamide-based molecular perovskites. CrystEngComm 2023, 25 (23) , 3439-3444. https://doi.org/10.1039/D3CE00009E
  20. Yaiza Asensio, Sergio Marras, Davide Spirito, Marco Gobbi, Mihail Ipatov, Fèlix Casanova, Aurelio Mateo‐Alonso, Luis E. Hueso, Beatriz Martín‐García. Magnetic Properties of Layered Hybrid Organic‐Inorganic Metal‐Halide Perovskites: Transition Metal, Organic Cation and Perovskite Phase Effects. Advanced Functional Materials 2022, 32 (51) https://doi.org/10.1002/adfm.202207988
  21. Dagmara Stefańska. Effect of Organic Cation on Optical Properties of [A]Mn(H2POO)3 Hybrid Perovskites. Molecules 2022, 27 (24) , 8953. https://doi.org/10.3390/molecules27248953
  22. Michael L. Tarlton, Suntharalingam Skanthakumar, Valérie Vallet, Richard E. Wilson. Hexanitrato complexes and hybrid double perovskites of Am 3+ and Cm 3+. Chemical Communications 2022, 58 (85) , 11997-12000. https://doi.org/10.1039/D2CC05162A
  23. Stefan Burger, Karina Hemmer, David C. Mayer, Pia Vervoorts, Dominik Daisenberger, Jan K. Zaręba, Gregor Kieslich. Designing Geometric Degrees of Freedom in ReO 3 ‐Type Coordination Polymers. Advanced Functional Materials 2022, 32 (44) https://doi.org/10.1002/adfm.202205343
  24. Tie Zhang, Kun Ding, Jun‐Yi Li, Guo‐Wei Du, Lu‐Lu Chu, Yi Zhang, Da‐Wei Fu. Hydrogen‐Bonded Engineering Enhancing Phase Transition Temperature in Molecular Perovskite Ferroelastic. Chinese Journal of Chemistry 2022, 40 (13) , 1559-1565. https://doi.org/10.1002/cjoc.202200089
  25. Mirosław Mączka, Anna Gągor, Dagmara Stefańska, Jan K. Zaręba, Adam Pikul. Structural, magnetic and photoluminescence properties of new hybrid hypophosphites: discovery of the first noncentrosymmetric and two cobalt-based members. Dalton Transactions 2022, 51 (23) , 9094-9102. https://doi.org/10.1039/D2DT01212J
  26. Jiajun Ma, Qi Xu, Le Ye, Qinwen Wang, Zhixin Gong, Chao Shi, Hengyun Ye, Yi Zhang. Structural phase transition and dielectric switching in an organic-inorganic hybrid rare-earth double perovskite-type compound: (DMP)2LaRb(NO3)6 (DMP = N,N-dimethylpyrrolidinium cation). Journal of Rare Earths 2022, 40 (6) , 937-941. https://doi.org/10.1016/j.jre.2021.05.010
  27. Lauren N. McHugh, Michael F. Thorne, Ashleigh M. Chester, Martin Etter, Krunoslav Užarević, Thomas D. Bennett. Mechanochemically synthesised dicyanamide hybrid organic–inorganic perovskites, and their melt-quenched glasses. Chemical Communications 2022, 58 (24) , 3949-3952. https://doi.org/10.1039/D2CC00278G
  28. Javier García-Ben, Lauren Nicole McHugh, Thomas Douglas Bennett, Juan Manuel Bermúdez-García. Dicyanamide-perovskites at the edge of dense hybrid organic–inorganic materials. Coordination Chemistry Reviews 2022, 455 , 214337. https://doi.org/10.1016/j.ccr.2021.214337
  29. Clarice Sombra de Medeiros, Maciej Ptak, Anna Gągor, Adam Sieradzki. Structural phase transitions in novel hydrogen-bonded cyanide-based crystal of [C4H8NH2]2[(H3O)Co(CN)6]. Journal of Molecular Structure 2022, 1252 , 132143. https://doi.org/10.1016/j.molstruc.2021.132143
  30. Bikash Kumar Shaw, Celia Castillo-Blas, Michael F. Thorne, María Laura Ríos Gómez, Tom Forrest, Maria Diaz Lopez, Philip A. Chater, Lauren N. McHugh, David A. Keen, Thomas D. Bennett. Principles of melting in hybrid organic–inorganic perovskite and polymorphic ABX 3 structures. Chemical Science 2022, 13 (7) , 2033-2042. https://doi.org/10.1039/D1SC07080K
