ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Figure 1Loading Img

Precision Epitaxy for Aqueous 1D and 2D Poly(ε-caprolactone) Assemblies

View Author Information
Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, United Kingdom
Cite this: J. Am. Chem. Soc. 2017, 139, 46, 16980–16985
Publication Date (Web):October 27, 2017
https://doi.org/10.1021/jacs.7b10199
Copyright © 2017 American Chemical Society
ACS AuthorChoiceACS AuthorChoice
Article Views
5782
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
PDF (5 MB)
Supporting Info (1)»

Abstract

The fabrication of monodisperse nanostructures of highly controlled size and morphology with spatially distinct functional regions is a current area of high interest in materials science. Achieving this control directly in a biologically relevant solvent, without affecting cell viability, opens the door to a wide range of biomedical applications, yet this remains a significant challenge. Herein, we report the preparation of biocompatible and biodegradable poly(ε-caprolactone) 1D (cylindrical) and 2D (platelet) micelles in water and alcoholic solvents via crystallization-driven self-assembly. Using epitaxial growth in an alcoholic solvent, we show exquisite control over the dimensions and dispersity of these nanostructures, allowing access to uniform morphologies and predictable dimensions based on the unimer-to-seed ratio. Furthermore, for the first time, we report epitaxial growth in aqueous solvent, achieving precise control over 1D nanostructures in water, an essential feature for any relevant biological application. Exploiting this further, a strong, biocompatible and fluorescent hydrogel was obtained as a result of living epitaxial growth in aqueous solvent and cell culture medium. MC3T3 and A549 cells were successfully encapsulated, demonstrating high viability (>95% after 4 days) in these novel hydrogel materials.

Introduction

ARTICLE SECTIONS
Jump To

Block copolymer nanostructures have received an increasing amount of interest in the nanomedical field. (1, 2) The ability to obtain different morphologies with controlled dimensions, from spherical micelles to rods, platelets, vesicles, and more complex structures, opens a wide range of possibilities for potential applications. (3) For example, it has been reported that elongated morphologies, such as rod-like particles, not only exhibit better cell uptake rates in comparison to their spherical counterparts (4-9) but also show increased blood circulation times on increasing cylindrical micelle length. (10)
Precise control over the formation of anisotropic materials with biocompatible and biodegradable properties, however, represents a key challenge in enabling their use in nanomedicine. Recent advances in the solution crystallization of polymers have allowed access to a wide range of complex hierarchical structures, (11) where the presence of a crystalline core-forming block promotes the formation of morphologies with low interfacial curvature, such as cylinders, (12-15) ribbons, (16) and platelet micelles. (17-21) Despite recent advances in precision design, in particular those using poly(ferrocenyldimethylsilane) (PFS) (15, 21) and poly(ε-caprolactone) (PCL) (22-26) block copolymers, few size-controlled assemblies can be retained in aqueous media, with no reports of direct epitaxial crystallization in water to date. Thus, previously reported controlled crystallization methods are limited by the lack of translation toward simple crystalline growth in aqueous media. Therefore, given the importance of life-essential aqueous environments, the formation of precision nanostructures directly in a biologically relevant solvent remains a key challenge in opening new frontiers for biological applications.
Of the previously reported micelles that can be dispersed in water, few show significant control over dimensions and dispersity. Recently, Manners and co-workers reported that cylindrical micelles could be obtained from PFS-b-poly(allyl glycidyl ether), and grafting modifications to form water-stable micelles via a postpolymerization modification step allowed the micelles to be successfully dialyzed from DMF into water. (15) To date, however, such precise control over biologically relevant and degradable polymers has not yet been achieved despite the enhanced micellar stability offered by the crystalline core, the narrow width and length dispersity, and the ability to modulate shape and surface chemistry through living growth, which provides significant potential in advancing a wide range of biomedical applications, from drug delivery to tissue engineering. Furthermore, growth without the need for such postmodification and solvent transfer steps would greatly simplify access to these nanostructures. Previous reports using biocompatible polymers such as polyethylene (PE), poly(ethylene oxide) (PEO), PCL, and poly(l-lactide) (PLLA) have shown that these polymers can form both 1D and 2D assemblies by crystallization-driven self-assembly (CDSA) (27-35) and undergo controlled growth from single crystals. (36-38) For example, Eisenberg and co-workers reported the formation of cylindrical micelles using CDSA with a PCL core-forming block and a PEO corona. (39) The cylindrical micelle formation was ascribed to a crystallinity-driven ripening process of spherical micelles in water, yielding micrometer long cylinders after 2 weeks. However, no control was shown over the cylinders’ growth, and samples aged 3 months or longer were observed to undergo further morphological changes into ribbon-like particles and lamellae. Fan and co-workers also demonstrated that PEO-b-PCL seeds can be elongated into longer fibers via two simultaneous growth regimes, addition of unimers or end-to-end coupling of preformed cylinders. In this example, however, conditions that are not ideal when applied in a biological environment, including H2O/DMF or DMSO assembly solvents, and extended time periods for micellar growth at 4 °C were required. (40) Furthermore, PEO-b-PCL copolymers have not enabled full control over particle morphology (a mixture of spheres and cylinders are observed during the formation of short seeds) or precision controlled growth that could be predicted based on the polymer-to-seed ratio. (40) An alternative approach of fragmentation and growth of cylinders has also been reported, where the use of small molecule hydrogen-bond donors induce fragmentation (by creating stress in the corona) or dynamic cross-linking of the corona to allow growth. (42) However, this method is inherently limited by the demands of the coronal chemistry and provides only moderate length control. To date, only one example of CDSA in aqueous media has been reported using polymers with a poly(2-isopropyl-2-oxazoline) core. (41) However, no control over growth has been achieved.
Herein, we present the precise formation of biocompatible PCL block copolymers assembled into cylindrical micelles with unprecedented control over morphology and dimensions in both alcoholic and, for the first time, aqueous media. We report direct epitaxial crystallization in water without the need for postmodification or solvent transfer steps, leading to the formation of strong, biocompatible hydrogel materials capable of >95% cell viability. Furthermore, in contrast to previous work, where changes in block length were necessary to induce transitions from 1D to 2D materials, (17, 18) we show that block copolymers of the same block lengths but different coronal chemistry can be used to determine different morphologies, including platelet-forming unimers with larger corona blocks.

Results and Discussion

ARTICLE SECTIONS
Jump To

Synthesis and Preparation of PCL Crystalline Seeds

PCL block copolymers were synthesized using a combination of ring-opening polymerization (ROP) and reversible addition–fragmentation chain transfer (RAFT) polymerization (Table S1). Synthesis can be carried out on a large scale with predictable molecular weights and narrow dispersities as determined by NMR spectroscopic and SEC analyses (Figures S1–S5). Polydisperse cylinders of several micrometers in length were prepared by spontaneous nucleation in ethanol, a selective solvent for the corona block, (27) at a concentration of 5 mg/mL, when heated at 70 °C for 3 h and subsequently cooled down to room temperature (Figures 1 and S6). Self-assembly was monitored via transmission electron microscopy (TEM), and samples were aged for 5 days to reach well-defined structures. In order to achieve precise control over cylinder length, sonication of the aged micelles was carried out under controlled temperature (0 °C) using a sonication probe. Sonication kinetics revealed controlled fracture of the micelles according to a Gaussian scission model (Figure S7 and Table S2), where preferential fracture occurs toward the center of cylindrical micelles with no recombination of the fragments. (43) Uniform crystalline seeds ca. 50 nm in length were obtained as observed by TEM and selected area electron diffraction (SAED) (Figures 1 and S8). Importantly, no side reactions were observed after the heating process in ethanol or after sonication of the crystalline micelles (Figure S9).

Figure 1

Figure 1. (a) Schematic of self-nucleation of PCL50-b-PDMA180 diblock copolymer followed by sonication of polydisperse cylinders to form uniform seed micelles, TEM micrographs of (b) polydisperse cylinders and (c) seed micelles, and (d) length distribution of seed micelles. Uranyl acetate (1%) was used as a negative stain. Scale bar = 1000 nm.

Epitaxial Growth of PCL Cylinders in an Alcoholic Solvent

A living CDSA process was observed, where the 50 nm crystalline seeds serve as initiation sites for micelle growth on addition of polymer unimers prepared by dissolving the PCL50-b-PDMA180 block copolymer in a miscible solvent, such as tetrahydrofuran (THF). Controlled linear epitaxial growth showed the formation of nearly monodisperse cylindrical micelles up to several micrometers long (Figure S10), where the micelle length was found to be proportional to the amount of unimer added (Figure 2) (Lw/Ln ≤ 1.1 where Ln = number-average length and Lw = weight-average length). In contrast, the addition of PCL50-b-PDMAEMA170 unimers in THF to previously prepared PCL50-b-PDMA180 seeds resulted in the formation of platelet micelles (Figures S11–S14). This can be explained using a unimer solubility approach, as reported previously, (27) where more soluble unimers lead to a preference for the crystallization of plates as opposed to an initial aggregation step to form cylinders.

Figure 2

Figure 2. (a) Schematic of epitaxial growth of PCL50-b-PDMA180 cylindrical micelles in ethanol from 50 nm seeds. TEM micrographs of cylindrical micelles epitaxially grown from seed micelles with a unimer/seed ratio of (b) 1, (c) 2, (d) 3, (e) 5, (f) 7, and (g) 9. Uranyl acetate (1%) was used as a negative stain. Scale bar = 1000 nm. (h) Length dispersity of cylindrical micelles. (i) Plot showing a linear epitaxial growth regime of cylinders with narrow length dispersities (error bars represent the standard deviation, σ, of the length distribution) in comparison to the theoretical length (dashed line).

Controlled Epitaxial Growth in Water

A key challenge in the field of CDSA that currently limits the translation of these methodologies more rapidly into biomedical studies is the inability to apply commonly studied biodegradable polymer-based micelles of controlled length in a biologically relevant solvent. Several methods were attempted to achieve this with our PCL50-b-PDMA180 system, including dialysis of the micelles against water (both directly into pure water and using an ethanol/water gradient, from 9:1 to 1:9), slow addition of water, or fast removal of organic solvent using N2 flow and resuspension in water. However, the structures disassembled in all attempts, leading to rapid polymer precipitation (Figure S15). We attributed this phenomenon to the swelling of the corona block when transferring into water, causing stress to the crystalline structure and subsequent fracture. As such, we concluded that protecting the PCL core with a short block of a glassy, highly hydrophobic polymer would be more efficient in preventing disassembly. Following this strategy, micrometer-long cylindrical micelles were prepared from PCL50-b-PMMA20-b-PDMA200 triblock copolymers (Figures S16–19) using the same methodology described above (ethanol at 70 °C for 3 h and subsequent cooling to room temperature). Similarly to the diblock copolymer system, cylindrical micelles of controlled length were isolated by sonication and subsequent epitaxial growth in ethanol (Figure S20). Notably, the addition of the glassy, hydrophobic midblock enabled the successful transfer of these micellar structures into water by dialysis. We confirmed our methodology by also successfully preparing cylinders of controlled length using an alternative PCL50-b-PS10-b-PDMA200 triblock copolymer (Figures S21–S24).
These polymers show the first example of water-stable precision nanostructures of controllable morphology and dimensions in water using a biocompatible and biodegradable crystalline domain. To simplify our methods further, as well as seek to obtain control directly in aqueous media for the first time, we investigated the self-nucleation, sonication, and epitaxial growth in water. Self-nucleation was carried out in water at room temperature by dissolution of the polymer in a small amount of THF (50 mg/mL), followed by evaporation of the organic solvent to obtain long, polydisperse cylinders (Figure S25). Sonication of the self-nucleated cylinders in water resulted in seeds in a much shorter time scale (ca. 5 min), while still producing a controlled seed length of ca. 40 nm, (Figures S26 and S27). Importantly, the crystalline structure typical of PCL (45) was maintained in aqueous media, with the first strongest (110) diffraction at 2θ = 21.41° and the second strongest (200) diffraction at 2θ = 23.76° (Figure S27). Furthermore, the diameter of the cylinders remained constant (ca. 12 nm) for both the long and short micelles, as confirmed by cryogenic-TEM analysis (Figure S28), which is indicative of the controlled nature of this process. Controlled epitaxy was successfully achieved by adding different concentrations of unimers in acetone (a more volatile solvent than THF) to these seeds, followed by fast solvent evaporation to obtain stable structures in aqueous media (Figures 3, S29, and S30), achieving linear epitaxy with a micellar length that is predictable based on the unimer-to-seed ratio. In contrast to other CDSA-formed micelles, these cylinders represent the first example of directly preparing cylindrical micelles of controlled dimensions in water, thus paving the way for their utility in biological applications.

Figure 3

Figure 3. (a) Schematic representation of epitaxial growth in water using PCL50-b-PMMA20-b-PDMA200 triblock copolymer. TEM micrographs of cylindrical micelles epitaxially grown from 40 nm seed micelles in water with a unimer/seed ratio of (b) 1, (c) 5, (d) 9, and (e) 15, using graphene oxide TEM grids. (44) Scale bar = 1000 nm. (f) TEM micrograph (scale bar = 1000 nm) and (g) confocal microscopy image (scale bar = 20 μm) of fluorescently labeled cylindrical micelles epitaxially grown from seed micelles in water with a unimer/seed ratio of 15. Scale bar = 20 μm. (h) Length dispersity of cylindrical micelles. (i) Plot showing a linear epitaxial growth regime of cylinders with narrow length dispersities (error bars represent the standard deviation, σ, of the length distribution) in comparison to the theoretical length (dashed line).

With the success of the above approach to prepare precisely defined cylindrical micelles directly in water, we sought to demonstrate the biorelevance of our cylindrical micelles by investigating cell viability (using cylinders ca. 50 nm in length, as these represent an ideal size for drug delivery purposes). (46) MC3T3 (murine preosteoblasts) and A549 (human lung cancer fibroblasts) were treated with increasing concentrations of polymer in water, from 0 to 5 mg/mL. Cell viability was found to be higher than 95% even with the highest concentration of polymer used (Figure S31), suggesting our PCL system is highly biocompatible and can therefore find potential applications as a drug delivery carrier.
Furthermore, labeling of such micellar constructs with functional handles such as fluorescent molecules or radiolabels provides a simple method by which to readily track and image the particles within biological systems. As such, we sought to demonstrate that our water-dispersed cylindrical micelles were easily labeled while retaining the ability to undergo controlled living epitaxial growth in aqueous media. To this end, we took advantage of the ease of postpolymerization modification of the trithiocarbonate RAFT group to attach BODIPY-FL-C5-maleimide by a simple aminolysis and subsequent click reaction (Figures 3, S32, and S33). As expected, the living growth characteristics were retained, demonstrating their utility for further study in this field.

Epitaxy in Water to Form Hydrogel Materials

In order to fully take advantage of the unprecedented control in dimensions achieved in water, we then exploited the triblock copolymer micelle system to create biologically relevant hydrogel materials. Using sequential unimer additions with dye-labeled unimers, a strong hydrogel was obtained upon fast evaporation of acetone, with an overall solid content of 15 wt % (Figure 4a). Interestingly, it was observed that a minimum length of 2 μm was necessary to obtain a hydrogel by living CDSA. Targeting shorter lengths induced a gradual increase in viscosity, until hydrogel formation occurred when enough unimers were added to target the 2 μm length. Oscillatory rheology confirmed the gel-like nature of the material with a storage modulus (G′) of 4 kPa (Figure 4f), around 10 times higher than previously reported worm gels with a similar solid content. (47, 48) On applied strain (300%), the loss modulus (G″) was measured as greater than G′, indicating that the gel structure had been destroyed; however, the G′ was recovered at rest (0.1% strain) as the gel reformed (Figure 4d,e). The pore structure of the hydrogel was confirmed by cryogenic-scanning electron microscopy (cryo-SEM) analysis (Figure 4c) and, as expected, long, uniform cylinders could be observed by TEM upon freeze-drying a small amount of sample on the grid (Figure 4b).

Figure 4

Figure 4. (a) Schematic of hydrogel formation via direct epitaxial growth of PCL50-b-PMMA20-b-PDMA200 cylinders in water. (b) TEM micrograph of PCL50-b-PMMA20-b-PDMA200 hydrogel freeze-dried on a TEM grid. Scale bar = 1000 nm. (c) Cryo-SEM image of the cylinder hydrogel (scale bar = 2 μm) with photographs of the hydrogel using BODIPY-tagged (inset, left) and untagged cylinders (inset, right). (d) Step-strain measurements of cylinder hydrogel over three cycles (ω = 10 rad s–1) with (e) enlargement of the recovery of the material properties after each cycle. (f) Strain-dependent oscillatory rheology of the cylinder hydrogel at 293 K and a constant frequency of 10 rad s–1.

Surprisingly, the hydrogel did not swell and could not be redissolved upon addition of water despite the absence of any cross-linking or stabilization by chemical interactions. While the worm-gels as prepared were stable for extended time periods (at least 2 months) in aqueous media, the gel sheared into smaller fragments upon the addition of a larger amount of water, most likely as a consequence of the increasing osmotic pressure leading to fragmentation. This can be supported by TEM analysis of the residual water after fragmentation, where several shorter cylinders were observed (Figure S34).
Finally, the cell viability, using both previously mentioned cell lines, was assessed in 3D by preparing a hydrogel by living CDSA in cell-culture medium (MEM-α with addition of 10% fetal bovine serum and 1% penicillin/streptomycin). Cells were added by injection into the preformed gel and viability was assessed over 4 days. At each time point, high biocompatibility (>95%) was observed in the 3D matrix (Figure S35), opening the door to a new method for biorelevant hydrogel formation. Such systems, already loaded with the desired concentration of a therapeutic agent, would avoid the need for subsequent incorporation of potential drugs after gelation, increasing the control over dose and drug release.
In conclusion, we report the successful formation of crystalline poly(ε-caprolactone)-core 1D and 2D assemblies, achieving unprecedented control in morphology and dimension dispersities by direct epitaxial crystallization in aqueous media for the first time. This critical advance in the preparation of precision nanostructures is crucial to their translation into biological applications, providing a simplified method without the need for postpolymerization or postassembly modifications and solvent transfer steps. Furthermore, the ability to epitaxially grow a strong, biocompatible hydrogel from living CDSA of a biodegradable polymer and encapsulate living cells in its matrix demonstrates the versatility of this technique and opens vast avenues for future biorelevant applications.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b10199.

  • Experimental details and additional results (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Authors
  • Authors
    • Maria C. Arno - Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, United Kingdom
    • Maria Inam - Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, United Kingdom
    • Zachary Coe - Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, United Kingdom
    • Graeme Cambridge - Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, United Kingdom
    • Laura J. Macdougall - Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, United Kingdom
    • Robert Keogh - Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, United Kingdom
  • Notes
    The authors declare no competing financial interest.

Acknowledgment

ARTICLE SECTIONS
Jump To

Zachary P. L. Laker and Neil. R. Wilson are acknowledged for SAED measurements. Nicole Kelly is acknowledged for running WAXD of the samples. Wei Yu is acknowledged for running MALDI-ToF of PCL. Prof. Matthew Gibson is thanked for access to his cell lab facilities. The University of Warwick Advanced BioImaging Research Technology Platform, BBSRC ALERT14 award BB/M01228X/1, is thanked for confocal fluorescence microscopy analysis. The University of Warwick and EPSRC are thanked for the award of a Warwick Chancellors Scholarship (R.K.) and a DTP studentship (M.I. and L.J.M., respectively). ERC is acknowledged for support to M.C.A., A.P.D. (Grant Number 681559), G.C., and R.O.R. (Grant Number 615142).

References

ARTICLE SECTIONS
Jump To

This article references 48 other publications.