  31. Mirosław Mączka, Dagmara Stefańska, Anna Gągor, Adam Pikul. The cation-dependent structural, magnetic and optical properties of a family of hypophosphite hybrid perovskites. Dalton Transactions 2021, 51 (1) , 352-360. https://doi.org/10.1039/D1DT03382D
  32. Quan‐Wen Li, Zhao‐Yang Li, Kai Li, Bin Xia, Na Li, Xian‐He Bu. Lanthanide‐Hypophosphite Frameworks with Guanidinium Guest Showing High Proton Conductivity. Chinese Journal of Chemistry 2021, 39 (12) , 3381-3385. https://doi.org/10.1002/cjoc.202100382
  33. Maciej Ptak, Adam Sieradzki, Mantas Šimėnas, Mirosław Maczka. Molecular spectroscopy of hybrid organic–inorganic perovskites and related compounds. Coordination Chemistry Reviews 2021, 448 , 214180. https://doi.org/10.1016/j.ccr.2021.214180
  34. Yi‐Fang Huang, Lin Xiang, Yan Feng, Zhen An, Le‐Ping Miao, Jian‐Rong Li, Heng‐Yun Ye, Chao Shi. High Quality of a Perchlorate‐Based Hybrid Perovskite‐Type Cage‐Like Single Crystal – Evidence of Temperature‐Induced Distinct Dielectric Transition. European Journal of Inorganic Chemistry 2021, 2021 (43) , 4439-4442. https://doi.org/10.1002/ejic.202100624
  35. Lin Xiang, Yi-Fang Huang, Yan Feng, Na Wang, Rong-Meng Liao, Le-Ping Miao, Jian-Rong Li, Heng-Yun Ye, Chao Shi. An organic–inorganic hybrid double perovskite-type cage-like crystal (MA) 2 KBiCl 6 (MA = methylammonium cation) with dielectric switching behavior. Materials Advances 2021, 2 (22) , 7431-7436. https://doi.org/10.1039/D1MA00691F
  36. Ashwani Kumar, Mohd. Shkir, K.L. Singh, S.K. Tripathi. Exploring the impact of HgI2 doping on optical, structural and morphological properties of pure CH3NH3PbI3 perovskite. Inorganic Chemistry Communications 2021, 132 , 108851. https://doi.org/10.1016/j.inoche.2021.108851
  37. Stefan Burger, Shivani Grover, Keith T. Butler, Hanna L. B. Boström, Ricardo Grau-Crespo, Gregor Kieslich. Tilt and shift polymorphism in molecular perovskites. Materials Horizons 2021, 8 (9) , 2444-2450. https://doi.org/10.1039/D1MH00578B
  38. Bikash Kumar Shaw, Ashlea R. Hughes, Maxime Ducamp, Stephen Moss, Anup Debnath, Adam F. Sapnik, Michael F. Thorne, Lauren N. McHugh, Andrea Pugliese, Dean S. Keeble, Philip Chater, Juan M. Bermudez-Garcia, Xavier Moya, Shyamal K. Saha, David A. Keen, François-Xavier Coudert, Frédéric Blanc, Thomas D. Bennett. Melting of hybrid organic–inorganic perovskites. Nature Chemistry 2021, 13 (8) , 778-785. https://doi.org/10.1038/s41557-021-00681-7
  39. Hayden A. Evans, Lingling Mao, Ram Seshadri, Anthony K. Cheetham. Layered Double Perovskites. Annual Review of Materials Research 2021, 51 (1) , 351-380. https://doi.org/10.1146/annurev-matsci-092320-102133
  40. De-Xuan Liu, Kai-Ping Xie, Wei-Xiong Zhang, Ming-Hua Zeng, Xiao-Ming Chen. Structural insights into a new family of three-dimensional thiocyanate-bridged molecular double perovskites. CrystEngComm 2021, 23 (11) , 2208-2214. https://doi.org/10.1039/D1CE00147G
  41. Xiaolong He, Xinyuan Zhang, Bifa Ji, Wenjiao Yao, Philip Lightfoot, Yongbing Tang. Tilting and twisting in a novel perovzalate, K 3 NaMn(C 2 O 4 ) 3. Chemical Communications 2021, 57 (20) , 2567-2570. https://doi.org/10.1039/D1CC00085C