  1. 1
    Epps, T. H., III; O’Reilly, R. K. Chem. Sci. 2016, 7, 1674 1689 DOI: 10.1039/C5SC03505H
  2. 2
    O’Reilly, R. K.; Hawker, C. J.; Wooley, K. L. Chem. Soc. Rev. 2006, 35, 1068 1083 DOI: 10.1039/b514858h
  3. 3
    Nishiyama, N. Nat. Nanotechnol. 2007, 2, 203 204 DOI: 10.1038/nnano.2007.88
  4. 4
    Huang, X.; Teng, X.; Chen, D.; Tang, F.; He, J. Biomaterials 2010, 31, 438 448 DOI: 10.1016/j.biomaterials.2009.09.060
  5. 5
    Gratton, S. E. A.; Ropp, P. A.; Pohlhaus, P. D.; Luft, J. C.; Madden, V. J.; Napier, M. E.; DeSimone, J. M. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 11613 11618 DOI: 10.1073/pnas.0801763105
  6. 6
    Daum, N.; Tscheka, C.; Neumeyer, A.; Schneider, M. Wiley Interdiscip Rev. Nanomed Nanobiotechnol. 2012, 4, 52 65 DOI: 10.1002/wnan.165
  7. 7
    Caldorera-Moore, M.; Guimard, N.; Shi, L.; Roy, K. Expert Opin. Drug Delivery 2010, 7, 479 495 DOI: 10.1517/17425240903579971
  8. 8
    Liu, X.; Wu, F.; Tian, Y.; Wu, M.; Zhou, Q.; Jiang, S.; Niu, Z. Sci. Rep. 2016, 6, 24567 DOI: 10.1038/srep24567
  9. 9
    Raeesi, V.; Chou, L. Y. T.; Chan, W. C. W. Adv. Mater. 2016, 28, 8511 8518 DOI: 10.1002/adma.201600773
  10. 10
    Geng, Y.; Dalhaimer, P.; Cai, S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D. E. Nat. Nanotechnol. 2007, 2, 249 255 DOI: 10.1038/nnano.2007.70
  11. 11
    Crassous, J. J.; Schurtenberger, P.; Ballauff, M.; Mihut, A. M. Polymer 2015, 62, A1 A13 DOI: 10.1016/j.polymer.2015.02.030
  12. 12
    Patra, S. K.; Ahmed, R.; Whittell, G. R.; Lunn, D. J.; Dunphy, E. L.; Winnik, M. A.; Manners, I. J. Am. Chem. Soc. 2011, 133, 8842 8845 DOI: 10.1021/ja202408w
  13. 13
    Schmelz, J.; Schedl, A. E.; Steinlein, C.; Manners, I.; Schmalz, H. J. Am. Chem. Soc. 2012, 134, 14217 14225 DOI: 10.1021/ja306264d
  14. 14
    Wang, X.; Guérin, G.; Wang, H.; Wang, Y.; Manners, I.; Winnik, M. A. Science 2007, 317, 644 647 DOI: 10.1126/science.1141382
  15. 15
    Nazemi, A.; Boott, C. E.; Lunn, D. J.; Gwyther, J.; Hayward, D. W.; Richardson, R. M.; Winnik, M. A.; Manners, I. J. Am. Chem. Soc. 2016, 138, 4484 4493 DOI: 10.1021/jacs.5b13416
  16. 16
    Kim, Y.-J.; Cho, C.-H.; Paek, K.; Jo, M.; Park, M.-k.; Lee, N.-E.; Kim, Y.-j.; Kim, B. J.; Lee, E. J. Am. Chem. Soc. 2014, 136, 2767 2774 DOI: 10.1021/ja410165f
  17. 17
    Mohd Yusoff, S. F.; Hsiao, M.-S.; Schacher, F. H.; Winnik, M. A.; Manners, I. Macromolecules 2012, 45, 3883 3891 DOI: 10.1021/ma2027726
  18. 18
    Presa Soto, A.; Gilroy, J. B.; Winnik, M. A.; Manners, I. Angew. Chem., Int. Ed. 2010, 49, 8220 8223 DOI: 10.1002/anie.201003066
  19. 19
    Molev, G.; Lu, Y.; Kim, K. S.; Majdalani, I. C.; Guerin, G.; Petrov, S.; Walker, G.; Manners, I.; Winnik, M. A. Macromolecules 2014, 47, 2604 2615 DOI: 10.1021/ma402441y
  20. 20
    Cao, L.; Manners, I.; Winnik, M. A. Macromolecules 2002, 35, 8258 8260 DOI: 10.1021/ma021068x
  21. 21
    Hudson, Z. M.; Boott, C. E.; Robinson, M. E.; Rupar, P. A.; Winnik, M. A.; Manners, I. Nat. Chem. 2014, 6, 893 898 DOI: 10.1038/nchem.2038
  22. 22
    Du, Z. X.; Xu, J. T.; Fan, Z. Q. Macromolecules 2007, 40, 7633 7637 DOI: 10.1021/ma070977p
  23. 23
    Du, Z. X.; Xu, J. T.; Fan, Z. Q. Macromol. Rapid Commun. 2008, 29, 467 471 DOI: 10.1002/marc.200700795
  24. 24
    Su, M.; Huang, H.; Ma, X.; Wang, Q.; Su, Z. Macromol. Rapid Commun. 2013, 34, 1067 1071 DOI: 10.1002/marc.201300218
  25. 25
    He, W. N.; Xu, J. T.; Du, B. Y.; Fan, Z. Q.; Wang, X. Macromol. Chem. Phys. 2010, 211, 1909 1916 DOI: 10.1002/macp.201000184
  26. 26
    Glavas, L.; Olsén, P.; Odelius, K.; Albertsson, A.-C. Biomacromolecules 2013, 14, 4150 4156 DOI: 10.1021/bm401312j
  27. 27
    Inam, M.; Cambridge, G.; Pitto-Barry, A.; Laker, Z. P. L.; Wilson, N. R.; Mathers, R. T.; Dove, A. P.; O’Reilly, R. K. Chem. Sci. 2017, 8, 4223 4230 DOI: 10.1039/C7SC00641A
  28. 28
    Sun, L.; Petzetakis, N.; Pitto-Barry, A.; Schiller, T. L.; Kirby, N.; Keddie, D. J.; Boyd, B. J.; O’Reilly, R. K.; Dove, A. P. Macromolecules 2013, 46, 9074 9082 DOI: 10.1021/ma401634s
  29. 29
    Pitto-Barry, A.; Kirby, N.; Dove, A. P.; O’Reilly, R. K. Polym. Chem. 2014, 5, 1427 1436 DOI: 10.1039/C3PY01048A
  30. 30
    Rizis, G.; van de Ven, T. G.; Eisenberg, A. ACS Nano 2015, 9, 3627 3640 DOI: 10.1021/nn505068u
  31. 31
    Wang, J.; Zhu, W.; Peng, B.; Chen, Y. Polymer 2013, 54, 6760 6767 DOI: 10.1016/j.polymer.2013.10.027
  32. 32
    Zhu, W.; Peng, B.; Wang, J.; Zhang, K.; Liu, L.; Chen, Y. Macromol. Biosci. 2014, 14, 1764 1770 DOI: 10.1002/mabi.201400283
  33. 33
    Qi, H.; Zhou, T.; Mei, S.; Chen, X.; Li, C. Y. ACS Macro Lett. 2016, 5, 651 655 DOI: 10.1021/acsmacrolett.6b00251
  34. 34
    He, X.; He, Y.; Hsiao, M.-S.; Harniman, R. L.; Pearce, S.; Winnik, M. A.; Manners, I. J. Am. Chem. Soc. 2017, 139, 9221 9228 DOI: 10.1021/jacs.7b03172
  35. 35
    Fan, B.; Wang, R.-Y.; Wang, X.-Y.; Xu, J.-T.; Du, B.-Y.; Fan, Z.-Q. Macromolecules 2017, 50, 2006 2015 DOI: 10.1021/acs.macromol.7b00105
  36. 36
    Li, B.; Wang, B.; Ferrier, R. C., Jr.; Li, C. Y. Macromolecules 2009, 42, 9394 9399 DOI: 10.1021/ma902294k
  37. 37
    Chen, W. Y.; Li, C. Y.; Zheng, J. X.; Huang, P.; Zhu, L.; Ge, Q.; Quirk, R. P.; Lotz, B.; Deng, L.; Wu, C.; Thomas, E. L.; Cheng, S. Z. D. Macromolecules 2004, 37, 5292 5299 DOI: 10.1021/ma0493325
  38. 38
    Zheng, J. X.; Xiong, H.; Chen, W. Y.; Lee, K.; Van Horn, R. M.; Quirk, R. P.; Lotz, B.; Thomas, E. L.; Shi, A.-C.; Cheng, S. Z. D. Macromolecules 2006, 39, 641 650 DOI: 10.1021/ma052166w
  39. 39
    Rizis, G.; van de Ven, T. G. M.; Eisenberg, A. Soft Matter 2014, 10, 2825 2835 DOI: 10.1039/c3sm52950a
  40. 40
    He, W.-N.; Zhou, B.; Xu, J.-T.; Du, B.-Y.; Fan, Z.-Q. Macromolecules 2012, 45, 9768 9778 DOI: 10.1021/ma301267k
  41. 41
    Legros, C.; De Pauw-Gillet, M.-C.; Tam, K. C.; Taton, D.; Lecommandoux, S. Soft Matter 2015, 11, 3354 3359 DOI: 10.1039/C5SM00313J
  42. 42
    Yang, J.-X.; Fan, B.; Li, J.-H.; Xu, J.-T.; Du, B.-Y.; Fan, Z.-Q. Macromolecules 2016, 49, 367 372 DOI: 10.1021/acs.macromol.5b02349
  43. 43
    Guérin, G.; Wang, H.; Manners, I.; Winnik, M. A. J. Am. Chem. Soc. 2008, 130, 14763 14771 DOI: 10.1021/ja805262v
  44. 44
    Patterson, J. P.; Sanchez, A. M.; Petzetakis, N.; Smart, T. P.; Epps, T. H., III; Portman, I.; Wilson, N. R.; O’Reilly, R. K. Soft Matter 2012, 8, 3322 3328 DOI: 10.1039/c2sm07040e
  45. 45
    Nojima, S.; Ohguma, Y.; Kadena, K.-i.; Ishizone, T.; Iwasaki, Y.; Yamaguchi, K. Macromolecules 2010, 43, 3916 3923 DOI: 10.1021/ma100236u
  46. 46
    Zhang, S.; Li, J.; Lykotrafitis, G.; Bao, G.; Suresh, S. Adv. Mater. 2009, 21, 419 424 DOI: 10.1002/adma.200801393
  47. 47
    Warren, N. J.; Rosselgong, J.; Madsen, J.; Armes, S. P. Biomacromolecules 2015, 16, 2514 2521 DOI: 10.1021/acs.biomac.5b00767
  48. 48
    Simon, K. A.; Warren, N. J.; Mosadegh, B.; Mohammady, M. R.; Whitesides, G. M.; Armes, S. P. Biomacromolecules 2015, 16, 3952 3958 DOI: 10.1021/acs.biomac.5b01266

Cited By

This article is cited by 130 publications.

  1. Xu Zhang, Guanhao Chen, Bowen Zheng, Zhengwei Wan, Liping Liu, Lingyuan Zhu, Yujie Xie, Zaizai Tong. Uniform Two-Dimensional Crystalline Platelets with Tailored Compositions for pH Stimulus-Responsive Drug Release. Biomacromolecules 2023, Article ASAP.
  2. Dongni Lin, Yanling Li, Li Zhang, Ying Chen, Jianbo Tan. Scalable Preparation of Cylindrical Block Copolymer Micelles with a Liquid-Crystalline Perfluorinated Core by Photoinitiated Reversible Addition-Fragmentation Chain Transfer Dispersion Polymerization. Macromolecules 2023, 56 (2) , 440-447. https://doi.org/10.1021/acs.macromol.2c01983
  3. Chuanqi Zhao, Qi Chen, J. Diego Garcia-Hernandez, Lara K. Watanabe, Jeremy M. Rawson, Jianghong Rao, Ian Manners. Uniform and Length-Tunable, Paramagnetic Self-Assembled Nitroxide-Based Nanofibers for Magnetic Resonance Imaging. Macromolecules 2023, 56 (1) , 263-270. https://doi.org/10.1021/acs.macromol.2c02227
  4. Charlotte E. Ellis, J. Diego Garcia-Hernandez, Ian Manners. Scalable and Uniform Length-Tunable Biodegradable Block Copolymer Nanofibers with a Polycarbonate Core via Living Polymerization-Induced Crystallization-Driven Self-assembly. Journal of the American Chemical Society 2022, 144 (44) , 20525-20538. https://doi.org/10.1021/jacs.2c09715
  5. Steven T. G. Street, Josie Chrenek, Robert L. Harniman, Keiran Letwin, Judith M. Mantell, Ufuk Borucu, Stephanie M. Willerth, Ian Manners. Length-Controlled Nanofiber Micelleplexes as Efficient Nucleic Acid Delivery Vehicles. Journal of the American Chemical Society 2022, 144 (43) , 19799-19812. https://doi.org/10.1021/jacs.2c06695
  6. Shixing Lei, Jia Tian, Yuetong Kang, Yifan Zhang, Ian Manners. AIE-Active, Stimuli-Responsive Fluorescent 2D Block Copolymer Nanoplatelets Based on Corona Chain Compression. Journal of the American Chemical Society 2022, 144 (38) , 17630-17641. https://doi.org/10.1021/jacs.2c07133
  7. Xu Zhang, Guanhao Chen, Liping Liu, Lingyuan Zhu, Zaizai Tong. Precise Control of Two-Dimensional Platelet Micelles from Biodegradable Poly(p-dioxanone) Block Copolymers by Crystallization-Driven Self-Assembly. Macromolecules 2022, 55 (18) , 8250-8261. https://doi.org/10.1021/acs.macromol.2c01158
  8. Jiucheng Nie, Xiaoyu Huang, Guolin Lu, Mitchell A. Winnik, Chun Feng. Living Crystallization-Driven Self-Assembly of Linear and V-Shaped Oligo(p-phenylene ethynylene)-Containing Block Copolymers: Architecture Effect of π-Conjugated Crystalline Segment. Macromolecules 2022, 55 (17) , 7856-7868. https://doi.org/10.1021/acs.macromol.2c01273
  9. Yanjun Gong, Chuanqin Cheng, Hongwei Ji, Yanke Che, Ling Zang, Jincai Zhao, Yifan Zhang. Unprecedented Small Molecule-Based Uniform Two-Dimensional Platelets with Tailorable Shapes and Sizes. Journal of the American Chemical Society 2022, 144 (33) , 15403-15410. https://doi.org/10.1021/jacs.2c07480
  10. Sylvia Ganda, Chin Ken Wong, Joanna Biazik, Radhika Raveendran, Lin Zhang, Fan Chen, Nicholas Ariotti, Martina H. Stenzel. Macrophage-Targeting and Complete Lysosomal Degradation of Self-assembled Two-Dimensional Poly(ε-caprolactone) Platelet Particles. ACS Applied Materials & Interfaces 2022, 14 (31) , 35333-35343. https://doi.org/10.1021/acsami.2c06555
  11. Chen Zhu, Julien Nicolas. (Bio)degradable and Biocompatible Nano-Objects from Polymerization-Induced and Crystallization-Driven Self-Assembly. Biomacromolecules 2022, 23 (8) , 3043-3080. https://doi.org/10.1021/acs.biomac.2c00230
  12. Jiarui Wu, Li Zhang, Ying Chen, Jianbo Tan. Linear and Star Block Copolymer Nanoparticles Prepared by Heterogeneous RAFT Polymerization Using an ω,ω-Heterodifunctional Macro-RAFT Agent. ACS Macro Letters 2022, 11 (7) , 910-918. https://doi.org/10.1021/acsmacrolett.2c00314
  13. Inho Choi, Sung-Yun Kang, Sanghee Yang, Namkyu Yun, Tae-Lim Choi. Fabrication of Semiconducting Nanoribbons with Tunable Length and Width via Crystallization-Driven Self-Assembly of a Homopolymer Prepared by Cyclopolymerization Using Grubbs Catalyst. Macromolecules 2022, 55 (9) , 3484-3492. https://doi.org/10.1021/acs.macromol.2c00400
  14. Yawei Su, Yikun Jiang, Liping Liu, Yujie Xie, Shichang Chen, Yongjun Wang, Rachel K. O’Reilly, Zaizai Tong. Hydrogen-Bond-Regulated Platelet Micelles by Crystallization-Driven Self-Assembly and Templated Growth for Poly(ε-Caprolactone) Block Copolymers. Macromolecules 2022, 55 (3) , 1067-1076. https://doi.org/10.1021/acs.macromol.1c02402
  15. Robert L. Harniman, Samuel Pearce, Ian Manners. Exploring the “Living” Growth of Block Copolymer Nanofibers from Surface-Confined Seeds by In Situ Solution-Phase Atomic Force Microscopy. Journal of the American Chemical Society 2022, 144 (2) , 951-962. https://doi.org/10.1021/jacs.1c11209
  16. Shixing Lei, Jia Tian, Tomoya Fukui, Mitchell A. Winnik, Ian Manners. Probing the Analogy between Living Crystallization-Driven Self-Assembly and Living Covalent Polymerizations: Length-Independent Growth Behavior for 1D Block Copolymer Nanofibers. Macromolecules 2022, 55 (1) , 359-369. https://doi.org/10.1021/acs.macromol.1c02241
  17. Diego A. Resendiz-Lara, Frederik R. Wurm. Polyphosphonate-Based Macromolecular RAFT-CTA Enables the Synthesis of Well-Defined Block Copolymers Using Vinyl Monomers. ACS Macro Letters 2021, 10 (10) , 1273-1279. https://doi.org/10.1021/acsmacrolett.1c00564
  18. Zhengmin Tang, Liang Gao, Jiaping Lin, Chunhua Cai, Yuan Yao, Gerald Guerin, Xiaohui Tian, Shaoliang Lin. Anchorage-Dependent Living Supramolecular Self-Assembly of Polymeric Micelles. Journal of the American Chemical Society 2021, 143 (36) , 14684-14693. https://doi.org/10.1021/jacs.1c06020
  19. Sylvia Ganda, Chin Ken Wong, Martina H. Stenzel. Corona-Loading Strategies for Crystalline Particles Made by Living Crystallization-Driven Self-Assembly. Macromolecules 2021, 54 (14) , 6662-6669. https://doi.org/10.1021/acs.macromol.1c00643
  20. Zhiqin Wang, Chen Ma, Xiaoyu Huang, Guolin Lu, Mitchell A. Winnik, Chun Feng. Self-Seeding of Oligo(p-phenylenevinylene)-b-poly(2-vinylpyridine) Micelles: Effect of Metal Ions. Macromolecules 2021, 54 (14) , 6705-6717. https://doi.org/10.1021/acs.macromol.1c00965
  21. J. Diego Garcia-Hernandez, Steven T. G. Street, Yuetong Kang, Yifan Zhang, Ian Manners. Cargo Encapsulation in Uniform, Length-Tunable Aqueous Nanofibers with a Coaxial Crystalline and Amorphous Core. Macromolecules 2021, 54 (12) , 5784-5796. https://doi.org/10.1021/acs.macromol.1c00672
  22. Maolin Wang, Zhenkai Xu, Yi Shi, Fang Cai, Jiaqi Qiu, Guang Yang, Zan Hua, Tao Chen. TEMPO-Functionalized Nanoreactors from Bottlebrush Copolymers for the Selective Oxidation of Alcohols in Water. The Journal of Organic Chemistry 2021, 86 (12) , 8027-8035. https://doi.org/10.1021/acs.joc.1c00410
  23. Yifan Zhang, Huda Shaikh, Alexander J. Sneyd, Jia Tian, James Xiao, Arthur Blackburn, Akshay Rao, Richard H. Friend, Ian Manners. Efficient Energy Funneling in Spatially Tailored Segmented Conjugated Block Copolymer Nanofiber–Quantum Dot or Rod Conjugates. Journal of the American Chemical Society 2021, 143 (18) , 7032-7041. https://doi.org/10.1021/jacs.1c01571
  24. Liying Kang, Albert Chao, Meng Zhang, Tianyi Yu, Jun Wang, Qi Wang, Huihui Yu, Naisheng Jiang, Donghui Zhang. Modulating the Molecular Geometry and Solution Self-Assembly of Amphiphilic Polypeptoid Block Copolymers by Side Chain Branching Pattern. Journal of the American Chemical Society 2021, 143 (15) , 5890-5902. https://doi.org/10.1021/jacs.1c01088
  25. Yifan Zhang, Samuel Pearce, Jean-Charles Eloi, Robert L. Harniman, Jia Tian, Cristina Cordoba, Yuetong Kang, Tomoya Fukui, Huibin Qiu, Arthur Blackburn, Robert M. Richardson, Ian Manners. Dendritic Micelles with Controlled Branching and Sensor Applications. Journal of the American Chemical Society 2021, 143 (15) , 5805-5814. https://doi.org/10.1021/jacs.1c00770
  26. Zaizai Tong, Yawei Su, Yikun Jiang, Yujie Xie, Shichang Chen, Rachel K. O’Reilly. Spatially Restricted Templated Growth of Poly(ε-caprolactone) from Carbon Nanotubes by Crystallization-Driven Self-Assembly. Macromolecules 2021, 54 (6) , 2844-2851. https://doi.org/10.1021/acs.macromol.0c02739
  27. Spyridon Varlas, Zan Hua, Joseph R. Jones, Marjolaine Thomas, Jeffrey C. Foster, Rachel K. O’Reilly. Complementary Nucleobase Interactions Drive the Hierarchical Self-Assembly of Core–Shell Bottlebrush Block Copolymers toward Cylindrical Supramolecules. Macromolecules 2020, 53 (22) , 9747-9757. https://doi.org/10.1021/acs.macromol.0c01857
  28. Gerald Guerin, Gregory Molev, Paul A. Rupar, Ian Manners, Mitchell A. Winnik. Understanding the Dissolution and Regrowth of Core-Crystalline Block Copolymer Micelles: A Scaling Approach. Macromolecules 2020, 53 (22) , 10198-10211. https://doi.org/10.1021/acs.macromol.0c02215
  29. Charles N. Jarrett-Wilkins, Samuel Pearce, Liam R. MacFarlane, Sean A. Davis, Charl F. J. Faul, Ian Manners. Surface Patterning of Uniform 2D Platelet Block Comicelles via Coronal Chain Collapse. ACS Macro Letters 2020, 9 (11) , 1514-1520. https://doi.org/10.1021/acsmacrolett.0c00612
  30. Liang Gao, Hongbing Gao, Jiaping Lin, Liquan Wang, Xiao-Song Wang, Chunming Yang, Shaoliang Lin. Growth and Termination of Cylindrical Micelles via Liquid-Crystallization-Driven Self-Assembly. Macromolecules 2020, 53 (20) , 8992-8999. https://doi.org/10.1021/acs.macromol.0c01820
  31. Chen Ma, Daliao Tao, Yinan Cui, Xiaoyu Huang, Guolin Lu, Chun Feng. Fragmentation of Fiber-like Micelles with a π-Conjugated Crystalline Oligo(p-phenylenevinylene) Core and a Photocleavable Corona in Water: A Matter of Density of Corona-Forming Chains. Macromolecules 2020, 53 (19) , 8631-8641. https://doi.org/10.1021/acs.macromol.0c01698
  32. Chen Ma, Zhiqin Wang, Xiaoyu Huang, Guolin Lu, Ian Manners, Mitchell A. Winnik, Chun Feng. Water-Dispersible, Colloidally Stable, Surface-Functionalizable Uniform Fiberlike Micelles Containing a π-Conjugated Oligo(p-phenylenevinylene) Core of Controlled Length. Macromolecules 2020, 53 (18) , 8009-8019. https://doi.org/10.1021/acs.macromol.0c01631
  33. Tomoya Fukui, J. Diego Garcia-Hernandez, Liam R. MacFarlane, Shixing Lei, George R. Whittell, Ian Manners. Seeded Self-Assembly of Charge-Terminated Poly(3-hexylthiophene) Amphiphiles Based on the Energy Landscape. Journal of the American Chemical Society 2020, 142 (35) , 15038-15048. https://doi.org/10.1021/jacs.0c06185