  42. Mirosław Mączka, Dagmara Stefańska, Maciej Ptak, Anna Gągor, Adam Pikul, Adam Sieradzki. Cadmium and manganese hypophosphite perovskites templated by formamidinium cations: dielectric, optical and magnetic properties. Dalton Transactions 2021, 50 (7) , 2639-2647. https://doi.org/10.1039/D0DT03995K
  43. Lin-Sui Li, Wen-Juan Wei, Hong-Qiang Gao, Yu-Hui Tan. Structures and elastic properties of 1,2,4-triazolium magnesium hypophosphite hybrid perovskite. Journal of Applied Physics 2021, 129 (6) https://doi.org/10.1063/5.0041477
  44. Magdalena Rok, Agnieszka Ciżman, Bartosz Zarychta, Jan K. Zaręba, Monika Trzebiatowska, Mirosław Mączka, Alessandro Stroppa, Shurong Yuan, Anthony E. Phillips, Grażyna Bator. Cyano-bridged perovskite [(CH 3 ) 3 NOH] 2 [KM(CN) 6 ], [M: Fe( iii ), and Co( iii )] for high-temperature multi-axial ferroelectric applications with enhanced thermal and nonlinear optical performance. Journal of Materials Chemistry C 2020, 8 (48) , 17491-17501. https://doi.org/10.1039/D0TC04527F
  45. Miao-Miao Hua, Le Ye, Qin-Wen Wang, Jia-Jun Ma, Zhi-Xin Gong, Qi Xu, Chao Shi, Yi Zhang. A layered hybrid rare-earth double-perovskite-type molecule-based compound with electrical and optical response properties. Journal of Materials Chemistry C 2020, 8 (46) , 16349-16353. https://doi.org/10.1039/D0TC04386A
  46. João N. Gonçalves, Anthony E. Phillips, Wei Li, Alessandro Stroppa. First-Principles Study of Structure and Magnetism in Copper(II)-Containing Hybrid Perovskites. Crystals 2020, 10 (12) , 1129. https://doi.org/10.3390/cryst10121129
  47. Aneta Ciupa-Litwa, Maciej Ptak, Edyta Kucharska, Jerzy Hanuza, Mirosław Mączka. Vibrational Properties and DFT Calculations of Perovskite-Type Methylhydrazinium Manganese Hypophosphite. Molecules 2020, 25 (21) , 5215. https://doi.org/10.3390/molecules25215215
  48. Yu Shang, Zhi-Hong Yu, Rui-Kang Huang, Shao-Li Chen, De-Xuan Liu, Xiao-Xian Chen, Wei-Xiong Zhang, Xiao-Ming Chen. Metal-Free Hexagonal Perovskite High-Energetic Materials with NH3OH+/NH2NH3+ as B-Site Cations. Engineering 2020, 6 (9) , 1013-1018. https://doi.org/10.1016/j.eng.2020.05.018
  49. Stefan Burger, Silva Kronawitter, Hanna L. B. Boström, Jan K. Zaręba, Gregor Kieslich. A new polar perovskite coordination network with azaspiroundecane as A-site cation. Dalton Transactions 2020, 49 (31) , 10740-10744. https://doi.org/10.1039/D0DT01968B
  50. . Hybrid Hypophosphite Perovskites. 2020, 225-233. https://doi.org/10.1002/9783527344338.ch8
  51. Mirosław Mączka, Anna Gągor, Adam Pikul, Dagmara Stefańska. Novel hypophosphite hybrid perovskites of [CH 3 NH 2 NH 2 ][Mn(H 2 POO) 3 ] and [CH 3 NH 2 NH 2 ][Mn(H 2 POO) 2.83 (HCOO) 0.17 ] exhibiting antiferromagnetic order and red photoluminescence. RSC Advances 2020, 10 (32) , 19020-19026. https://doi.org/10.1039/D0RA03397A
  52. Mirosław Mączka, Dagmara Stefańska, Jan K. Zaręba, Marcin Nyk, Adam Sieradzki. Temperature-dependent luminescence and second-harmonic generation of perovskite-type manganese and cadmium dicyanamide frameworks templated by tetrapropylammonium cations. Journal of Alloys and Compounds 2020, 821 , 153464. https://doi.org/10.1016/j.jallcom.2019.153464
  53. M. Ptak, M. Mączka. Phonon properties and mechanism of order-disorder phase transition in formamidinium manganese hypophosphite single crystal. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020, 230 , 118010. https://doi.org/10.1016/j.saa.2019.118010
  54. Zhi-Xin Gong, Qin-Wen Wang, Jia-Jun Ma, Jia-Ying Jiang, Dian-Yu E, Zheng-Quan Li, Fang-Wei Qi, Hao Liang. Reversible structural phase transitions and switchable dielectric behaviours in a cyanometallate-based double perovskite-type cage compound: [C 3 H 4 NS] 2 [KCo(CN) 6 ]. Materials Chemistry Frontiers 2020, 4 (3) , 918-923. https://doi.org/10.1039/C9QM00724E
  55. Hanna L. B. Boström. Tilts and shifts in molecular perovskites. CrystEngComm 2020, 22 (5) , 961-968. https://doi.org/10.1039/C9CE01950B
  56. Chao Shi, Hui Yu, Qin‐Wen Wang, Le Ye, Zhi‐Xin Gong, Jia‐Jun Ma, Jia‐Ying Jiang, Miao‐Miao Hua, Cijun Shuai, Yi Zhang, Heng‐Yun Ye. Hybrid Organic–Inorganic Antiperovskites. Angewandte Chemie 2020, 132 (1) , 173-177. https://doi.org/10.1002/ange.201908945
  57. Chao Shi, Hui Yu, Qin‐Wen Wang, Le Ye, Zhi‐Xin Gong, Jia‐Jun Ma, Jia‐Ying Jiang, Miao‐Miao Hua, Cijun Shuai, Yi Zhang, Heng‐Yun Ye. Hybrid Organic–Inorganic Antiperovskites. Angewandte Chemie International Edition 2020, 59 (1) , 167-171. https://doi.org/10.1002/anie.201908945
  58. Le Ye, Zhi-Xin Gong, Chao Shi, Jia-Jun Ma, Hao Liang, Fang-Wei Qi, Dian-Yu E, Chang-Feng Wang, Yi Zhang, Heng-Yun Ye. (H 2 dabco)[Na(BF 4 ) 3 ]: an ABX 3 -type inorganic–organic hybrid perovskite compound exhibiting dielectric switching above room-temperature. CrystEngComm 2019, 21 (46) , 7043-7047. https://doi.org/10.1039/C9CE01454C
  59. Julian Gebhardt, Andrew M. Rappe. Mix and Match: Organic and Inorganic Ions in the Perovskite Lattice. Advanced Materials 2019, 31 (47) https://doi.org/10.1002/adma.201802697
  60. Ramaswamy Murugavel. Ceramic and porous framework metal silicates and phosphates from molecular precursors: an ever-evolving ambient synthesis approach. Emergent Materials 2019, 2 (3) , 273-294. https://doi.org/10.1007/s42247-019-00054-4
  61. Mirosław Mączka, Anna Gągor, Maciej Ptak, Dagmara Stefańska, Lucyna Macalik, Adam Pikul, Adam Sieradzki. Structural, phonon, magnetic and optical properties of novel perovskite-like frameworks of TriBuMe[M(dca) 3 ] (TriBuMe = tributylmethylammonium; dca = dicyanamide; M = Mn 2+ , Fe 2+ , Co 2+ , Ni 2+ ). Dalton Transactions 2019, 48 (34) , 13006-13016. https://doi.org/10.1039/C9DT02924A
  62. Yu Peng, Yunpeng Yao, Lina Li, Xitao Liu, Xinyuan Zhang, Zhenyue Wu, Sasa Wang, Chengmin Ji, Weichuan Zhang, Junhua Luo. Exploration of Chiral Organic–Inorganic Hybrid Semiconducting Lead Halides. Chemistry – An Asian Journal 2019, 14 (13) , 2273-2277. https://doi.org/10.1002/asia.201900288
  63. Li-Jun Ji, Shi-Jing Sun, Yan Qin, Kai Li, Wei Li. Mechanical properties of hybrid organic-inorganic perovskites. Coordination Chemistry Reviews 2019, 391 , 15-29. https://doi.org/10.1016/j.ccr.2019.03.020
  64. Mirosław Mączka, Ines E. Collings, Fabio Furtado Leite, Waldeci Paraguassu. Raman and single-crystal X-ray diffraction evidence of pressure-induced phase transitions in a perovskite-like framework of [(C 3 H 7 ) 4 N] [Mn(N(CN) 2 ) 3 ]. Dalton Transactions 2019, 48 (25) , 9072-9078. https://doi.org/10.1039/C9DT01648A