  34. Jiucheng Nie, Zhiqin Wang, Xiaoyu Huang, Guolin Lu, Chun Feng. Uniform Continuous and Segmented Nanofibers Containing a π-Conjugated Oligo(p-phenylene ethynylene) Core via “Living” Crystallization-Driven Self-Assembly: Importance of Oligo(p-phenylene ethynylene) Chain Length. Macromolecules 2020, 53 (15) , 6299-6313. https://doi.org/10.1021/acs.macromol.0c01199
  35. Zexuan Ding, Guhuan Liu, Jinming Hu. Ratiometric Fluorescent Mapping of pH and Glutathione Dictates Intracellular Transport Pathways of Micellar Nanoparticles. Biomacromolecules 2020, 21 (8) , 3436-3446. https://doi.org/10.1021/acs.biomac.0c00872
  36. Huda Shaikh, Xu-Hui Jin, Robert L. Harniman, Robert M. Richardson, George R. Whittell, Ian Manners. Solid-State Donor–Acceptor Coaxial Heterojunction Nanowires via Living Crystallization-Driven Self-Assembly. Journal of the American Chemical Society 2020, 142 (31) , 13469-13480. https://doi.org/10.1021/jacs.0c04975
  37. Yinan Cui, Zhiqin Wang, Xiaoyu Huang, Guolin Lu, Ian Manners, Mitchell A. Winnik, Chun Feng. How a Small Change of Oligo(p-phenylenevinylene) Chain Length Affects Self-Seeding of Oligo(p-phenylenevinylene)-Containing Block Copolymers. Macromolecules 2020, 53 (5) , 1831-1841. https://doi.org/10.1021/acs.macromol.0c00068
  38. Wei Yu, Jeffrey C. Foster, Andrew P. Dove, Rachel K. O’Reilly. Length Control of Biodegradable Fiber-Like Micelles via Tuning Solubility: A Self-Seeding Crystallization-Driven Self-Assembly of Poly(ε-caprolactone)-Containing Triblock Copolymers. Macromolecules 2020, 53 (4) , 1514-1521. https://doi.org/10.1021/acs.macromol.9b02613
  39. Md Anisur Rahman, Ye Sha, Moumita Sharmin Jui, Meghan E. Lamm, Yufeng Ma, Chuanbing Tang. Facial Amphiphilicity-Induced Self-Assembly (FAISA) of Amphiphilic Copolymers. Macromolecules 2019, 52 (24) , 9526-9535. https://doi.org/10.1021/acs.macromol.9b02008
  40. Yunxiang He, Jean-Charles Eloi, Robert L. Harniman, Robert M. Richardson, George R. Whittell, Robert T. Mathers, Andrew P. Dove, Rachel K. O’Reilly, Ian Manners. Uniform Biodegradable Fiber-Like Micelles and Block Comicelles via “Living” Crystallization-Driven Self-Assembly of Poly(l-lactide) Block Copolymers: The Importance of Reducing Unimer Self-Nucleation via Hydrogen Bond Disruption. Journal of the American Chemical Society 2019, 141 (48) , 19088-19098. https://doi.org/10.1021/jacs.9b09885
  41. Naisheng Jiang, Tianyi Yu, Omead A. Darvish, Shuo Qian, Igor Kevin Mkam Tsengam, Vijay John, Donghui Zhang. Crystallization-Driven Self-Assembly of Coil–Comb-Shaped Polypeptoid Block Copolymers: Solution Morphology and Self-Assembly Pathways. Macromolecules 2019, 52 (22) , 8867-8877. https://doi.org/10.1021/acs.macromol.9b01546
  42. Charles N. Jarrett-Wilkins, Rebecca A. Musgrave, Rebekah L. N. Hailes, Robert L. Harniman, Charl F. J. Faul, Ian Manners. Linear and Branched Fiber-like Micelles from the Crystallization-Driven Self-Assembly of Heterobimetallic Block Copolymer Polyelectrolyte/Surfactant Complexes. Macromolecules 2019, 52 (19) , 7289-7300. https://doi.org/10.1021/acs.macromol.9b01370
  43. Samuel Pearce, Xiaoming He, Ming-Siao Hsiao, Robert L. Harniman, Liam R. MacFarlane, Ian Manners. Uniform, High-Aspect-Ratio, and Patchy 2D Platelets by Living Crystallization-Driven Self-Assembly of Crystallizable Poly(ferrocenyldimethylsilane)-Based Homopolymers with Hydrophilic Charged Termini. Macromolecules 2019, 52 (16) , 6068-6079. https://doi.org/10.1021/acs.macromol.9b00904
  44. Xiaocong Dai, Yuxuan Zhang, Liangliang Yu, Xueliang Li, Li Zhang, Jianbo Tan. Seeded Photoinitiated Polymerization-Induced Self-Assembly: Cylindrical Micelles with Patchy Structures Prepared via the Chain Extension of a Third Block. ACS Macro Letters 2019, 8 (8) , 955-961. https://doi.org/10.1021/acsmacrolett.9b00427
  45. Qing Yu, Megan G. Roberts, Samuel Pearce, Alex M. Oliver, Hang Zhou, Christine Allen, Ian Manners, Mitchell A. Winnik. Rodlike Block Copolymer Micelles of Controlled Length in Water Designed for Biomedical Applications. Macromolecules 2019, 52 (14) , 5231-5244. https://doi.org/10.1021/acs.macromol.9b00959
  46. Yujin Cha, Charles Jarrett-Wilkins, Md Anisur Rahman, Tianyu Zhu, Ye Sha, Ian Manners, Chuanbing Tang. Crystallization-Driven Self-Assembly of Metallo-Polyelectrolyte Block Copolymers with a Polycaprolactone Core-Forming Segment. ACS Macro Letters 2019, 8 (7) , 835-840. https://doi.org/10.1021/acsmacrolett.9b00335
  47. Zhen Li, Yufei Zhang, Libin Wu, Wei Yu, Thomas R. Wilks, Andrew P. Dove, Hong-ming Ding, Rachel K. O’Reilly, Guosong Chen, Ming Jiang. Glyco-Platelets with Controlled Morphologies via Crystallization-Driven Self-Assembly and Their Shape-Dependent Interplay with Macrophages. ACS Macro Letters 2019, 8 (5) , 596-602. https://doi.org/10.1021/acsmacrolett.9b00221
  48. Jeffrey C. Foster, Spyridon Varlas, Benoit Couturaud, Zachary Coe, Rachel K. O’Reilly. Getting into Shape: Reflections on a New Generation of Cylindrical Nanostructures’ Self-Assembly Using Polymer Building Blocks. Journal of the American Chemical Society 2019, 141 (7) , 2742-2753. https://doi.org/10.1021/jacs.8b08648
  49. Gerald Guerin, Gregory Molev, Dmitry Pichugin, Paul A. Rupar, Fei Qi, Menandro Cruz, Ian Manners, Mitchell A. Winnik. Effect of Concentration on the Dissolution of One-Dimensional Polymer Crystals: A TEM and NMR Study. Macromolecules 2019, 52 (1) , 208-216. https://doi.org/10.1021/acs.macromol.8b02126
  50. Alex M. Oliver, Jessica Gwyther, Charlotte E. Boott, Sean Davis, Samuel Pearce, Ian Manners. Scalable Fiber-like Micelles and Block Co-micelles by Polymerization-Induced Crystallization-Driven Self-Assembly. Journal of the American Chemical Society 2018, 140 (51) , 18104-18114. https://doi.org/10.1021/jacs.8b10993
  51. John R. Finnegan, Xiaoming He, Steven T. G. Street, J. Diego Garcia-Hernandez, Dominic W. Hayward, Robert L. Harniman, Robert M. Richardson, George R. Whittell, Ian Manners. Extending the Scope of “Living” Crystallization-Driven Self-Assembly: Well-Defined 1D Micelles and Block Comicelles from Crystallizable Polycarbonate Block Copolymers. Journal of the American Chemical Society 2018, 140 (49) , 17127-17140. https://doi.org/10.1021/jacs.8b09861
  52. Inho Choi, Sanghee Yang, Tae-Lim Choi. Preparing Semiconducting Nanoribbons with Tunable Length and Width via Crystallization-Driven Self-Assembly of a Simple Conjugated Homopolymer. Journal of the American Chemical Society 2018, 140 (49) , 17218-17225. https://doi.org/10.1021/jacs.8b10406
  53. Bin Fan, Jin-Qiao Xue, Xiao-Shuai Guo, Xiao-Han Cao, Rui-Yang Wang, Jun-Ting Xu, Bin-Yang Du, Zhi-Qiang Fan. Regulated Fragmentation of Crystalline Micelles of Block Copolymer via Monoamine-Induced Corona Swelling. Macromolecules 2018, 51 (19) , 7637-7648. https://doi.org/10.1021/acs.macromol.8b01131
  54. Charlotte E. Boott, Erin M. Leitao, Dominic W. Hayward, Romain F. Laine, Pierre Mahou, Gerald Guerin, Mitchell A. Winnik, Robert M. Richardson, Clemens F. Kaminski, George R. Whittell, Ian Manners. Probing the Growth Kinetics for the Formation of Uniform 1D Block Copolymer Nanoparticles by Living Crystallization-Driven Self-Assembly. ACS Nano 2018, 12 (9) , 8920-8933. https://doi.org/10.1021/acsnano.8b01353
  55. Fugui Xu, Pengfei Zhang, Jiacheng Zhang, Chunyang Yu, Deyue Yan, Yiyong Mai. Crystallization-Driven Two-Dimensional Self-Assembly of Amphiphilic PCL-b-PEO Coated Gold Nanoparticles in Aqueous Solution. ACS Macro Letters 2018, 7 (9) , 1062-1067. https://doi.org/10.1021/acsmacrolett.8b00383
  56. Danny Bousmail, Pongphak Chidchob, Hanadi F. Sleiman. Cyanine-Mediated DNA Nanofiber Growth with Controlled Dimensionality. Journal of the American Chemical Society 2018, 140 (30) , 9518-9530. https://doi.org/10.1021/jacs.8b04157
  57. Ulrich Tritschler, Jessica Gwyther, Robert L. Harniman, George R. Whittell, Mitchell A. Winnik, Ian Manners. Toward Uniform Nanofibers with a π-Conjugated Core: Optimizing the “Living” Crystallization-Driven Self-Assembly of Diblock Copolymers with a Poly(3-octylthiophene) Core-Forming Block. Macromolecules 2018, 51 (14) , 5101-5113. https://doi.org/10.1021/acs.macromol.8b00488
  58. Gurusamy Saravanakumar, Hyeongmok Park, Jinhwan Kim, Dongsik Park, Swapan Pramanick, Dae Heon Kim, Won Jong Kim. Miktoarm Amphiphilic Block Copolymer with Singlet Oxygen-Labile Stereospecific β-Aminoacrylate Junction: Synthesis, Self-Assembly, and Photodynamically Triggered Drug Release. Biomacromolecules 2018, 19 (6) , 2202-2213. https://doi.org/10.1021/acs.biomac.8b00290
  59. Qing Yu, Dmitry Pichugin, Menandro Cruz, Gerald Guerin, Ian Manners, Mitchell A. Winnik. NMR Study of the Dissolution of Core-Crystalline Micelles. Macromolecules 2018, 51 (9) , 3279-3289. https://doi.org/10.1021/acs.macromol.8b00098
  60. Dominic W. Hayward, David J. Lunn, Annela Seddon, John R. Finnegan, Oliver E. C. Gould, Oxana Magdysyuk, Ian Manners, George R. Whittell, Robert M. Richardson. Structure of the Crystalline Core of Fiber-like Polythiophene Block Copolymer Micelles. Macromolecules 2018, 51 (8) , 3097-3106. https://doi.org/10.1021/acs.macromol.7b02552
  61. Xiang-Yue Wang, Rui-Yang Wang, Bin Fan, Jun-Ting Xu, Bin-Yang Du, Zhi-Qiang Fan. Specific Disassembly of Lamellar Crystalline Micelles of Block Copolymer into Cylinders. Macromolecules 2018, 51 (5) , 2138-2144. https://doi.org/10.1021/acs.macromol.7b02406
  62. Jiangping Xu, Hang Zhou, Qing Yu, Ian Manners, and Mitchell A. Winnik . Competitive Self-Assembly Kinetics as a Route To Control the Morphology of Core-Crystalline Cylindrical Micelles. Journal of the American Chemical Society 2018, 140 (7) , 2619-2628. https://doi.org/10.1021/jacs.7b12444
  63. Emily L. Kynaston, Ali Nazemi, Liam R. MacFarlane, George R. Whittell, Charl F. J. Faul, and Ian Manners . Uniform Polyselenophene Block Copolymer Fiberlike Micelles and Block Co-micelles via Living Crystallization-Driven Self-Assembly. Macromolecules 2018, 51 (3) , 1002-1010. https://doi.org/10.1021/acs.macromol.7b02317
  64. Bixin Jin, Yiqi Chen, Yunjun Luo, Xiaoyu Li. Precise and Controllable Assembly of Block Copolymers †. Chinese Journal of Chemistry 2023, 41 (1) , 93-110. https://doi.org/10.1002/cjoc.202200489
  65. Zehua Li, Amanda K. Pearce, Jianzhong Du, Andrew P. Dove, Rachel K. O'Reilly. Uniform antibacterial cylindrical nanoparticles for enhancing the strength of nanocomposite hydrogels. Journal of Polymer Science 2023, 61 (1) , 44-55. https://doi.org/10.1002/pol.20210853