  65. Wei-Jian Xu, Svitlana Kopyl, Andrei Kholkin, João Rocha. Hybrid organic-inorganic perovskites: Polar properties and applications. Coordination Chemistry Reviews 2019, 387 , 398-414. https://doi.org/10.1016/j.ccr.2019.02.012
  66. M. Rok, G. Bator, B. Zarychta, B. Dziuk, J. Repeć, W. Medycki, M. Zamponi, G. Usevičius, M. Šimėnas, J. Banys. Isostructural phase transition, quasielastic neutron scattering and magnetic resonance studies of a bistable dielectric ion-pair crystal [(CH 3 ) 2 NH 2 ] 2 KCr(CN) 6. Dalton Transactions 2019, 48 (13) , 4190-4202. https://doi.org/10.1039/C8DT05082A
  67. Hayden A. Evans, Zeyu Deng, Ines E. Collings, Yue Wu, Jessica L. Andrews, Kartik Pilar, Joshua M. Tuffnell, Guang Wu, John Wang, Siân E. Dutton, Paul D. Bristowe, Ram Seshadri, Anthony K. Cheetham. Polymorphism in M(H 2 PO 2 ) 3 (M = V, Al, Ga) compounds with the perovskite-related ReO 3 structure. Chemical Communications 2019, 55 (20) , 2964-2967. https://doi.org/10.1039/C9CC00118B
  68. Mirosław Mączka, Maciej Ptak, Anna Gągor, Adam Sieradzki, Paulina Peksa, Gediminas Usevicius, Mantas Simenas, Fabio Furtado Leite, Waldeci Paraguassu. Temperature- and pressure-dependent studies of a highly flexible and compressible perovskite-like cadmium dicyanamide framework templated with protonated tetrapropylamine. Journal of Materials Chemistry C 2019, 7 (8) , 2408-2420. https://doi.org/10.1039/C8TC06401F
  69. Xinyuan Zhang, Lina Li, Zhihua Sun, Junhua Luo. Rational chemical doping of metal halide perovskites. Chemical Society Reviews 2019, 48 (2) , 517-539. https://doi.org/10.1039/C8CS00563J
  70. Mirosław Mączka, Anna Gągor, Maciej Ptak, Dagmara Stefańska, Adam Sieradzki. Temperature-dependent studies of a new two-dimensional cadmium dicyanamide framework exhibiting an unusual temperature-induced irreversible phase transition into a three-dimensional perovskite-like framework. Physical Chemistry Chemical Physics 2018, 20 (47) , 29951-29958. https://doi.org/10.1039/C8CP06190D
  71. Hanna L. B. Boström, Mark S. Senn, Andrew L. Goodwin. Recipes for improper ferroelectricity in molecular perovskites. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-04764-x
  72. S. Burger, M. G. Ehrenreich, G. Kieslich. Tolerance factors of hybrid organic–inorganic perovskites: recent improvements and current state of research. Journal of Materials Chemistry A 2018, 6 (44) , 21785-21793. https://doi.org/10.1039/C8TA05794J
  73. Yue Wu, David M. Halat, Fengxia Wei, Trevor Binford, Ieuan D. Seymour, Michael W. Gaultois, Sammy Shaker, John Wang, Clare P. Grey, Anthony K. Cheetham. Mixed X‐Site Formate–Hypophosphite Hybrid Perovskites. Chemistry – A European Journal 2018, 24 (44) , 11309-11313. https://doi.org/10.1002/chem.201803061
  74. Yan Wang, Ziyu Lv, Li Zhou, Xiaoli Chen, Jinrui Chen, Ye Zhou, V. A. L. Roy, Su-Ting Han. Emerging perovskite materials for high density data storage and artificial synapses. Journal of Materials Chemistry C 2018, 6 (7) , 1600-1617. https://doi.org/10.1039/C7TC05326F
  75. Yue Wu, Trevor Binford, Joshua A. Hill, Sammy Shaker, John Wang, Anthony K. Cheetham. Hypophosphite hybrid perovskites: a platform for unconventional tilts and shifts. Chemical Communications 2018, 54 (30) , 3751-3754. https://doi.org/10.1039/C8CC00907D
  • Abstract

    Figure 1

    Figure 1. Comparison of formate and hypophosphite.

    Figure 2

    Figure 2. Structural diagrams of [Am]Mn(H2POO)3 phases, including phase transitions. The Mn-(H2POO) frameworks are shown in blue with Mn–O6 octahedra drawn. A-site cations are shown in orange with space-filling representation. All structures are viewed down one axis of the perovskite cage, except [DAB]Mn(H2POO)3 which is viewed down a face diagonal to clarify the A-site ordering.

    Figure 3

    Figure 3. Zero field cooled magnetic susceptibilities of [FA]Mn(H2POO)3 (blue) and [GUA]Mn(H2POO)3 (orange). Zoom inset.

    Figure 4

    Figure 4. (Above) Comparison of the symmetry-unique Mn–H2POO bonding geometries in [GUA]Mn(H2POO)3 and [FA]Mn(H2POO)3 and (below) electronic spin density isosurfaces for each phase obtained from spin-polarized density functional theory calculations (opposing spins shown in blue and orange).

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 29 other publications.

    1. 1
      Li, W.; Wang, Z.; Deschler, F.; Gao, S.; Friend, R. H.; Cheetham, A. K. Nat. Rev. Mater. 2017, 2 (3) 16099 DOI: 10.1038/natrevmats.2016.99
    2. 2
      Saparov, B.; Mitzi, D. B. Chem. Rev. 2016, 116 (7) 4558 DOI: 10.1021/acs.chemrev.5b00715
    3. 3
      Lee, J.-H.; Bristowe, N. C.; Bristowe, P. D.; Cheetham, A. K. Chem. Commun. 2015, 51 (29) 6434 DOI: 10.1039/C5CC00979K
    4. 4
      Wang, X. Y.; Gan, L.; Zhang, S. W.; Gao, S. Inorg. Chem. 2004, 43 (15) 4615 DOI: 10.1021/ic0498081
    5. 5
      Hu, K. L.; Kurmoo, M.; Wang, Z.; Gao, S. Chem. - Eur. J. 2009, 15 (44) 12050 DOI: 10.1002/chem.200901605
    6. 6
      Chen, S.; Shang, R.; Wang, B. W.; Wang, Z. M.; Gao, S. Angew. Chem., Int. Ed. 2015, 54 (38) 11093 DOI: 10.1002/anie.201504396
    7. 7
      Chen, S.; Shang, R.; Hu, K.-L.; Wang, Z.-M.; Gao, S. Inorg. Chem. Front. 2014, 1, 83 DOI: 10.1039/C3QI00034F
    8. 8
      Jain, P.; Dalal, N. S.; Toby, B. H.; Kroto, H. W.; Cheetham, A. K. J. Am. Chem. Soc. 2008, 130 (32) 10450 DOI: 10.1021/ja801952e
    9. 9
      Jain, P.; Ramachandran, V.; Clark, R. J.; Zhou, H. D.; Toby, B. H.; Dalal, N. S.; Kroto, H. W.; Cheetham, A. K. J. Am. Chem. Soc. 2009, 131 (38) 13625 DOI: 10.1021/ja904156s
    10. 10
      Xu, G.-C.; Zhang, W.; Ma, X.-M.; Chen, Y.-H.; Zhang, L.; Cai, H.-L.; Wang, Z.-M.; Xiong, R.-G.; Gao, S. J. Am. Chem. Soc. 2011, 133 (38) 14948 DOI: 10.1021/ja206891q
    11. 11
      Mączka, M.; Gągor, A.; Ptak, M.; Paraguassu, W.; da Silva, T. A.; Sieradzki, A.; Pikul, A. Chem. Mater. 2017, 29 (5) 2264 DOI: 10.1021/acs.chemmater.6b05249
    12. 12
      Mautner, F. A.; Krischner, H. Z. Kristallogr. - Cryst. Mater. 1986, 175 (1–4) 105 DOI: 10.1524/zkri.1986.175.14.105
    13. 13
      Tong, M.-L.; Ru, J.; Wu, Y.-M.; Chen, X.-M.; Chang, H.-C.; Mochizuki, K.; Kitagawa, S. New J. Chem. 2003, 27 (5) 779 DOI: 10.1039/b300760j
    14. 14