  66. Junyu Ma, Chen Ma, Xiaoyu Huang, Pedro Henrique Hermes de Araujo, Amit Kumal Goyal, Guolin Lu, Chun Feng. Preparation and cellular uptake behaviors of uniform fiber-like micelles with length controllability and high colloidal stability in aqueous media. Fundamental Research 2023, 3 (1) , 93-101. https://doi.org/10.1016/j.fmre.2022.01.020
  67. Hui Sun, Shuai Chen, Xiao Li, Ying Leng, Xiaoyan Zhou, Jianzhong Du. Lateral growth of cylinders. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-29863-8
  68. Haohui Huo, Jing Zou, Shu‐Gui Yang, Jiaqi Zhang, Jie Liu, Yutong Liu, Yanyun Hao, Hongfei Chen, Hui Li, Chaobo Huang, Goran Ungar, Feng Liu, Zhiyue Zhang, Qilu Zhang. Multicompartment Nanoparticles by Crystallization‐Driven Self‐Assembly of Star Polymers: Combining High Stability and Loading Capacity. Macromolecular Rapid Communications 2022, , 2200706. https://doi.org/10.1002/marc.202200706
  69. Charlotte E. Ellis, Christian Hils, Alex M. Oliver, Andreas Greiner, Holger Schmalz, Ian Manners. Electrospinning of 1D Fiber‐Like Block Copolymer Micelles with a Crystalline Core. Macromolecular Chemistry and Physics 2022, 223 (19) , 2200151. https://doi.org/10.1002/macp.202200151
  70. Meng Gao, Weibing Zhang, Binchang Wu, Yining Dai, Chengdong Peng, Yuexiao Pan. Acetate-triggered morphology evolution and improved photoluminescence performance of K2NaInF6:Mn4+ crystals for wide applications. Journal of Luminescence 2022, 249 , 119011. https://doi.org/10.1016/j.jlumin.2022.119011
  71. Yingsheng Zhu, Peng Liu, Jian Zhang, Jiaman Hu, Youliang Zhao. Facile synthesis of monocyclic, dumbbell-shaped and jellyfish-like copolymers using a telechelic multisite hexablock copolymer. Polymer Chemistry 2022, 13 (34) , 4953-4965. https://doi.org/10.1039/D2PY00824F
  72. Chen Yang, Zi‐Xian Li, Jun‐Ting Xu. Single crystals and two‐dimensional crystalline assemblies of block copolymers. Journal of Polymer Science 2022, 60 (15) , 2153-2174. https://doi.org/10.1002/pol.20210866
  73. J. Diego Garcia-Hernandez, Hayley C. Parkin, Yangyang Ren, Yifan Zhang, Ian Manners. Hydrophobic cargo loading at the core–corona interface of uniform, length-tunable aqueous diblock copolymer nanofibers with a crystalline polycarbonate core. Polymer Chemistry 2022, 13 (28) , 4100-4110. https://doi.org/10.1039/D2PY00395C
  74. Boyang Shi, Ding Shen, Wei Li, Guowei Wang. Self‐Assembly of Copolymers Containing Crystallizable Blocks: Strategies and Applications. Macromolecular Rapid Communications 2022, 43 (14) , 2200071. https://doi.org/10.1002/marc.202200071
  75. Yunxiang He, Yang Tang, Yifan Zhang, Liam MacFarlane, Jiaojiao Shang, Heping Shi, Qiuping Xie, Hui Zhao, Ian Manners, Junling Guo. Driving forces and molecular interactions in the self-assembly of block copolymers to form fiber-like micelles. Applied Physics Reviews 2022, 9 (2) , 021301. https://doi.org/10.1063/5.0083099
  76. Steven T. G. Street, Yunxiang He, Robert L. Harniman, Juan Diego Garcia-Hernandez, Ian Manners. Precision polymer nanofibers with a responsive polyelectrolyte corona designed as a modular, functionalizable nanomedicine platform. Polymer Chemistry 2022, 13 (20) , 3009-3025. https://doi.org/10.1039/D2PY00152G
  77. Akosua B. Anane-Adjei, Nicholas L. Fletcher, Robert J. Cavanagh, Zachary H. Houston, Theodore Crawford, Amanda K. Pearce, Vincenzo Taresco, Alison A. Ritchie, Phillip Clarke, Anna M. Grabowska, Paul R. Gellert, Marianne B. Ashford, Barrie Kellam, Kristofer J. Thurecht, Cameron Alexander. Synthesis, characterisation and evaluation of hyperbranched N -(2-hydroxypropyl) methacrylamides for transport and delivery in pancreatic cell lines in vitro and in vivo. Biomaterials Science 2022, 10 (9) , 2328-2344. https://doi.org/10.1039/D1BM01548F
  78. Jiaqi Qiu, Jinjin Huang, Xiaokang Zhu, Yuting Min, Dongming Qi, Tao Chen. Facile one-step fabrication of DMAP-functionalized catalytic nanoreactors by polymerization-induced self-assembly in water. Molecular Catalysis 2022, 518 , 112073. https://doi.org/10.1016/j.mcat.2021.112073
  79. Junyu Ma, Guolin Lu, Xiaoyu Huang, Chun Feng. π-Conjugated-polymer-based nanofibers through living crystallization-driven self-assembly: preparation, properties and applications. Chemical Communications 2021, 57 (98) , 13259-13274. https://doi.org/10.1039/D1CC04825B
  80. Geyu Lin, Jiandong Cai, Yan Sun, Yan Cui, Qiuwen Liu, Ian Manners, Huibin Qiu. Capillary‐Bound Dense Micelle Brush Supports for Continuous Flow Catalysis. Angewandte Chemie International Edition 2021, https://doi.org/10.1002/anie.202110206
  81. Geyu Lin, Jiandong Cai, Yan Sun, Yan Cui, Qiuwen Liu, Ian Manners, Huibin Qiu. Capillary‐Bound Dense Micelle Brush Supports for Continuous Flow Catalysis. Angewandte Chemie 2021, https://doi.org/10.1002/ange.202110206
  82. Naisheng Jiang, Donghui Zhang. Solution Self-Assembly of Coil-Crystalline Diblock Copolypeptoids Bearing Alkyl Side Chains. Polymers 2021, 13 (18) , 3131. https://doi.org/10.3390/polym13183131
  83. Alexander J. Sneyd, Tomoya Fukui, David Paleček, Suryoday Prodhan, Isabella Wagner, Yifan Zhang, Jooyoung Sung, Sean M. Collins, Thomas J. A. Slater, Zahra Andaji-Garmaroudi, Liam R. MacFarlane, J. Diego Garcia-Hernandez, Linjun Wang, George R. Whittell, Justin M. Hodgkiss, Kai Chen, David Beljonne, Ian Manners, Richard H. Friend, Akshay Rao. Efficient energy transport in an organic semiconductor mediated by transient exciton delocalization. Science Advances 2021, 7 (32) https://doi.org/10.1126/sciadv.abh4232
  84. Zehua Li, Amanda K. Pearce, Andrew P. Dove, Rachel K. O’Reilly. Precise Tuning of Polymeric Fiber Dimensions to Enhance the Mechanical Properties of Alginate Hydrogel Matrices. Polymers 2021, 13 (13) , 2202. https://doi.org/10.3390/polym13132202
  85. Charlotte E. Ellis, Tomoya Fukui, Cristina Cordoba, Arthur Blackburn, Ian Manners. Towards scalable, low dispersity, and dimensionally tunable 2D platelets using living crystallization-driven self-assembly. Polymer Chemistry 2021, 12 (25) , 3650-3660. https://doi.org/10.1039/D1PY00571E
  86. John R. Finnegan, Emily H. Pilkington, Karen Alt, Md. Arifur Rahim, Stephen J. Kent, Thomas P. Davis, Kristian Kempe. Stealth nanorods via the aqueous living crystallisation-driven self-assembly of poly(2-oxazoline)s. Chemical Science 2021, 12 (21) , 7350-7360. https://doi.org/10.1039/D1SC00938A
  87. Christian Hils, Ian Manners, Judith Schöbel, Holger Schmalz. Patchy Micelles with a Crystalline Core: Self-Assembly Concepts, Properties, and Applications. Polymers 2021, 13 (9) , 1481. https://doi.org/10.3390/polym13091481
  88. Mingwei Tian, Chen Ma, Xiaoyu Huang, Guolin Lu, Chun Feng. Supramolecular-micelle-directed preparation of uniform magnetic nanofibers with length tunability, colloidal stability and capacity for surface functionalization. Polymer Chemistry 2021, 12 (13) , 1924-1930. https://doi.org/10.1039/D1PY00168J
  89. Cinzia Clamor, Beatrice N. Cattoz, Peter M. Wright, Rachel K. O'Reilly, Andrew P. Dove. Controlling the crystallinity and solubility of functional PCL with efficient post-polymerisation modification. Polymer Chemistry 2021, 12 (13) , 1983-1990. https://doi.org/10.1039/D0PY01535K
  90. Jiaqi Qiu, Fuliang Meng, Maolin Wang, Jinjin Huang, Chengzhan Wang, Xiao Li, Guang Yang, Zan Hua, Tao Chen. Recyclable DMAP-Functionalized polymeric nanoreactors for highly efficient acylation of alcohols in aqueous systems. Polymer 2021, 222 , 123660. https://doi.org/10.1016/j.polymer.2021.123660
  91. Enrique Folgado, Matthias Mayor, Didier Cot, Michel Ramonda, Franck Godiard, Vincent Ladmiral, Mona Semsarilar. Preparation of well-defined 2D-lenticular aggregates by self-assembly of PNIPAM- b -PVDF amphiphilic diblock copolymers in solution. Polymer Chemistry 2021, 12 (10) , 1465-1475. https://doi.org/10.1039/D0PY01193B
  92. Liam MacFarlane, Chuanqi Zhao, Jiandong Cai, Huibin Qiu, Ian Manners. Emerging applications for living crystallization-driven self-assembly. Chemical Science 2021, 45 https://doi.org/10.1039/D0SC06878K
  93. Amanda K. Pearce, Thomas R. Wilks, Maria C. Arno, Rachel K. O’Reilly. Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions. Nature Reviews Chemistry 2021, 5 (1) , 21-45. https://doi.org/10.1038/s41570-020-00232-7
  94. Liam R. MacFarlane, Huda Shaikh, J. Diego Garcia-Hernandez, Marcus Vespa, Tomoya Fukui, Ian Manners. Functional nanoparticles through π-conjugated polymer self-assembly. Nature Reviews Materials 2021, 6 (1) , 7-26. https://doi.org/10.1038/s41578-020-00233-4
  95. Jia Tian, Yifan Zhang, Lili Du, Yunxiang He, Xu-Hui Jin, Samuel Pearce, Jean-Charles Eloi, Robert L. Harniman, Dominic Alibhai, Ruquan Ye, David Lee Phillips, Ian Manners. Tailored self-assembled photocatalytic nanofibres for visible-light-driven hydrogen production. Nature Chemistry 2020, 12 (12) , 1150-1156. https://doi.org/10.1038/s41557-020-00580-3
  96. Hao Qi, Xiting Liu, Daniel M. Henn, Shan Mei, Mark C. Staub, Bin Zhao, Christopher Y. Li. Breaking translational symmetry via polymer chain overcrowding in molecular bottlebrush crystallization. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-15477-5
  97. Shu‐Ting Jiang, Wei Zheng, Guang Yang, Yu Zhu, Li‐Jun Chen, Qi‐Feng Zhou, Yu‐Xuan Wang, Zhen Li, Guang‐Qiang Yin, Xiaopeng Li, Hong‐Ming Ding, Guosong Chen, Hai‐Bo Yang. Construction of Metallacycle‐Linked Heteroarm Star Polymers via Orthogonal Post‐Assembly Polymerization and Their Intriguing Self‐Assembly into Large‐Area and Regular Nanocubes †. Chinese Journal of Chemistry 2020, 38 (11) , 1285-1291. https://doi.org/10.1002/cjoc.202000247
  98. Cheng Miao, Xiaomin Zhu, Jian Zhang, Youliang Zhao. Rational design of nonlinear crystalline-amorphous-responsive terpolymers for pH-guided fabrication of 0D–3D nano-objects. Polymer Chemistry 2020, 11 (39) , 6259-6272. https://doi.org/10.1039/D0PY01035A
  99. Enrique Folgado, Matthias Mayor, Vincent Ladmiral, Mona Semsarilar. Evaluation of Self-Assembly Pathways to Control Crystallization-Driven Self-Assembly of a Semicrystalline P(VDF-co-HFP)-b-PEG-b-P(VDF-co-HFP) Triblock Copolymer. Molecules 2020, 25 (17) , 4033. https://doi.org/10.3390/molecules25174033
  100. Steven T. G. Street, Yunxiang He, Xu-Hui Jin, Lorna Hodgson, Paul Verkade, Ian Manners. Cellular uptake and targeting of low dispersity, dual emissive, segmented block copolymer nanofibers. Chemical Science 2020, 11 (32) , 8394-8408. https://doi.org/10.1039/D0SC02593C
Load all citations
  • Abstract

    Figure 1

    Figure 1. (a) Schematic of self-nucleation of PCL50-b-PDMA180 diblock copolymer followed by sonication of polydisperse cylinders to form uniform seed micelles, TEM micrographs of (b) polydisperse cylinders and (c) seed micelles, and (d) length distribution of seed micelles. Uranyl acetate (1%) was used as a negative stain. Scale bar = 1000 nm.

    Figure 2

    Figure 2. (a) Schematic of epitaxial growth of PCL50-b-PDMA180 cylindrical micelles in ethanol from 50 nm seeds. TEM micrographs of cylindrical micelles epitaxially grown from seed micelles with a unimer/seed ratio of (b) 1, (c) 2, (d) 3, (e) 5, (f) 7, and (g) 9. Uranyl acetate (1%) was used as a negative stain. Scale bar = 1000 nm. (h) Length dispersity of cylindrical micelles. (i) Plot showing a linear epitaxial growth regime of cylinders with narrow length dispersities (error bars represent the standard deviation, σ, of the length distribution) in comparison to the theoretical length (dashed line).

    Figure 3

    Figure 3. (a) Schematic representation of epitaxial growth in water using PCL50-b-PMMA20-b-PDMA200 triblock copolymer. TEM micrographs of cylindrical micelles epitaxially grown from 40 nm seed micelles in water with a unimer/seed ratio of (b) 1, (c) 5, (d) 9, and (e) 15, using graphene oxide TEM grids. (44) Scale bar = 1000 nm. (f) TEM micrograph (scale bar = 1000 nm) and (g) confocal microscopy image (scale bar = 20 μm) of fluorescently labeled cylindrical micelles epitaxially grown from seed micelles in water with a unimer/seed ratio of 15. Scale bar = 20 μm. (h) Length dispersity of cylindrical micelles. (i) Plot showing a linear epitaxial growth regime of cylinders with narrow length dispersities (error bars represent the standard deviation, σ, of the length distribution) in comparison to the theoretical length (dashed line).

    Figure 4

    Figure 4. (a) Schematic of hydrogel formation via direct epitaxial growth of PCL50-b-PMMA20-b-PDMA200 cylinders in water. (b) TEM micrograph of PCL50-b-PMMA20-b-PDMA200 hydrogel freeze-dried on a TEM grid. Scale bar = 1000 nm. (c) Cryo-SEM image of the cylinder hydrogel (scale bar = 2 μm) with photographs of the hydrogel using BODIPY-tagged (inset, left) and untagged cylinders (inset, right). (d) Step-strain measurements of cylinder hydrogel over three cycles (ω = 10 rad s–1) with (e) enlargement of the recovery of the material properties after each cycle. (f) Strain-dependent oscillatory rheology of the cylinder hydrogel at 293 K and a constant frequency of 10 rad s–1.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 48 other publications.