      Hill, J. A.; Thompson, A. L.; Goodwin, A. L. J. Am. Chem. Soc. 2016, 138 (18) 5886 DOI: 10.1021/jacs.5b13446
    15. 15
      Zhang, W.; Cai, Y.; Xiong, R.-G.; Yoshikawa, H.; Awaga, K. Angew. Chem., Int. Ed. 2010, 49 (37) 6608 DOI: 10.1002/anie.201001208
    16. 16
      Thiele, G.; Messer, D. Z. Anorg. Allg. Chem. 1980, 464 (1) 255 DOI: 10.1002/zaac.19804640124
    17. 17
      Schouwink, P.; Ley, M. B.; Tissot, A.; Hagemann, H.; Jensen, T. R.; Smrčok, L’.; Černý, R. Nat. Commun. 2014, 5, 5706 DOI: 10.1038/ncomms6706
    18. 18
      Bhat, G. A.; Vishnoi, P.; Gupta, S. K.; Murugavel, R. Inorg. Chem. Commun. 2015, 59, 84 DOI: 10.1016/j.inoche.2015.07.006
    19. 19
      Maouel, H. A.; Alonzo, V.; Roisnel, T.; Rebbah, H.; Le Fur, E. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2009, 65 (7) i36 DOI: 10.1107/S0108270109021325
    20. 20
      Kieslich, G.; Sun, S.; Cheetham, A. K. Chem. Sci. 2015, 6 (6) 3430 DOI: 10.1039/C5SC00961H
    21. 21
      Kieslich, G.; Sun, S.; Cheetham, A. K. Chem. Sci. 2014, 5 (12) 4712 DOI: 10.1039/C4SC02211D
    22. 22
      Wang, B. Q.; Yan, H. B.; Huang, Z. Q.; Zhang, Z. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2013, 69 (6) 616 DOI: 10.1107/S0108270113012638
    23. 23
      Mączka, M.; Ciupa, A.; Gągor, A.; Sieradzki, A.; Pikul, A.; Macalik, B.; Drozd, M. Inorg. Chem. 2014, 53 (10) 5260 DOI: 10.1021/ic500479e
    24. 24
      Duyker, S. G.; Hill, J. A.; Howard, C. J.; Goodwin, A. L. J. Am. Chem. Soc. 2016, 138 (35) 11121 DOI: 10.1021/jacs.6b06785
    25. 25
      Boström, H. L. B.; Hill, J. A.; Goodwin, A. L. Phys. Chem. Chem. Phys. 2016, 18 (46) 31881 DOI: 10.1039/C6CP05730F
    26. 26
      Kieslich, G.; Kumagai, S.; Butler, K. T.; Okamura, T.; Hendon, C. H.; Sun, S.; Yamashita, M.; Walsh, A.; Cheetham, A. K. Chem. Commun. 2015, 51 (85) 15538 DOI: 10.1039/C5CC06190C
    27. 27
      Howard, C. J.; Zhang, Z. Acta Crystallogr., Sect. B: Struct. Sci. 2004, 60 (2) 249 DOI: 10.1107/S0108768104003714
    28. 28
      Aimi, A.; Mori, D.; Hiraki, K. I.; Takahashi, T.; Shan, Y. J.; Shirako, Y.; Zhou, J.; Inaguma, Y. Chem. Mater. 2014, 26 (8) 2601 DOI: 10.1021/cm500016z
    29. 29
      Hafner, J. J. Comput. Chem. 2008, 29 (13) 2044 DOI: 10.1002/jcc.21057
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b09417.

    • Further details of experimental and computational methods, crystallography, and tolerance factor calculations (PDF)

    • Data for CCDC 1582415 [FA]Mn(H2POO)3 (115 K) (CIF)

    • Data for CCDC 1582416 [FA]Mn(H2POO)3 (RT) (CIF)

    • Data for CCDC 1582418 [GUA]Mn(H2POO)3 (monoclinic, RT) (CIF)

    • Data for CCDC 1582419 [GUA]Mn(H2POO)3 (triclinic, RT) (CIF)

    • Data for CCDC 1582417 [IM]Mn(H2POO)3 (RT) (CIF)

    • Data for CCDC 1582421 [TRZ]Mn(H2POO)3 (RT) (CIF)

    • Data for CCDC 1582420 [DAB]Mn(H2POO)3 (120 K) (CIF)

    • Data for CCDC 1582414 [DAB]Mn(H2POO)3 (RT) (CIF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.