    1. 1
      Epps, T. H., III; O’Reilly, R. K. Chem. Sci. 2016, 7, 1674 1689 DOI: 10.1039/C5SC03505H
    2. 2
      O’Reilly, R. K.; Hawker, C. J.; Wooley, K. L. Chem. Soc. Rev. 2006, 35, 1068 1083 DOI: 10.1039/b514858h
    3. 3
      Nishiyama, N. Nat. Nanotechnol. 2007, 2, 203 204 DOI: 10.1038/nnano.2007.88
    4. 4
      Huang, X.; Teng, X.; Chen, D.; Tang, F.; He, J. Biomaterials 2010, 31, 438 448 DOI: 10.1016/j.biomaterials.2009.09.060
    5. 5
      Gratton, S. E. A.; Ropp, P. A.; Pohlhaus, P. D.; Luft, J. C.; Madden, V. J.; Napier, M. E.; DeSimone, J. M. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 11613 11618 DOI: 10.1073/pnas.0801763105
    6. 6
      Daum, N.; Tscheka, C.; Neumeyer, A.; Schneider, M. Wiley Interdiscip Rev. Nanomed Nanobiotechnol. 2012, 4, 52 65 DOI: 10.1002/wnan.165
    7. 7
      Caldorera-Moore, M.; Guimard, N.; Shi, L.; Roy, K. Expert Opin. Drug Delivery 2010, 7, 479 495 DOI: 10.1517/17425240903579971
    8. 8
      Liu, X.; Wu, F.; Tian, Y.; Wu, M.; Zhou, Q.; Jiang, S.; Niu, Z. Sci. Rep. 2016, 6, 24567 DOI: 10.1038/srep24567
    9. 9
      Raeesi, V.; Chou, L. Y. T.; Chan, W. C. W. Adv. Mater. 2016, 28, 8511 8518 DOI: 10.1002/adma.201600773
    10. 10
      Geng, Y.; Dalhaimer, P.; Cai, S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D. E. Nat. Nanotechnol. 2007, 2, 249 255 DOI: 10.1038/nnano.2007.70
    11. 11
      Crassous, J. J.; Schurtenberger, P.; Ballauff, M.; Mihut, A. M. Polymer 2015, 62, A1 A13 DOI: 10.1016/j.polymer.2015.02.030
    12. 12
      Patra, S. K.; Ahmed, R.; Whittell, G. R.; Lunn, D. J.; Dunphy, E. L.; Winnik, M. A.; Manners, I. J. Am. Chem. Soc. 2011, 133, 8842 8845 DOI: 10.1021/ja202408w
    13. 13
      Schmelz, J.; Schedl, A. E.; Steinlein, C.; Manners, I.; Schmalz, H. J. Am. Chem. Soc. 2012, 134, 14217 14225 DOI: 10.1021/ja306264d
    14. 14
      Wang, X.; Guérin, G.; Wang, H.; Wang, Y.; Manners, I.; Winnik, M. A. Science 2007, 317, 644 647 DOI: 10.1126/science.1141382
    15. 15
      Nazemi, A.; Boott, C. E.; Lunn, D. J.; Gwyther, J.; Hayward, D. W.; Richardson, R. M.; Winnik, M. A.; Manners, I. J. Am. Chem. Soc. 2016, 138, 4484 4493 DOI: 10.1021/jacs.5b13416
    16. 16
      Kim, Y.-J.; Cho, C.-H.; Paek, K.; Jo, M.; Park, M.-k.; Lee, N.-E.; Kim, Y.-j.; Kim, B. J.; Lee, E. J. Am. Chem. Soc. 2014, 136, 2767 2774 DOI: 10.1021/ja410165f
    17. 17
      Mohd Yusoff, S. F.; Hsiao, M.-S.; Schacher, F. H.; Winnik, M. A.; Manners, I. Macromolecules 2012, 45, 3883 3891 DOI: 10.1021/ma2027726
    18. 18
      Presa Soto, A.; Gilroy, J. B.; Winnik, M. A.; Manners, I. Angew. Chem., Int. Ed. 2010, 49, 8220 8223 DOI: 10.1002/anie.201003066
    19. 19
      Molev, G.; Lu, Y.; Kim, K. S.; Majdalani, I. C.; Guerin, G.; Petrov, S.; Walker, G.; Manners, I.; Winnik, M. A. Macromolecules 2014, 47, 2604 2615 DOI: 10.1021/ma402441y
    20. 20
      Cao, L.; Manners, I.; Winnik, M. A. Macromolecules 2002, 35, 8258 8260 DOI: 10.1021/ma021068x
    21. 21
      Hudson, Z. M.; Boott, C. E.; Robinson, M. E.; Rupar, P. A.; Winnik, M. A.; Manners, I. Nat. Chem. 2014, 6, 893 898 DOI: 10.1038/nchem.2038
    22. 22
      Du, Z. X.; Xu, J. T.; Fan, Z. Q. Macromolecules 2007, 40, 7633 7637 DOI: 10.1021/ma070977p
    23. 23
      Du, Z. X.; Xu, J. T.; Fan, Z. Q. Macromol. Rapid Commun. 2008, 29, 467 471 DOI: 10.1002/marc.200700795
    24. 24
      Su, M.; Huang, H.; Ma, X.; Wang, Q.; Su, Z. Macromol. Rapid Commun. 2013, 34, 1067 1071 DOI: 10.1002/marc.201300218
    25. 25
      He, W. N.; Xu, J. T.; Du, B. Y.; Fan, Z. Q.; Wang, X. Macromol. Chem. Phys. 2010, 211, 1909 1916 DOI: 10.1002/macp.201000184
    26. 26
      Glavas, L.; Olsén, P.; Odelius, K.; Albertsson, A.-C. Biomacromolecules 2013, 14, 4150 4156 DOI: 10.1021/bm401312j
    27. 27
      Inam, M.; Cambridge, G.; Pitto-Barry, A.; Laker, Z. P. L.; Wilson, N. R.; Mathers, R. T.; Dove, A. P.; O’Reilly, R. K. Chem. Sci. 2017, 8, 4223 4230 DOI: 10.1039/C7SC00641A
    28. 28
      Sun, L.; Petzetakis, N.; Pitto-Barry, A.; Schiller, T. L.; Kirby, N.; Keddie, D. J.; Boyd, B. J.; O’Reilly, R. K.; Dove, A. P. Macromolecules 2013, 46, 9074 9082 DOI: 10.1021/ma401634s
    29. 29
      Pitto-Barry, A.; Kirby, N.; Dove, A. P.; O’Reilly, R. K. Polym. Chem. 2014, 5, 1427 1436 DOI: 10.1039/C3PY01048A
    30. 30
      Rizis, G.; van de Ven, T. G.; Eisenberg, A. ACS Nano 2015, 9, 3627 3640 DOI: 10.1021/nn505068u
    31. 31
      Wang, J.; Zhu, W.; Peng, B.; Chen, Y. Polymer 2013, 54, 6760 6767 DOI: 10.1016/j.polymer.2013.10.027
    32. 32
      Zhu, W.; Peng, B.; Wang, J.; Zhang, K.; Liu, L.; Chen, Y. Macromol. Biosci. 2014, 14, 1764 1770 DOI: 10.1002/mabi.201400283
    33. 33
      Qi, H.; Zhou, T.; Mei, S.; Chen, X.; Li, C. Y. ACS Macro Lett. 2016, 5, 651 655 DOI: 10.1021/acsmacrolett.6b00251
    34. 34
      He, X.; He, Y.; Hsiao, M.-S.; Harniman, R. L.; Pearce, S.; Winnik, M. A.; Manners, I. J. Am. Chem. Soc. 2017, 139, 9221 9228 DOI: 10.1021/jacs.7b03172
    35. 35
      Fan, B.; Wang, R.-Y.; Wang, X.-Y.; Xu, J.-T.; Du, B.-Y.; Fan, Z.-Q. Macromolecules 2017, 50, 2006 2015 DOI: 10.1021/acs.macromol.7b00105
    36. 36
      Li, B.; Wang, B.; Ferrier, R. C., Jr.; Li, C. Y. Macromolecules 2009, 42, 9394 9399 DOI: 10.1021/ma902294k
    37. 37
      Chen, W. Y.; Li, C. Y.; Zheng, J. X.; Huang, P.; Zhu, L.; Ge, Q.; Quirk, R. P.; Lotz, B.; Deng, L.; Wu, C.; Thomas, E. L.; Cheng, S. Z. D. Macromolecules 2004, 37, 5292 5299 DOI: 10.1021/ma0493325
    38. 38
      Zheng, J. X.; Xiong, H.; Chen, W. Y.; Lee, K.; Van Horn, R. M.; Quirk, R. P.; Lotz, B.; Thomas, E. L.; Shi, A.-C.; Cheng, S. Z. D. Macromolecules 2006, 39, 641 650 DOI: 10.1021/ma052166w
    39. 39
      Rizis, G.; van de Ven, T. G. M.; Eisenberg, A. Soft Matter 2014, 10, 2825 2835 DOI: 10.1039/c3sm52950a
    40. 40
      He, W.-N.; Zhou, B.; Xu, J.-T.; Du, B.-Y.; Fan, Z.-Q. Macromolecules 2012, 45, 9768 9778 DOI: 10.1021/ma301267k
    41. 41
      Legros, C.; De Pauw-Gillet, M.-C.; Tam, K. C.; Taton, D.; Lecommandoux, S. Soft Matter 2015, 11, 3354 3359 DOI: 10.1039/C5SM00313J
    42. 42
      Yang, J.-X.; Fan, B.; Li, J.-H.; Xu, J.-T.; Du, B.-Y.; Fan, Z.-Q. Macromolecules 2016, 49, 367 372 DOI: 10.1021/acs.macromol.5b02349
    43. 43
      Guérin, G.; Wang, H.; Manners, I.; Winnik, M. A. J. Am. Chem. Soc. 2008, 130, 14763 14771 DOI: 10.1021/ja805262v
    44. 44
      Patterson, J. P.; Sanchez, A. M.; Petzetakis, N.; Smart, T. P.; Epps, T. H., III; Portman, I.; Wilson, N. R.; O’Reilly, R. K. Soft Matter 2012, 8, 3322 3328 DOI: 10.1039/c2sm07040e
    45. 45
      Nojima, S.; Ohguma, Y.; Kadena, K.-i.; Ishizone, T.; Iwasaki, Y.; Yamaguchi, K. Macromolecules 2010, 43, 3916 3923 DOI: 10.1021/ma100236u
    46. 46
      Zhang, S.; Li, J.; Lykotrafitis, G.; Bao, G.; Suresh, S. Adv. Mater. 2009, 21, 419 424 DOI: 10.1002/adma.200801393
    47. 47
      Warren, N. J.; Rosselgong, J.; Madsen, J.; Armes, S. P. Biomacromolecules 2015, 16, 2514 2521 DOI: 10.1021/acs.biomac.5b00767
    48. 48
      Simon, K. A.; Warren, N. J.; Mosadegh, B.; Mohammady, M. R.; Whitesides, G. M.; Armes, S. P. Biomacromolecules 2015, 16, 3952 3958 DOI: 10.1021/acs.biomac.5b01266
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b10199.

    • Experimental details and additional results (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE