ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Selective Radical Trifluoromethylation of Native Residues in Proteins

View Author Information
Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
Cite this: J. Am. Chem. Soc. 2018, 140, 5, 1568–1571
Publication Date (Web):January 5, 2018
https://doi.org/10.1021/jacs.7b10230

Copyright © 2018 American Chemical Society. This publication is licensed under these Terms of Use.

  • Open Access

Article Views

11866

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (1 MB)
Supporting Info (2)»

Abstract

The incorporation of fluorine can not only significantly facilitate the study of proteins but also potentially modulate their function. Though some biosynthetic methods allow global residue-replacement, post-translational fluorine incorporation would constitute a fast and efficient alternative. Here, we reveal a mild method for direct protein radical trifluoromethylation at native residues as a strategy for symmetric-multifluorine incorporation on mg scales with high recoveries. High selectivity toward tryptophan residues enhanced the utility of this direct trifluoromethylation technique allowing ready study of fluorinated protein constructs using 19F-NMR.

Although absent from nearly all-natural products, small organofluorine compounds have found widespread applications from materials, (1) to clinical diagnostics (19F-MRI/18F-PET) (2, 3) and medicinal chemistry (where 30% (4) of new small molecule drugs contain F to alter physicochemical properties (5) and/or modulate affinity (6)). Incorporation of fluorine into biomolecules is more rare but potential applications in structural re-engineering (7) and as reporter tags for “zero-background” 19F-NMR (8, 9) raise striking possibilities. For the latter, the benefits include: high sensitivity, extreme responsiveness to local environment, broad chemical shift range and low reactivity once incorporated. (10) This has helped to elucidate structural, functional and dynamic (11, 12) interactions in receptor function landscapes (13) and enzymic catalysis. (14) Indeed, fluorine’s features can render it superior over other nuclei in, for example, in-cell NMR spectroscopy (15) or protein-observed 19F-NMR (PrOF) protein–ligand binding. (16-19)

Apart from (semi)synthetic ligations, (20) two main strategies are used for generating fluorinated proteins: incorporation of fluorinated amino acids using biosynthetic methods or chemical modification. (21) The former is typically only residue-specific (22) but can be achieved in a site-selective manner through sense or nonsense codon reassignment (e.g., for positioning of CF3-l-phenylalanine (23)). However, for operational simplicity and to avoid identified issues with the former, (24) the latter modification method has often been preferred as more direct. It has relied largely on reaction of nucleophilic side chains with prosthetic groups bearing fluorine (typically cysteine and lysine) often attached via linkers or prosthetics (25, 26) that can perturb structure and create distance imprecision. (24) A lack of other methods for installing fluorine into biomolecules has been highlighted as a restriction; (24, 27) due to low relative abundance and roles in interiors, aromatic amino acids are attractive targets. Therefore, direct (hetero)aromatic trifluoromethylation could be a powerful tool allowing (a) “zero/short linker” fluorine incorporation via (b) a higher sensitivity multiequivalent-F system. (28, 29) Here, we describe a novel method that exploits the chemoselectivity of radicals in protein chemistry to achieve this aim (Figure 1).

Figure 1

Figure 1. Direct radical trifluoromethylation of protein substrates. ·CF3 radical targeting (hetero)aromatic residues can be generated from sodium trifluoromethanesulfinate (NaTFMS, Langlois’ reagent) under aqueous, oxidative conditions.

Direct C–CF3-bond trifluoromethylation presents a striking synthetic challenge in biomolecules. Most strategies for C–H functionalization have been applied only to small molecules using methods or conditions essentially incompatible with proteins (elevated temperatures, (30) organic solvents (31) or strong acids (32)). Among possible strategies, we identified radical-based approaches. (33) We have demonstrated the benign nature of radicals for C–C-bond formation through use of a designed unnatural amino acid. (34) This illustrated radical efficiency under ambient aqueous conditions and operational simplicity. We therefore considered whether a suitable ·CF3 precursor might be generated that could allow natural amino acid modification.

Various putative ·CF3 sources (35) were tested using model amino acid substrates. Langlois’ reagent (NaTFMS) proved most promising via multiple redox initiation modes (e.g., transition-metal-free, photocatalytic) under mild conditions. (36-38) Baran et al. identified that NaTFMS may be used to modify small molecule N-heterocycle caffeine when spiked into cell lysate, which has “important implications in the area of bioconjugation”. (39) Advantageously, 19F-NMR allowed us ready reactivity screening of all abundant natural amino acids (SI Figure S1) and revealed selective reactivity of NaTFMS/TBHP (39) with only aromatic amino acids and free cysteine ((hetero)arene-C–H or Cys-S–H trifluoromethylation) and none toward any other natural amino acids. 19F-NMR suggested near homogeneous product formation from tryptophan (Trp) and cysteine (Cys); low levels of products from His, Tyr and Phe, appeared as complex mixtures of apparent regioisomers.

Next, limited (<40%) conversion competition assays (Figure 2) using mixtures of equimolar Trp, Phe, Tyr, Cys, His, Met with NaTFMS/TBHP were used to assess residue-specific selectivity. These revealed preferential formation of the Trp-C2 isomer at a krel > ∼7.5-fold. This could be further increased to krel > ∼30-fold by lowering the pH to 6 (SI Table T2), potentially due to reduced reactivity of protonated His residues. The main side reaction was oxidative dimerization of Cys without trifluoromethylation. These observations suggested not only the cysteine disulfide is inert but in the absence of free Cys, strongly chemo- and regio- Trp-selective trifluoromethylation might be possible in proteins. This was confirmed by a similar competition reaction in the absence of Cys (SI Figure S3), along with His modification as minor (<1:24) side-reaction. Optimization of the reaction toward Trp revealed the key role of pH (SI Table T3). In weakly or nonbuffered aqueous conditions, rapid acidification was observed, consistent with a mechanism that leads to hydrogensulfate formation (Figure 1). (40) Useful conversions to CF3-Trp (>50%) were obtained at a moderate pH ∼ 6 (Figure S4), optimal for most biomolecules.

Figure 2

Figure 2. Limited-conversion competition assay of natural amino acids (0.03 mmol) revealed chemo- and regio-selectivity toward Trp with minor products (Cys and lower levels of Phe, His, Tyr isomers, determined by 19F-NMR, LC-MS). See Figure S3 for parallel reaction in absence of Cys.

Together, these results prompted investigation in more complex peptidic and protein substrates. First, reaction of N-acetyl-l-tryptophanamide confirmed reactivity and identical regio-selectivity to that seen for Trp. Second, as a simple model peptide, we chose melittin, a 26-residue peptide with a single Trp residue at Trp19. Use of excess NaTFMS/TBHP with methionine as an oxidative buffer allowed short reaction times (Figure 3). The exclusive site of modification at Trp19 was confirmed by LC-MS/MS analysis (SI Figure S3); Trp19 oxidation and dual Trp19 CF3-ylation were observed under prolonged conditions. 4-Hydroxy-TEMPO not only allowed ready termination of the reaction at varied time points but also confirmed the radical-mediated nature.

Figure 3

Figure 3. Reaction of melittin (MWcalc= 2847) with NaTFMS/TBHP. (a) Relative conversions from LC-MS with the optimal reaction time highlighted in blue. (b) Deconvoluted LC-MS spectra of reaction mixtures after 5 min ± Met. Undesired oxidation (+32) is curtailed by sacrificial reductant giving melittin-TrpCF3 (+68, MWcalc = 2915, MWfound = 2915).

As a natural protein substrate, we chose model hemoprotein–horse heart myoglobin (Mb). Mb contains two buried Trp (Trp7, Trp14) in the presence of several other potentially reactive, more accessible residues (SI Figure S6). Optimization of conditions (pH, temperature, reactants loading, SI Table T4, SI Figure S7) allowed modulation of reactivity by CF3 copy-number. In this way, at pH 6 (100 mM ammonium acetate), 0 °C, using 200 equiv NaTFMS after 10 min we were able to create myoglobin bearing primarily one or two CF3 groups (Figure 4a). Higher equivalents of Langlois’ reagent allowed further shortening of reaction times, without apparent adverse effects on protein (SI Table T4, entries 5,6). In contrast to literature observations, (39) we observed no significant influence of Zn2+ as an additive. Control of pH also minimized concomitant oxidation (SI Figure S8). Tryptic digest-LCMS/MS revealed that Trp7 and Trp14 were the dominant sites of modification (Figure 3b and SI Figure S9) despite their buried nature, highlighting the low steric hindrance of ·CF3, even in these congested environments. This accessibility to buried sites complements existing nucleophilic, prosthetic-mediated methods, which are more applicable to exposed sites, requiring partial denaturation to access buried sites. (41-43) Similarly, accessibility is needed for standard labeling of Cys with fluorinated tags. Importantly, CD spectroscopy revealed that trifluoromethylation had negligible influence on the structure of Mb-TrpCF3 protein (SI Figure S10).

Figure 4

Figure 4. Direct trifluoromethylation of proteins (a) myoglobin (Mb, MWcalc = 16951.5) deconvoluted LC-MS spectrum showing singly- (MWcalc = 17019, MWfound = 17020) and doubly- modified (MWcalc = 17087, MWfound = 17087), (b) tryptic-LC-MS/MS confirmed site-selectivity at Trp7 and Trp14.

Next, we tested the prospective utility of our developed direct trifluoromethylation as a tool for enabling protein 19F-NMR. Pleasingly, mg-scale reactions allowed straightforward “labeling” of Mb with CF3 with ∼65–80% recovery. As a proof-of-principle, we used 19F-NMR to directly probe sites of modification (Figure 5a). The native protein spectra of modified Mb revealed two major 19F-peaks. To elucidate their origin, protein was digested with trypsin (to free residues from their microenvironment and remove nonequivalence); the resonances collapsed to δF −58.8 ppm, in good agreement to that for 2-CF3-Trp in model Trp-CF3bis-amide (δF −58.76). This was further reinforced by denaturative 19F-NMR structural analyses: (44) titration with urea induced a gradual change in chemical shift (Figure 5b) that could be explained by a known progressive loss of secondary structure in Mb under such conditions. (45) Treatment with 10 M urea resulted in full coalescence to δ-58.74 ppm (Figure 5a, full spectrum Figure S11). (46, 47)

Figure 5

Figure 5. 19F-NMR analyses enabled by direct trifluoromethylation. (a) 19F-NMR of CF3Trp-Mb (700 μM in 100 mM NH4OAc, pH 8, blue), denatured by 10 M urea (300 μM, red) and peptide mixture from tryptic digest (from 2 mM protein, green). Dashes indicate chemical shift for small molecule model. Inset at higher field with individual Trp resolved. (b) Urea titration by 19F-NMR (protein 200–400 μM). (c) Chemical shift differences from ligands in PrOF, protein concentration (100–300 μM).

We extended essentially the same protocol to other model proteins with different folds and Trp copy number: pantothenate synthetase (PanC with single Trp306) and more demanding enzyme lysozyme (Ly), which possesses six potentially reactive Trp (Trp28, Trp62, Trp63, Trp108, Trp111 and Trp123) and eight Cys engaged within each other as disulfides. Both tryptic-LC-MS/MS and 19F-NMR (SI Figures S12–17) not only confirmed Trp residues as primary modification sites in both proteins but also revealed no reaction of Cys residues, consistent with our prior observations. Thermal denaturation also gave rise to resonance coalesence, as for Mb (SI Figure S19). We were also able to determine that trifluoromethylation had negligible influence upon both the structure of Ly (via CD, SI Figure S20) but also upon its enzymatic function (SI Figure 22, SI Table T5), which was essentially unaltered. We were also able to use this fully active CF3-ylated Ly in quantitative 19F-NMR PrOF (16-19) (SI Figure 21) to directly determine the binding of known alkaloid inhibitor ligand berberine (Kd 20 μM, consistent with values determined by complementary methods (48)). The potential of our direct trifluoromethylation method was also demonstrated in more complex structural experiments for different protein–ligand states studied by PrOF. (16-19) This allowed observation of displacement of water bound at hemin iron (which we confirmed by UV–vis (49) was retained after CF3-ylation, Figure S23) by known ligands cyanide, fluoride, imidazole (Im) (50) (Figure 5c, full spectra Figure S24). (16) We also tested effects of common osmo/cryo- protectants (sarcosine – Sar, trehalose – Tre) (51) and putative ligand phenol. (52) CN, Im caused clear upfield shifts, consistent with being known specific ligands. (47) Both Trp residues are located within the same helix; both signals reported changes, yet these were more pronounced for more-tightly packed Trp14 (Figure S26). Interestingly, known ligand F did not trigger a change in chemical shift suggesting that this small ligand has a negligible impact on overall protein conformation. Conversely, Tre and Sar caused globally observed changes, consistent with nonspecific interactions or changes in solute properties, in agreement with the mode of actions of these compounds. (53) Phenol, which inhibits the dehaloperoxidase activity of myoglobins, (52) showed only small changes implying only nonspecific binding, likely not at hemin (Figure S25).

In conclusion, we have demonstrated direct trifluoromethylation of natural residues in proteins. Tuned radical chemistry allows fast (<10 min) and chemo-selective modification of Trp with a useful but not absolute selectivity over other putative residues in peptidic systems and proteins. This method appears to provide a selective and direct protocol for trifluoromethylation of proteins. Methods exploiting photochemical generation (54, 55) or the use of electrophilic alkylation chemistry (56) suggest lower and/or differing selectivities. Interestingly, in the context of the known ambiguity of ·CF3 toward heteroarenes, (57) this selectivity seems to exploit electrophilic polarity; our preliminary results using known precursors to nucleophilic ·CF2Me under essentially identical conditions failed. Trp vs His selectivity is increased at pH 6 (Table T2), also consistent with lower reactivity of electrophilic ·CF3 toward protonated His. It allows direct access to 19F-NMR experiments without the requirement of additional mutation of protein substrates and use of linkers, as is currently the case. (58) In particular, we showed through fractional CF3-“labeling” 19F-NMR spectra can be obtained directly with no significant line broadening. (59) Although Trp residues are rare, their frequent role and in proximity to protein–ligand/protein interactions and presence at hydrophobic interfaces makes them useful probes in PrOF assays. (60-63) We speculate too that the reactivity observed here with typically inaccessible sites reflects both the lack of bulk (no ‘linker’/ “zero size”) and prior observations that biphasic/interfacial regions enhance small molecule radical reactions. (40) It therefore complements other Trp-modification, such as the use of Rh-carbenoids that work best with surface residues and currently allow more generality in modifying group than the method we present here. (42) Other applications can also be envisaged: tuning of intrinsic Trp fluorescence (64) or physicochemical effects via fluorination (e.g., “Teflon” proteins (65)). We observed even low levels of fluorine incorporation altered fluorescence spectra (SI Figure S27) and changed chromatographic behaviors (SI Figure S28).

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b10230.

  • Experimental and characterization data (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Author
  • Authors
    • Mateusz Imiołek - Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
    • Gogulan Karunanithy - Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
    • Wai-Lung Ng - Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United KingdomOrcidhttp://orcid.org/0000-0003-2892-6318
    • Andrew J. Baldwin - Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
    • Véronique Gouverneur - Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United KingdomOrcidhttp://orcid.org/0000-0001-8638-5308
  • Notes
    The authors declare no competing financial interest.

Acknowledgment

ARTICLE SECTIONS
Jump To

Funded under the EU Horizon 2020 programme, Marie Skłodowska-Curie grant agreement No. 675071, and by a Croucher Foundation Fellowship.

References

ARTICLE SECTIONS
Jump To

This article references 65 other publications.

  1. 1
    Leclerc, N.; Chavez, P.; Ibraikulov, O. A.; Heiser, T.; Leveque, P. Polymers 2016, 8, 11 DOI: 10.3390/polym8010011
  2. 2
    Tirotta, I.; Dichiarante, V.; Pigliacelli, C.; Cavallo, G.; Terraneo, G.; Bombelli, F.; Metrangolo, P.; Resnati, G. Chem. Rev. 2015, 115, 1106 DOI: 10.1021/cr500286d
  3. 3
    Preshlock, S.; Tredwell, M.; Gouverneur, V. Chem. Rev. 2016, 116, 719 DOI: 10.1021/acs.chemrev.5b00493
  4. 4
    Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Acena, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422 DOI: 10.1021/acs.chemrev.5b00392
  5. 5
    Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320 DOI: 10.1039/B610213C
  6. 6
    Muller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881 DOI: 10.1126/science.1131943
  7. 7
    Marsh, E. N. Acc. Chem. Res. 2014, 47, 2878 DOI: 10.1021/ar500125m
  8. 8
    Danielson, M. A.; Falke, J. J. Annu. Rev. Biophys. Biomol. Struct. 1996, 25, 163 DOI: 10.1146/annurev.bb.25.060196.001115
  9. 9
    Wang, G.; Zhang, Z. T.; Jiang, B.; Zhang, X.; Li, C.; Liu, M. Anal. Bioanal. Chem. 2014, 406, 2279 DOI: 10.1007/s00216-013-7518-5
  10. 10
    Yu, J. X.; Hallac, R. R.; Chiguru, S.; Mason, R. P. Prog. Nucl. Magn. Reson. Spectrosc. 2013, 70, 25 DOI: 10.1016/j.pnmrs.2012.10.001
  11. 11
    Leung, R. L. C.; Robinson, M. D. M.; Ajabali, A. A.; Karunanithy, G.; Lyons, B.; Raj, R.; Raoufmoghaddam, S.; Mohammed, S.; Claridge, T. D. W.; Baldwin, A. J.; Davis, B. G. J. Am. Chem. Soc. 2017, 139, 5277 DOI: 10.1021/jacs.6b11040
  12. 12
    Manglik, A.; Kim, T. H.; Masureel, M.; Altenbach, C.; Yang, Z. Y.; Hilger, D.; Lerch, M. T.; Kobilka, T. S.; Thian, F. S.; Hubbell, W. L.; Prosser, R. S.; Kobilka, B. K. Cell 2015, 162, 1431 DOI: 10.1016/j.cell.2015.08.045
  13. 13
    Ye, L.; Van Eps, N.; Zimmer, M.; Ernst, O. P.; Prosser, R. S. Nature 2016, 533, 265 DOI: 10.1038/nature17668
  14. 14
    Kim, T. H.; Mehrabi, P.; Ren, Z.; Sljoka, A.; Ing, C.; Bezginov, A.; Ye, L.; Pomes, R.; Prosser, R. S.; Pai, E. F. Science 2017, 355, eaag2355 DOI: 10.1126/science.aag2355
  15. 15
    Ye, Y.; Liu, X.; Chen, Y.; Xu, G.; Wu, Q.; Zhang, Z.; Yao, C.; Liu, M.; Li, C. Chem. - Eur. J. 2015, 21, 8686 DOI: 10.1002/chem.201500279
  16. 16
    Gee, C. T.; Arntson, K. E.; Urick, A. K.; Mishra, N. K.; Hawk, L. M.; Wisniewski, A. J.; Pomerantz, W. C. Nat. Protoc. 2016, 11, 1414 DOI: 10.1038/nprot.2016.079
  17. 17
    Urick, A. K.; Calle, L. P.; Espinosa, J. F.; Hu, H.; Pomerantz, W. C. ACS Chem. Biol. 2016, 11, 3154 DOI: 10.1021/acschembio.6b00730
  18. 18
    Arntson, K. E.; Pomerantz, W. C. J. Med. Chem. 2016, 59, 5158 DOI: 10.1021/acs.jmedchem.5b01447
  19. 19
    Urick, A. K.; Hawk, L. M.; Cassel, M. K.; Mishra, N. K.; Liu, S.; Adhikari, N.; Zhang, W.; dos Santos, C. O.; Hall, J. L.; Pomerantz, W. C. ACS Chem. Biol. 2015, 10, 2246 DOI: 10.1021/acschembio.5b00483
  20. 20
    Malins, L. R.; Payne, R. J. Curr. Opin. Chem. Biol. 2014, 22, 70 DOI: 10.1016/j.cbpa.2014.09.021
  21. 21
    Frieden, C.; Hoeltzli, S.; Bann, J. Methods Enzymol. 2004, 380, 400 DOI: 10.1016/S0076-6879(04)80018-1
  22. 22
    Marsh, E. N.; Suzuki, Y. ACS Chem. Biol. 2014, 9, 1242 DOI: 10.1021/cb500111u
  23. 23
    Hammill, J. T.; Miyake-Stoner, S.; Hazen, J. L.; Jackson, J. C.; Mehl, R. A. Nat. Protoc. 2007, 2, 2601 DOI: 10.1038/nprot.2007.379
  24. 24
    Kitevski-LeBlanc, J. L.; Prosser, R. S. Prog. Nucl. Magn. Reson. Spectrosc. 2012, 62, 1 DOI: 10.1016/j.pnmrs.2011.06.003
  25. 25
    Gerig, J. T. Prog. Nucl. Magn. Reson. Spectrosc. 1994, 26, 293 DOI: 10.1016/0079-6565(94)80009-X
  26. 26
    Basle, E.; Joubert, N.; Pucheault, M. Chem. Biol. 2010, 17, 213 DOI: 10.1016/j.chembiol.2010.02.008
  27. 27
    Tian, H.; Furstenberg, A.; Huber, T. Chem. Rev. 2017, 117, 186 DOI: 10.1021/acs.chemrev.6b00084
  28. 28

    Rapidly rotating CF3 produces strong, narrow NMR signal.

  29. 29
    Kim, H. J.; Howell, S. C.; Van Horn, W. D.; Jeon, Y. H.; Sanders, C. R. Prog. Nucl. Magn. Reson. Spectrosc. 2009, 55, 335 DOI: 10.1016/j.pnmrs.2009.07.002
  30. 30
    Natte, K.; Jagadeesh, R. V.; He, L.; Rabeah, J.; Chen, J.; Taeschler, C.; Ellinger, S.; Zaragoza, F.; Neumann, H.; Brückner, A.; Beller, M. Angew. Chem., Int. Ed. 2016, 55, 2782 DOI: 10.1002/anie.201511131
  31. 31
    Nagib, D. A.; MacMillan, D. W. Nature 2011, 480, 224 DOI: 10.1038/nature10647
  32. 32
    Lin, J.; Li, Z.; Kan, J.; Huang, S.; Su, W.; Li, Y. Nat. Commun. 2017, 8, 14353 DOI: 10.1038/ncomms14353
  33. 33
    Yan, M.; Lo, J. C.; Edwards, J. T.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 12692 DOI: 10.1021/jacs.6b08856
  34. 34
    Schaller, M. F.; Fung, M. K.; Wright, T. H.; Katz, M. E.; Kent, D. V. Science 2016, 354, 225 DOI: 10.1126/science.aaf5466
  35. 35
    Jiang, Y.; Yu, H.; Fu, Y.; Liu, L. Sci. China: Chem. 2015, 58, 673 DOI: 10.1007/s11426-014-5178-8
  36. 36
    Lefebvre, Q. Synlett 2016, 28, 19 DOI: 10.1055/s-0036-1588643
  37. 37
    Li, L.; Mu, X.; Liu, W.; Wang, Y.; Mi, Z.; Li, C. J. J. Am. Chem. Soc. 2016, 138, 5809 DOI: 10.1021/jacs.6b02782
  38. 38
    Wang, D.; Deng, G.; Chen, S.; Gong, H. Green Chem. 2016, 18, 5967 DOI: 10.1039/C6GC02000C
  39. 39
    Fujiwara, Y.; Dixon, J. A.; O’Hara, F.; Funder, E. D.; Dixon, D. D.; Rodriguez, R. A.; Baxter, R. D.; Herle, B.; Sach, N.; Collins, M. R.; Ishihara, Y.; Baran, P. S. Nature 2012, 492, 95 DOI: 10.1038/nature11680
  40. 40
    Ji, Y.; Brueckl, T.; Baxter, R.; Fujiwara, Y.; Seiple, I.; Su, S.; Blackmond, D.; Baran, P. S. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 14411 DOI: 10.1073/pnas.1109059108
  41. 41
    Seim, K. L.; Obermeyer, A. C.; Francis, M. B. J. Am. Chem. Soc. 2011, 133, 16970 DOI: 10.1021/ja206324q
  42. 42
    Antos, J. M.; McFarland, J. M.; Iavarone, A. T.; Francis, M. B. J. Am. Chem. Soc. 2009, 131, 6301 DOI: 10.1021/ja900094h
  43. 43
    Seki, Y.; Ishiyama, T.; Sasaki, D.; Abe, J.; Sohma, Y.; Oisaki, K.; Kanai, M. J. Am. Chem. Soc. 2016, 138, 10798 DOI: 10.1021/jacs.6b06692
  44. 44
    Lian, C.; Le, H.; Montez, B.; Patterson, J.; Harrell, S.; Laws, D.; Matsumura, I.; Pearson, J.; Oldfield, E. Biochemistry 1994, 33, 5238 DOI: 10.1021/bi00183a029
  45. 45
    Muthuselvi, L.; Miller, R.; Dhathathreyan, A. Chem. Phys. Lett. 2008, 465, 126 DOI: 10.1016/j.cplett.2008.09.037
  46. 46

    We tentatively assign I as Trp7 and II as Trp14 by comparison with universally labelled [4F]-Trp-Mb despite highly dispersed peaks in those studies. See the following ref:

  47. 47
    Pearson, J. G.; Montez, B.; Le, H. B.; Oldfield, E.; Chien, E. Y. T.; Sligar, S. G. Biochemistry 1997, 36, 3590 DOI: 10.1021/bi961664h
  48. 48
    Jash, C.; Kumar, G. S. RSC Adv. 2014, 4, 12514 DOI: 10.1039/c3ra46053c
  49. 49
    Richards, M. P. Antioxid. Redox Signaling 2013, 18, 2342 DOI: 10.1089/ars.2012.4887
  50. 50
    Winkler, W. C.; Gonzalez, G.; Wittenberg, J. B.; Hille, R.; Dakappagari, N.; Jacob, A.; Gonzalez, L. A.; Gilles-Gonzalez, M. A. Chem. Biol. 1996, 3, 841 DOI: 10.1016/S1074-5521(96)90070-8
  51. 51
    Olsson, C.; Jansson, H.; Swenson, J. J. Phys. Chem. B 2016, 120, 4723 DOI: 10.1021/acs.jpcb.6b02517
  52. 52
    Huang, X.; Wang, C. X.; Celeste, L. R.; Lovelace, L. L.; Sun, S. F.; Dawson, J. H.; Lebioda, L. Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun. 2012, 68, 1465 DOI: 10.1107/S1744309112045514
  53. 53
    Rahman, S.; Ali, S. A.; Islam, A.; Hassan, M. I.; Ahmad, F. Arch. Biochem. Biophys. 2016, 591, 7 DOI: 10.1016/j.abb.2015.11.035
  54. 54
    Labroo, V. M.; Labroo, R. B.; Cohen, L. A. Tetrahedron Lett. 1990, 31, 5705 DOI: 10.1016/S0040-4039(00)97937-1
  55. 55
    Cheng, M.; Zhang, B.; Cui, W.; Gross, M. L. Angew. Chem., Int. Ed. 2017, 56, 14007 DOI: 10.1002/anie.201706697
  56. 56
    Capone, S.; Kieltsch, I.; Flögel, O.; Lelais, G.; Togni, A.; Seebach, D. Helv. Chim. Acta 2008, 91, 2035 DOI: 10.1002/hlca.200890217
  57. 57
    O’Hara, F.; Blackmond, D. G.; Baran, P. S. J. Am. Chem. Soc. 2013, 135, 12122 DOI: 10.1021/ja406223k
  58. 58
    Abboud, M. I.; Hinchliffe, P.; Brem, J.; Macsics, R.; Pfeffer, I.; Makena, A.; Umland, K. D.; Rydzik, A. M.; Li, G. B.; Spencer, J.; Claridge, T. D.; Schofield, C. J. Angew. Chem., Int. Ed. 2017, 56, 3862 DOI: 10.1002/anie.201612185
  59. 59
    Kitevski-LeBlanc, J. L.; Evanics, F.; Prosser, R. S. J. Biomol. NMR 2010, 48, 113 DOI: 10.1007/s10858-010-9443-7
  60. 60
    Chilkoti, A.; Tan, P. H.; Stayton, P. S. Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 1754 DOI: 10.1073/pnas.92.5.1754
  61. 61
    Englert, M.; Nakamura, A.; Wang, Y. S.; Eiler, D.; Söll, D.; Guo, L. T. Nucleic Acids Res. 2015, 43, 11061 DOI: 10.1093/nar/gkv1255
  62. 62
    Ma, H.; Yang, X.; Lu, Z.; Liu, N.; Chen, Y. PLoS One 2014, 9, e103792 DOI: 10.1371/journal.pone.0103792
  63. 63
    Nakamura, A.; Tsukada, T.; Auer, S.; Furuta, T.; Wada, M.; Koivula, A.; Igarashi, K.; Samejima, M. J. Biol. Chem. 2013, 288, 13503 DOI: 10.1074/jbc.M113.452623
  64. 64
    Lakowicz, J. R. Principles of fluorescence spectroscopy; 3rd ed.; Springer: New York, NY, 2006.
  65. 65
    Budisa, N.; Pipitone, O.; Siwanowicz, I.; Rubini, M.; Pal, P. P.; Holak, T. A.; Gelmi, M. L. Chem. Biodiversity 2004, 1, 1465 DOI: 10.1002/cbdv.200490107

Cited By

ARTICLE SECTIONS
Jump To

This article is cited by 95 publications.

  1. Keun Ah Ryu, Tamara Reyes-Robles, Thomas P. Wyche, Tyler J. Bechtel, Jayde M. Bertoch, Jin Zhuang, Christopher May, Cody Scandore, Noah Dephoure, Sharon Wilhelm, Ishtiaque Quasem, Annika Yau, Sampat Ingale, Andrew Szendrey, Margaret Duich, Rob C. Oslund, Olugbeminiyi O. Fadeyi. Near-Infrared Photoredox Catalyzed Fluoroalkylation Strategy for Protein Labeling in Complex Tissue Environments. ACS Catalysis 2024, Article ASAP.
  2. Kei Ohkubo, Soichiro Matsumoto, Haruyasu Asahara, Shunichi Fukuzumi. 9-(4-Halo-2,6-xylyl)-10-methylacridinium Ion as an Effective Photoredox Catalyst for Oxygenation and Trifluoromethylation of Toluene Derivatives. ACS Catalysis 2024, 14 (4) , 2671-2684. https://doi.org/10.1021/acscatal.3c06111
  3. Nicholas J. Kuehl, Michael T. Taylor. Rapid Biomolecular Trifluoromethylation Using Cationic Aromatic Sulfonate Esters as Visible-Light-Triggered Radical Photocages. Journal of the American Chemical Society 2023, 145 (42) , 22878-22884. https://doi.org/10.1021/jacs.3c08098
  4. Jian Tang, Fengjie Lu, Yi Sun, Guodong Zhang, Ensheng Zhang, Yuan-Ye Jiang. Late-Stage Diversification of Peptides via Pd-Catalyzed Site-Selective δ-C(sp2)-H Fluorination and Amination. The Journal of Organic Chemistry 2023, 88 (19) , 14165-14171. https://doi.org/10.1021/acs.joc.3c01897
  5. Joanna C. Lee, James D. Cuthbertson, Nicholas J. Mitchell. Chemoselective Late-Stage Functionalization of Peptides via Photocatalytic C2-Alkylation of Tryptophan. Organic Letters 2023, 25 (29) , 5459-5464. https://doi.org/10.1021/acs.orglett.3c01795
  6. Marija Nisavic, Gustav J. Wørmer, Cecilie S. Nielsen, Sofie M. Jeppesen, Johan Palmfeldt, Thomas B. Poulsen. oxSTEF Reagents Are Tunable and Versatile Electrophiles for Selective Disulfide-Rebridging of Native Proteins. Bioconjugate Chemistry 2023, 34 (6) , 994-1003. https://doi.org/10.1021/acs.bioconjchem.3c00005
  7. Joshua M. Hammond, Michael G. Gardiner, Lara R. Malins. Amino Acid Sulfinate Salts as Alkyl Radical Precursors. Organic Letters 2023, 25 (17) , 3157-3162. https://doi.org/10.1021/acs.orglett.3c01112
  8. Peter Bellotti, Huan-Ming Huang, Teresa Faber, Frank Glorius. Photocatalytic Late-Stage C–H Functionalization. Chemical Reviews 2023, 123 (8) , 4237-4352. https://doi.org/10.1021/acs.chemrev.2c00478
  9. Xuanxiao Chen, Brian Josephson, Benjamin G. Davis. Carbon-Centered Radicals in Protein Manipulation. ACS Central Science 2023, 9 (4) , 614-638. https://doi.org/10.1021/acscentsci.3c00051
  10. Rohit Jain, Nanak S. Dhillon, Erik R. Farquhar, Benlian Wang, Xiaolin Li, Janna Kiselar, Mark R. Chance. Multiplex Chemical Labeling of Amino Acids for Protein Footprinting Structure Assessment. Analytical Chemistry 2022, 94 (27) , 9819-9825. https://doi.org/10.1021/acs.analchem.2c01640
  11. Zhuo Chen, Meijie Zhu, Mengwei Cai, Lulu Xu, Yiyi Weng. Palladium-Catalyzed C(sp3)–H Arylation and Alkynylation of Peptides Directed by Aspartic Acid (Asp). ACS Catalysis 2021, 11 (12) , 7401-7410. https://doi.org/10.1021/acscatal.1c01417
  12. Bart I. Roman. The Expanding Role of Chemistry in Optimizing Proteins for Human Health Applications. Journal of Medicinal Chemistry 2021, 64 (11) , 7179-7188. https://doi.org/10.1021/acs.jmedchem.1c00294
  13. Terrence-Thang H. Nguyen, Connor J. O’Brien, Minh L. N. Tran, Steven H. Olson, Nicholas S. Settineri, Stanley B. Prusiner, Nick A. Paras, Jay Conrad. Water-Soluble Iridium Photoredox Catalyst for the Trifluoromethylation of Biomolecule Substrates in Phosphate Buffered Saline Solvent. Organic Letters 2021, 23 (10) , 3823-3827. https://doi.org/10.1021/acs.orglett.1c00871
  14. Xiafei Hu, Xiangxiang Chen, Bo Li, Gang He, Gong Chen. Construction of Peptide Macrocycles via Radical-Mediated Intramolecular C–H Alkylations. Organic Letters 2021, 23 (3) , 716-721. https://doi.org/10.1021/acs.orglett.0c03940
  15. Bin Sun, Panyi Huang, Zhiyang Yan, Xiayue Shi, Xiaoli Tang, Jin Yang, Can Jin. Self-Catalyzed Phototandem Perfluoroalkylation/Cyclization of Unactivated Alkenes: Synthesis of Perfluoroalkyl-Substituted Quinazolinones. Organic Letters 2021, 23 (3) , 1026-1031. https://doi.org/10.1021/acs.orglett.0c04225
  16. Mateusz Imiołek, Patrick G. Isenegger, Wai-Lung Ng, Aziz Khan, Véronique Gouverneur, Benjamin G. Davis. Residue-Selective Protein C-Formylation via Sequential Difluoroalkylation-Hydrolysis. ACS Central Science 2021, 7 (1) , 145-155. https://doi.org/10.1021/acscentsci.0c01193
  17. Benjamin Laroche, Xinjun Tang, Gaétan Archer, Riccardo Di Sanza, Paolo Melchiorre. Photochemical Chemoselective Alkylation of Tryptophan-Containing Peptides. Organic Letters 2021, 23 (2) , 285-289. https://doi.org/10.1021/acs.orglett.0c03735
  18. Samantha J. Tower, Wesley J. Hetcher, Tyler E. Myers, Nicholas J. Kuehl, Michael T. Taylor. Selective Modification of Tryptophan Residues in Peptides and Proteins Using a Biomimetic Electron Transfer Process. Journal of the American Chemical Society 2020, 142 (20) , 9112-9118. https://doi.org/10.1021/jacs.0c03039
  19. Ming Cheng, Awuri Asuru, Janna Kiselar, George Mathai, Mark R. Chance, Michael L. Gross. Fast Protein Footprinting by X-ray Mediated Radical Trifluoromethylation. Journal of the American Society for Mass Spectrometry 2020, 31 (5) , 1019-1024. https://doi.org/10.1021/jasms.0c00085
  20. Itziar Guerrero, Arkaitz Correa. Cu-Catalyzed Site-Selective C(sp2)–H Radical Trifluoromethylation of Tryptophan-Containing Peptides. Organic Letters 2020, 22 (5) , 1754-1759. https://doi.org/10.1021/acs.orglett.0c00033
  21. Choon Wee Kee, Osman Tack, Florian Guibbal, Thomas C. Wilson, Patrick G. Isenegger, Mateusz Imiołek, Stefan Verhoog, Michael Tilby, Giulia Boscutti, Sharon Ashworth, Juliette Chupin, Roxana Kashani, Adeline W. J. Poh, Jane K. Sosabowski, Sven Macholl, Christophe Plisson, Bart Cornelissen, Michael C. Willis, Jan Passchier, Benjamin G. Davis, Véronique Gouverneur. 18F-Trifluoromethanesulfinate Enables Direct C–H 18F-Trifluoromethylation of Native Aromatic Residues in Peptides. Journal of the American Chemical Society 2020, 142 (3) , 1180-1185. https://doi.org/10.1021/jacs.9b11709
  22. Daniel Kaiser, Immo Klose, Rik Oost, James Neuhaus, Nuno Maulide. Bond-Forming and -Breaking Reactions at Sulfur(IV): Sulfoxides, Sulfonium Salts, Sulfur Ylides, and Sulfinate Salts. Chemical Reviews 2019, 119 (14) , 8701-8780. https://doi.org/10.1021/acs.chemrev.9b00111
  23. Huiqiao Wang, Jinjin Zhang, Jianxue Shi, Fan Li, Sheng Zhang, Kun Xu. Organic Photoredox-Catalyzed Synthesis of δ-Fluoromethylated Alcohols and Amines via 1,5-Hydrogen-Transfer Radical Relay. Organic Letters 2019, 21 (13) , 5116-5120. https://doi.org/10.1021/acs.orglett.9b01714
  24. Tomonori Tamura, Itaru Hamachi. Chemistry for Covalent Modification of Endogenous/Native Proteins: From Test Tubes to Complex Biological Systems. Journal of the American Chemical Society 2019, 141 (7) , 2782-2799. https://doi.org/10.1021/jacs.8b11747
  25. Jaehoon Sim, Mark W. Campbell, Gary A. Molander. Synthesis of α-Fluoro-α-amino Acid Derivatives via Photoredox-Catalyzed Carbofluorination. ACS Catalysis 2019, 9 (2) , 1558-1563. https://doi.org/10.1021/acscatal.8b04284
  26. Long Chen, Lianlian Wu, Weijie Duan, Tao Wang, Letian Li, Keke Zhang, Jingmei Zhu, Zhi Peng, Fei Xiong. Photoredox-Catalyzed Cascade Radical Cyclization of Ester Arylpropiolates with CF3SO2Cl To Construct 3-Trifluoromethyl Coumarin Derivatives. The Journal of Organic Chemistry 2018, 83 (15) , 8607-8614. https://doi.org/10.1021/acs.joc.8b00581
  27. John M. Edwards, Jeremy P. Derrick, Christopher F. van der Walle, Alexander P. Golovanov. 19F NMR as a Tool for Monitoring Individual Differentially Labeled Proteins in Complex Mixtures. Molecular Pharmaceutics 2018, 15 (7) , 2785-2796. https://doi.org/10.1021/acs.molpharmaceut.8b00282
  28. Minqi Zhou, Jin-Xiu Ren, Xiao-Tian Feng, Hai-Yang Zhao, Xia-Ping Fu, Qiao-Qiao Min, Xingang Zhang. Late-stage gem -difluoroallylation of phenol in bioactive molecules and peptides with 3,3-difluoroallyl sulfonium salts. Chemical Science 2024, 15 (8) , 2937-2945. https://doi.org/10.1039/D3SC06302J
  29. Can Lai, Zhiyao Tang, Zheyi Liu, Pan Luo, Wenxiang Zhang, Tingting Zhang, Wenhao Zhang, Zhe Dong, Xinyuan Liu, Xueming Yang, Fangjun Wang. Probing the functional hotspots inside protein hydrophobic pockets by in situ photochemical trifluoromethylation and mass spectrometry. Chemical Science 2024, 15 (7) , 2545-2557. https://doi.org/10.1039/D3SC05106D
  30. Xiaohui Liu, Chunyang Huan, Xiaofeng Zhang, Wei Zhang. Difluorocarbene-enabled synthesis of 18F-radiotracers in positron emission tomography. Journal of Fluorine Chemistry 2024, 274 , 110253. https://doi.org/10.1016/j.jfluchem.2024.110253
  31. Ilias Koutsopetras, Valentine Vaur, Rania Benazza, Hélène Diemer, Charlotte Sornay, Yağmur Ersoy, Léa Rochet, Carmen Longo, Oscar Hernandez‐Alba, Stéphane Erb, Alexandre Detappe, Arne Skerra, Alain Wagner, Sarah Cianferani, Guilhem Chaubet. Site‐Selective Protein Conjugation by a Multicomponent Ugi Reaction. Chemistry – A European Journal 2024, 31 https://doi.org/10.1002/chem.202303242
  32. Preeti Chauhan, Ragendu V., Mohan Kumar, Rajib Molla, Surya Dev Mishra, Sneha Basa, Vishal Rai. Chemical technology principles for selective bioconjugation of proteins and antibodies. Chemical Society Reviews 2024, 14 https://doi.org/10.1039/D3CS00715D
  33. Susanta Bhunia, Manasa Purushotham, Ganesh Karan, Bishwajit Paul, Modhu Sudan Maji. Exploring Chemical Modifications of Aromatic Amino Acid Residues in Peptides. Synthesis 2023, 55 (22) , 3701-3724. https://doi.org/10.1055/a-2091-8062
  34. Zhenquan Sun, Han Liu, Xuechen Li. Precision in protein chemical modification and total synthesis. Chem 2023, 82 https://doi.org/10.1016/j.chempr.2023.10.020
  35. Shunsuke Watanabe, Yuki Wada, Masaki Kawano, Shuhei Higashibayashi, Takeshi Sugai, Kengo Hanaya. Selective modification of tryptophan in polypeptides via C–N coupling with azoles using in situ -generated iodine-based oxidants in aqueous media. Chemical Communications 2023, 59 (87) , 13026-13029. https://doi.org/10.1039/D3CC03731B
  36. Yue Sun, Liming Yang, Yaohang Cheng, Guanghui An, Guangming Li. Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters 2023, 139 , 109250. https://doi.org/10.1016/j.cclet.2023.109250
  37. Li Chen, Ziyuan Zhao, Shouyun Yu. Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters 2023, 46 , 109128. https://doi.org/10.1016/j.cclet.2023.109128
  38. Tiziano Bassi, Anastassia Hirlinger, Leah Grayson, Julien Vantourout, Navtej Toor. Fluorescent labeling of RNA and DNA on the Hoogsteen edge using sulfinate chemistry. RNA 2023, 29 (9) , 1437-1451. https://doi.org/10.1261/rna.079679.123
  39. Nagarajan Ramkumar, Larisa Baumane, Dzintars Zacs, Janis Veliks. Merging Copper(I) Photoredox Catalysis and Iodine(III) Chemistry for the Oxy‐monofluoromethylation of Alkenes. Angewandte Chemie 2023, 135 (12) https://doi.org/10.1002/ange.202219027
  40. Nagarajan Ramkumar, Larisa Baumane, Dzintars Zacs, Janis Veliks. Merging Copper(I) Photoredox Catalysis and Iodine(III) Chemistry for the Oxy‐monofluoromethylation of Alkenes. Angewandte Chemie International Edition 2023, 62 (12) https://doi.org/10.1002/anie.202219027
  41. Minqi Zhou, Zhang Feng, Xingang Zhang. Recent advances in the synthesis of fluorinated amino acids and peptides. Chemical Communications 2023, 59 (11) , 1434-1448. https://doi.org/10.1039/D2CC06787K
  42. Niklas Henrik Fischer, Maria Teresa Oliveira, Frederik Diness. Chemical modification of proteins – challenges and trends at the start of the 2020s. Biomaterials Science 2023, 11 (3) , 719-748. https://doi.org/10.1039/D2BM01237E
  43. Hung‐Chi Chen, Chenggang Wan, Wan‐Hsuan Shih, Ciao‐Ying Kao, Haoyang Jiang, Yue Weng, Chien‐Wei Chiang. Indirect Electrochemical‐Induced Trifluoromethylation of Tryptophan Containing Oligopeptides. Asian Journal of Organic Chemistry 2023, 12 (1) https://doi.org/10.1002/ajoc.202200647
  44. Jing Liu, Jian Hao, Qilong Shen. Visible-Light-Promoted Direct Trifluoromethylation of Tryptophan-Containing Oligapeptides with YlideFluor. Chinese Journal of Organic Chemistry 2023, 43 (4) , 1517. https://doi.org/10.6023/cjoc202209018
  45. Jiazhu Zheng, Jianjun Du, Haoying Ge, Ning Xu, Qichao Yao, Saran Long, Jiangli Fan, Xiaojun Peng. Viscosity-dependent photocatalysis triggers ferroptosis and Type-I photodynamic therapy to kill drug-resistant tumors. Chemical Engineering Journal 2022, 449 , 136565. https://doi.org/10.1016/j.cej.2022.136565
  46. Nanna L. Kjærsgaard, Thorbjørn B. Nielsen, Kurt V. Gothelf. Chemical Conjugation to Less Targeted Proteinogenic Amino Acids. ChemBioChem 2022, 23 (19) https://doi.org/10.1002/cbic.202200245
  47. Haoying Ge, Jianjun Du, Jiazhu Zheng, Ning Xu, Qichao Yao, Saran Long, Jiangli Fan, Xiaojun Peng. Effective treatment of cisplatin-resistant ovarian tumors with a MoS2-based sonosensitizer and nanoenzyme capable of reversing the resistant-microenvironment and enhancing ferroptosis and apoptosis. Chemical Engineering Journal 2022, 446 , 137040. https://doi.org/10.1016/j.cej.2022.137040
  48. Chuan Wan, Yuena Wang, Chenshan Lian, Qi Chang, Yuhao An, Jiean Chen, Jinming Sun, Zhanfeng Hou, Dongyan Yang, Xiaochun Guo, Feng Yin, Rui Wang, Zigang Li. Histidine-specific bioconjugation via visible-light-promoted thioacetal activation. Chemical Science 2022, 13 (28) , 8289-8296. https://doi.org/10.1039/D2SC02353A
  49. Lei Liu, Wangqin Zhang, Chao Xu, Jiaying He, Zhenhui Xu, Zehui Yang, Fei Ling, Weihui Zhong. Electrosynthesis of CF 3 ‐Substituted Polycyclic Quinazolinones via Cascade Trifluoromethylation/Cyclization of Unactivated Alkene. Advanced Synthesis & Catalysis 2022, 364 (7) , 1319-1325. https://doi.org/10.1002/adsc.202101422
  50. Anjali Dahiya, Ashish Kumar Sahoo, Nikita Chakraborty, Bubul Das, Bhisma K. Patel. Updates on hypervalent-iodine reagents: metal-free functionalisation of alkenes, alkynes and heterocycles. Organic & Biomolecular Chemistry 2022, 20 (10) , 2005-2027. https://doi.org/10.1039/D1OB02233D
  51. Devaiah Vytla, Kumargurubaran Kaliyaperumal, Rajeswari Velayuthaperumal, Parinita Shaw, Raj Gautam, Arvind Mathur, Amrita Roy. Visible-Light-Promoted Radical Cyclization of N-Arylvinylsulfonamides: Synthesis of CF3/CHF2/CH2CF3-Containing 1,3-Dihydrobenzo[c]isothiazole 2,2-Dioxide Derivatives. Synthesis 2022, 54 (03) , 667-682. https://doi.org/10.1055/s-0040-1720921
  52. Charlotte Sornay, Valentine Vaur, Alain Wagner, Guilhem Chaubet. An overview of chemo- and site-selectivity aspects in the chemical conjugation of proteins. Royal Society Open Science 2022, 9 (1) https://doi.org/10.1098/rsos.211563
  53. Leonard Bock, Stefanie K. Schultheiß, Simone Maschauer, Roman Lasch, Susanne Gradl, Olaf Prante, Samir Z. Zard, Markus R. Heinrich. Synthesis of 2‐(Chlorodifluoromethyl)indoles for Nucleophilic Halogen Exchange with [ 18 F]Fluoride. European Journal of Organic Chemistry 2021, 2021 (46) , 6258-6262. https://doi.org/10.1002/ejoc.202100937
  54. Annemarie Kehl, Markus Hiller, Fabian Hecker, Igor Tkach, Sebastian Dechert, Marina Bennati, Andreas Meyer. Resolution of chemical shift anisotropy in 19F ENDOR spectroscopy at 263 GHz/9.4 T. Journal of Magnetic Resonance 2021, 333 , 107091. https://doi.org/10.1016/j.jmr.2021.107091
  55. Robert Britton, Veronique Gouverneur, Jin-Hong Lin, Michael Meanwell, Chuanfa Ni, Gabriele Pupo, Ji-Chang Xiao, Jinbo Hu. Contemporary synthetic strategies in organofluorine chemistry. Nature Reviews Methods Primers 2021, 1 (1) https://doi.org/10.1038/s43586-021-00042-1
  56. Caroline R. Buchholz, William C. K. Pomerantz. 19 F NMR viewed through two different lenses: ligand-observed and protein-observed 19 F NMR applications for fragment-based drug discovery. RSC Chemical Biology 2021, 2 (5) , 1312-1330. https://doi.org/10.1039/D1CB00085C
  57. Feng Zhu, Wyatt C. Powell, Ruiheng Jing, Maciej A. Walczak. Organometallic AlaM reagents for umpolung peptide diversification. Chem Catalysis 2021, 1 (4) , 870-884. https://doi.org/10.1016/j.checat.2021.05.016
  58. Arnab Chowdhury, Saurav Chatterjee, Akumlong Pongen, Dhanjit Sarania, Nitesh Mani Tripathi, Anupam Bandyopadhyay. Site-Selective, Chemical Modification of Protein at Aromatic Side Chain and Their Emergent Applications. Protein & Peptide Letters 2021, 28 (7) , 788-808. https://doi.org/10.2174/0929866528666210129152535
  59. Yue Liu, Shumin Lv, Lijie Peng, Chengliang Xie, Liqian Gao, Hongyan Sun, Ligen Lin, Ke Ding, Zhengqiu Li. Development and application of novel electrophilic warheads in target identification and drug discovery. Biochemical Pharmacology 2021, 190 , 114636. https://doi.org/10.1016/j.bcp.2021.114636
  60. Jacob R. Immel, Maheshwerreddy Chilamari, Steven Bloom. Combining flavin photocatalysis with parallel synthesis: a general platform to optimize peptides with non-proteinogenic amino acids. Chemical Science 2021, 12 (29) , 10083-10091. https://doi.org/10.1039/D1SC02562G
  61. Dorian Didier, Felix Reiners. Strategien bei radikalischen Trifluormethylierungen. Nachrichten aus der Chemie 2021, 69 (7-8) , 70-74. https://doi.org/10.1002/nadc.20214112348
  62. Fengchao Zha, Jiajia Rao, Bingcan Chen. Modification of pulse proteins for improved functionality and flavor profile: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 2021, 20 (3) , 3036-3060. https://doi.org/10.1111/1541-4337.12736
  63. Guangjun Bao, Peng Wang, Guofeng Li, Changjun Yu, Yiping Li, Yuyang Liu, Zeyuan He, Tiantian Zhao, Jing Rao, Junqiu Xie, Liang Hong, Wangsheng Sun, Rui Wang. 1,3‐Dipolar Cycloaddition between Dehydroalanines and C,N‐Cyclic Azomethine Imines: Application to Late‐Stage Peptide Modification. Angewandte Chemie 2021, 133 (10) , 5391-5398. https://doi.org/10.1002/ange.202012523
  64. Guangjun Bao, Peng Wang, Guofeng Li, Changjun Yu, Yiping Li, Yuyang Liu, Zeyuan He, Tiantian Zhao, Jing Rao, Junqiu Xie, Liang Hong, Wangsheng Sun, Rui Wang. 1,3‐Dipolar Cycloaddition between Dehydroalanines and C,N‐Cyclic Azomethine Imines: Application to Late‐Stage Peptide Modification. Angewandte Chemie International Edition 2021, 60 (10) , 5331-5338. https://doi.org/10.1002/anie.202012523
  65. Kheironnesae Rahimidashaghoul, Iveta Klimánková, Martin Hubálek, Václav Matoušek, Josef Filgas, Petr Slavíček, Tomáš Slanina, Petr Beier. Visible‐Light‐Driven Fluoroalkylation of Tryptophan Residues in Peptides. ChemPhotoChem 2021, 5 (1) , 43-50. https://doi.org/10.1002/cptc.202000214
  66. Jin‐Jian Hu, Pei‐Yang He, Yan‐Mei Li. Chemical modifications of tryptophan residues in peptides and proteins. Journal of Peptide Science 2021, 27 (1) https://doi.org/10.1002/psc.3286
  67. Anaïs F. M. Noisier, Ranganath Gopalakrishnan. Oxime/Hydrazone Conjugation at Histidine: Late-Stage Functionalization Approach of Unprotected Peptides. 2021, 35-48. https://doi.org/10.1007/978-1-0716-1617-8_4
  68. Margeaux A. Miller, Ellen M. Sletten. Perfluorocarbons in Chemical Biology. ChemBioChem 2020, 21 (24) , 3451-3462. https://doi.org/10.1002/cbic.202000297
  69. Yadong Pang, Joo Won Lee, Koji Kubota, Hajime Ito. Solid‐State Radical C−H Trifluoromethylation Reactions Using Ball Milling and Piezoelectric Materials. Angewandte Chemie 2020, 132 (50) , 22759-22765. https://doi.org/10.1002/ange.202009844
  70. Yadong Pang, Joo Won Lee, Koji Kubota, Hajime Ito. Solid‐State Radical C−H Trifluoromethylation Reactions Using Ball Milling and Piezoelectric Materials. Angewandte Chemie International Edition 2020, 59 (50) , 22570-22576. https://doi.org/10.1002/anie.202009844
  71. Pei-Yang He, Huai Chen, Hong-Guo Hu, Jin-Jian Hu, Yeh-Jun Lim, Yan-Mei Li. Late-stage peptide and protein modifications through phospha-Michael addition reaction. Chemical Communications 2020, 56 (83) , 12632-12635. https://doi.org/10.1039/D0CC04969G
  72. Brian Josephson, Charlie Fehl, Patrick G. Isenegger, Simon Nadal, Tom H. Wright, Adeline W. J. Poh, Ben J. Bower, Andrew M. Giltrap, Lifu Chen, Christopher Batchelor-McAuley, Grace Roper, Oluwatobi Arisa, Jeroen B. I. Sap, Akane Kawamura, Andrew J. Baldwin, Shabaz Mohammed, Richard G. Compton, Veronique Gouverneur, Benjamin G. Davis. Light-driven post-translational installation of reactive protein side chains. Nature 2020, 585 (7826) , 530-537. https://doi.org/10.1038/s41586-020-2733-7
  73. Neelesh C. Reddy, Mohan Kumar, Rajib Molla, Vishal Rai. Chemical methods for modification of proteins. Organic & Biomolecular Chemistry 2020, 18 (25) , 4669-4691. https://doi.org/10.1039/D0OB00857E
  74. Itziar Guerrero, Arkaitz Correa. Site‐Selective Trifluoromethylation Reactions of Oligopeptides. Asian Journal of Organic Chemistry 2020, 9 (6) , 898-909. https://doi.org/10.1002/ajoc.202000170
  75. Ming Cheng, Chunyang Guo, Michael L. Gross. Fluorierte Reagenzien in der Strukturproteomik. Angewandte Chemie 2020, 132 (15) , 5932-5942. https://doi.org/10.1002/ange.201907662
  76. Ming Cheng, Chunyang Guo, Michael L. Gross. The Application of Fluorine‐Containing Reagents in Structural Proteomics. Angewandte Chemie International Edition 2020, 59 (15) , 5880-5889. https://doi.org/10.1002/anie.201907662
  77. V. Prakash Reddy. Free-radical reactions in the synthesis of organofluorine compounds. 2020, 75-101. https://doi.org/10.1016/B978-0-12-813286-9.00003-1
  78. Jared A. Shadish, Cole A. DeForest. Site-Selective Protein Modification: From Functionalized Proteins to Functional Biomaterials. Matter 2020, 2 (1) , 50-77. https://doi.org/10.1016/j.matt.2019.11.011
  79. Anaïs F. M. Noisier, Magnus J. Johansson, Laurent Knerr, Martin A. Hayes, William J. Drury, Eric Valeur, Lara R. Malins, Ranganath Gopalakrishnan. Late‐Stage Functionalization of Histidine in Unprotected Peptides. Angewandte Chemie 2019, 131 (52) , 19272-19278. https://doi.org/10.1002/ange.201910888
  80. Anaïs F. M. Noisier, Magnus J. Johansson, Laurent Knerr, Martin A. Hayes, William J. Drury, Eric Valeur, Lara R. Malins, Ranganath Gopalakrishnan. Late‐Stage Functionalization of Histidine in Unprotected Peptides. Angewandte Chemie International Edition 2019, 58 (52) , 19096-19102. https://doi.org/10.1002/anie.201910888
  81. Bo Ding, Yue Weng, Yunqing Liu, Chunlan Song, Le Yin, Jiafan Yuan, Yanrui Ren, Aiwen Lei, Chien‐Wei Chiang. Selective Photoredox Trifluoromethylation of Tryptophan‐Containing Peptides. European Journal of Organic Chemistry 2019, 2019 (46) , 7596-7605. https://doi.org/10.1002/ejoc.201901572
  82. Kheironnesae Rahimidashaghoul, Iveta Klimánková, Martin Hubálek, Michal Korecký, Matúš Chvojka, Daniel Pokorný, Václav Matoušek, Lukáš Fojtík, Daniel Kavan, Zdeněk Kukačka, Petr Novák, Petr Beier. Reductant‐Induced Free Radical Fluoroalkylation of Nitrogen Heterocycles and Innate Aromatic Amino Acid Residues in Peptides and Proteins. Chemistry – A European Journal 2019, 25 (69) , 15779-15785. https://doi.org/10.1002/chem.201902944
  83. Iveta Klimánková, Martin Hubálek, Václav Matoušek, Petr Beier. Synthesis of water-soluble hypervalent iodine reagents for fluoroalkylation of biological thiols. Organic & Biomolecular Chemistry 2019, 17 (47) , 10097-10102. https://doi.org/10.1039/C9OB02115A
  84. Claudio F. Meyer, Sandrine M. Hell, Jeroen B.I. Sap, Antonio Misale, Aldo Peschiulli, Daniel Oehlrich, Andrés A. Trabanco, Véronique Gouverneur. Hydrochlorofluoromethylation of unactivated alkenes with chlorofluoroacetic acid. Tetrahedron 2019, 75 (47) , 130679. https://doi.org/10.1016/j.tet.2019.130679
  85. Dattatraya G. Rawale, Kalyani Thakur, Srinivasa Rao Adusumalli, Vishal Rai. Chemical Methods for Selective Labeling of Proteins. European Journal of Organic Chemistry 2019, 2019 (40) , 6749-6763. https://doi.org/10.1002/ejoc.201900801
  86. Dania Rose-Sperling, Mai Anh Tran, Luca M. Lauth, Benedikt Goretzki, Ute A. Hellmich. 19 F NMR as a versatile tool to study membrane protein structure and dynamics. Biological Chemistry 2019, 400 (10) , 1277-1288. https://doi.org/10.1515/hsz-2018-0473
  87. Massimo Brochetta, Tania Borsari, Sukdev Bag, Sadhan Jana, Siddhartha Maiti, Alessio Porta, Daniel B. Werz, Giuseppe Zanoni, Debabrata Maiti. Direct meta ‐C−H Perfluoroalkenylation of Arenes Enabled by a Cleavable Pyrimidine‐Based Template. Chemistry – A European Journal 2019, 25 (44) , 10323-10327. https://doi.org/10.1002/chem.201902811
  88. Sheng Zhang, Lijun Li, Jinjin Zhang, Junqi Zhang, Mengyu Xue, Kun Xu. Electrochemical fluoromethylation triggered lactonizations of alkenes under semi-aqueous conditions. Chemical Science 2019, 10 (11) , 3181-3185. https://doi.org/10.1039/C9SC00100J
  89. Emily A. Hoyt, Pedro M. S. D. Cal, Bruno L. Oliveira, Gonçalo J. L. Bernardes. Contemporary approaches to site-selective protein modification. Nature Reviews Chemistry 2019, 3 (3) , 147-171. https://doi.org/10.1038/s41570-019-0079-1
  90. Stacy C. Fosu, Chido M. Hambira, Andrew D. Chen, James R. Fuchs, David A. Nagib. Site-Selective C–H Functionalization of (Hetero)Arenes via Transient, Non-symmetric Iodanes. Chem 2019, 5 (2) , 417-428. https://doi.org/10.1016/j.chempr.2018.11.007
  91. Jakob Pletz, Christoph Koeberl, Michael Fuchs, Oliver Steiner, Walter Goessler, Wolfgang Kroutil. Cu and Hydroquinone for the Trifluoromethylation of Unprotected Phenols. European Journal of Organic Chemistry 2019, 2019 (4) , 682-690. https://doi.org/10.1002/ejoc.201801111
  92. João R. Robalo, Ana Vila Verde. Unexpected trends in the hydrophobicity of fluorinated amino acids reflect competing changes in polarity and conformation. Physical Chemistry Chemical Physics 2019, 21 (4) , 2029-2038. https://doi.org/10.1039/C8CP07025C
  93. Xiaocong Zhou, Guijie Li, Zongzhou Shao, Kun Fang, Hongjun Gao, Yuanqiang Li, Yuanbin She. Four-component acyloxy-trifluoromethylation of arylalkenes mediated by a photoredox catalyst. Organic & Biomolecular Chemistry 2019, 17 (1) , 24-29. https://doi.org/10.1039/C8OB02239A
  94. Jitka Dadová, Sébastien RG Galan, Benjamin G Davis. Synthesis of modified proteins via functionalization of dehydroalanine. Current Opinion in Chemical Biology 2018, 46 , 71-81. https://doi.org/10.1016/j.cbpa.2018.05.022
  95. Naoko Ichiishi, John P. Caldwell, Melissa Lin, Wendy Zhong, Xiaohong Zhu, Eric Streckfuss, Hai-Young Kim, Craig A. Parish, Shane W. Krska. Protecting group free radical C–H trifluoromethylation of peptides. Chemical Science 2018, 9 (17) , 4168-4175. https://doi.org/10.1039/C8SC00368H
  • Abstract

    Figure 1

    Figure 1. Direct radical trifluoromethylation of protein substrates. ·CF3 radical targeting (hetero)aromatic residues can be generated from sodium trifluoromethanesulfinate (NaTFMS, Langlois’ reagent) under aqueous, oxidative conditions.

    Figure 2

    Figure 2. Limited-conversion competition assay of natural amino acids (0.03 mmol) revealed chemo- and regio-selectivity toward Trp with minor products (Cys and lower levels of Phe, His, Tyr isomers, determined by 19F-NMR, LC-MS). See Figure S3 for parallel reaction in absence of Cys.

    Figure 3

    Figure 3. Reaction of melittin (MWcalc= 2847) with NaTFMS/TBHP. (a) Relative conversions from LC-MS with the optimal reaction time highlighted in blue. (b) Deconvoluted LC-MS spectra of reaction mixtures after 5 min ± Met. Undesired oxidation (+32) is curtailed by sacrificial reductant giving melittin-TrpCF3 (+68, MWcalc = 2915, MWfound = 2915).

    Figure 4

    Figure 4. Direct trifluoromethylation of proteins (a) myoglobin (Mb, MWcalc = 16951.5) deconvoluted LC-MS spectrum showing singly- (MWcalc = 17019, MWfound = 17020) and doubly- modified (MWcalc = 17087, MWfound = 17087), (b) tryptic-LC-MS/MS confirmed site-selectivity at Trp7 and Trp14.

    Figure 5

    Figure 5. 19F-NMR analyses enabled by direct trifluoromethylation. (a) 19F-NMR of CF3Trp-Mb (700 μM in 100 mM NH4OAc, pH 8, blue), denatured by 10 M urea (300 μM, red) and peptide mixture from tryptic digest (from 2 mM protein, green). Dashes indicate chemical shift for small molecule model. Inset at higher field with individual Trp resolved. (b) Urea titration by 19F-NMR (protein 200–400 μM). (c) Chemical shift differences from ligands in PrOF, protein concentration (100–300 μM).

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 65 other publications.

    1. 1
      Leclerc, N.; Chavez, P.; Ibraikulov, O. A.; Heiser, T.; Leveque, P. Polymers 2016, 8, 11 DOI: 10.3390/polym8010011
    2. 2
      Tirotta, I.; Dichiarante, V.; Pigliacelli, C.; Cavallo, G.; Terraneo, G.; Bombelli, F.; Metrangolo, P.; Resnati, G. Chem. Rev. 2015, 115, 1106 DOI: 10.1021/cr500286d
    3. 3
      Preshlock, S.; Tredwell, M.; Gouverneur, V. Chem. Rev. 2016, 116, 719 DOI: 10.1021/acs.chemrev.5b00493
    4. 4
      Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Acena, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422 DOI: 10.1021/acs.chemrev.5b00392
    5. 5
      Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320 DOI: 10.1039/B610213C
    6. 6
      Muller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881 DOI: 10.1126/science.1131943
    7. 7
      Marsh, E. N. Acc. Chem. Res. 2014, 47, 2878 DOI: 10.1021/ar500125m
    8. 8
      Danielson, M. A.; Falke, J. J. Annu. Rev. Biophys. Biomol. Struct. 1996, 25, 163 DOI: 10.1146/annurev.bb.25.060196.001115
    9. 9
      Wang, G.; Zhang, Z. T.; Jiang, B.; Zhang, X.; Li, C.; Liu, M. Anal. Bioanal. Chem. 2014, 406, 2279 DOI: 10.1007/s00216-013-7518-5
    10. 10
      Yu, J. X.; Hallac, R. R.; Chiguru, S.; Mason, R. P. Prog. Nucl. Magn. Reson. Spectrosc. 2013, 70, 25 DOI: 10.1016/j.pnmrs.2012.10.001
    11. 11
      Leung, R. L. C.; Robinson, M. D. M.; Ajabali, A. A.; Karunanithy, G.; Lyons, B.; Raj, R.; Raoufmoghaddam, S.; Mohammed, S.; Claridge, T. D. W.; Baldwin, A. J.; Davis, B. G. J. Am. Chem. Soc. 2017, 139, 5277 DOI: 10.1021/jacs.6b11040
    12. 12
      Manglik, A.; Kim, T. H.; Masureel, M.; Altenbach, C.; Yang, Z. Y.; Hilger, D.; Lerch, M. T.; Kobilka, T. S.; Thian, F. S.; Hubbell, W. L.; Prosser, R. S.; Kobilka, B. K. Cell 2015, 162, 1431 DOI: 10.1016/j.cell.2015.08.045
    13. 13
      Ye, L.; Van Eps, N.; Zimmer, M.; Ernst, O. P.; Prosser, R. S. Nature 2016, 533, 265 DOI: 10.1038/nature17668
    14. 14
      Kim, T. H.; Mehrabi, P.; Ren, Z.; Sljoka, A.; Ing, C.; Bezginov, A.; Ye, L.; Pomes, R.; Prosser, R. S.; Pai, E. F. Science 2017, 355, eaag2355 DOI: 10.1126/science.aag2355
    15. 15
      Ye, Y.; Liu, X.; Chen, Y.; Xu, G.; Wu, Q.; Zhang, Z.; Yao, C.; Liu, M.; Li, C. Chem. - Eur. J. 2015, 21, 8686 DOI: 10.1002/chem.201500279
    16. 16
      Gee, C. T.; Arntson, K. E.; Urick, A. K.; Mishra, N. K.; Hawk, L. M.; Wisniewski, A. J.; Pomerantz, W. C. Nat. Protoc. 2016, 11, 1414 DOI: 10.1038/nprot.2016.079
    17. 17
      Urick, A. K.; Calle, L. P.; Espinosa, J. F.; Hu, H.; Pomerantz, W. C. ACS Chem. Biol. 2016, 11, 3154 DOI: 10.1021/acschembio.6b00730
    18. 18
      Arntson, K. E.; Pomerantz, W. C. J. Med. Chem. 2016, 59, 5158 DOI: 10.1021/acs.jmedchem.5b01447
    19. 19
      Urick, A. K.; Hawk, L. M.; Cassel, M. K.; Mishra, N. K.; Liu, S.; Adhikari, N.; Zhang, W.; dos Santos, C. O.; Hall, J. L.; Pomerantz, W. C. ACS Chem. Biol. 2015, 10, 2246 DOI: 10.1021/acschembio.5b00483
    20. 20
      Malins, L. R.; Payne, R. J. Curr. Opin. Chem. Biol. 2014, 22, 70 DOI: 10.1016/j.cbpa.2014.09.021
    21. 21
      Frieden, C.; Hoeltzli, S.; Bann, J. Methods Enzymol. 2004, 380, 400 DOI: 10.1016/S0076-6879(04)80018-1
    22. 22
      Marsh, E. N.; Suzuki, Y. ACS Chem. Biol. 2014, 9, 1242 DOI: 10.1021/cb500111u
    23. 23
      Hammill, J. T.; Miyake-Stoner, S.; Hazen, J. L.; Jackson, J. C.; Mehl, R. A. Nat. Protoc. 2007, 2, 2601 DOI: 10.1038/nprot.2007.379
    24. 24
      Kitevski-LeBlanc, J. L.; Prosser, R. S. Prog. Nucl. Magn. Reson. Spectrosc. 2012, 62, 1 DOI: 10.1016/j.pnmrs.2011.06.003
    25. 25
      Gerig, J. T. Prog. Nucl. Magn. Reson. Spectrosc. 1994, 26, 293 DOI: 10.1016/0079-6565(94)80009-X
    26. 26
      Basle, E.; Joubert, N.; Pucheault, M. Chem. Biol. 2010, 17, 213 DOI: 10.1016/j.chembiol.2010.02.008
    27. 27
      Tian, H.; Furstenberg, A.; Huber, T. Chem. Rev. 2017, 117, 186 DOI: 10.1021/acs.chemrev.6b00084
    28. 28

      Rapidly rotating CF3 produces strong, narrow NMR signal.

    29. 29
      Kim, H. J.; Howell, S. C.; Van Horn, W. D.; Jeon, Y. H.; Sanders, C. R. Prog. Nucl. Magn. Reson. Spectrosc. 2009, 55, 335 DOI: 10.1016/j.pnmrs.2009.07.002
    30. 30
      Natte, K.; Jagadeesh, R. V.; He, L.; Rabeah, J.; Chen, J.; Taeschler, C.; Ellinger, S.; Zaragoza, F.; Neumann, H.; Brückner, A.; Beller, M. Angew. Chem., Int. Ed. 2016, 55, 2782 DOI: 10.1002/anie.201511131
    31. 31
      Nagib, D. A.; MacMillan, D. W. Nature 2011, 480, 224 DOI: 10.1038/nature10647
    32. 32
      Lin, J.; Li, Z.; Kan, J.; Huang, S.; Su, W.; Li, Y. Nat. Commun. 2017, 8, 14353 DOI: 10.1038/ncomms14353
    33. 33
      Yan, M.; Lo, J. C.; Edwards, J. T.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 12692 DOI: 10.1021/jacs.6b08856
    34. 34
      Schaller, M. F.; Fung, M. K.; Wright, T. H.; Katz, M. E.; Kent, D. V. Science 2016, 354, 225 DOI: 10.1126/science.aaf5466
    35. 35
      Jiang, Y.; Yu, H.; Fu, Y.; Liu, L. Sci. China: Chem. 2015, 58, 673 DOI: 10.1007/s11426-014-5178-8
    36. 36
      Lefebvre, Q. Synlett 2016, 28, 19 DOI: 10.1055/s-0036-1588643
    37. 37
      Li, L.; Mu, X.; Liu, W.; Wang, Y.; Mi, Z.; Li, C. J. J. Am. Chem. Soc. 2016, 138, 5809 DOI: 10.1021/jacs.6b02782
    38. 38
      Wang, D.; Deng, G.; Chen, S.; Gong, H. Green Chem. 2016, 18, 5967 DOI: 10.1039/C6GC02000C
    39. 39
      Fujiwara, Y.; Dixon, J. A.; O’Hara, F.; Funder, E. D.; Dixon, D. D.; Rodriguez, R. A.; Baxter, R. D.; Herle, B.; Sach, N.; Collins, M. R.; Ishihara, Y.; Baran, P. S. Nature 2012, 492, 95 DOI: 10.1038/nature11680
    40. 40
      Ji, Y.; Brueckl, T.; Baxter, R.; Fujiwara, Y.; Seiple, I.; Su, S.; Blackmond, D.; Baran, P. S. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 14411 DOI: 10.1073/pnas.1109059108
    41. 41
      Seim, K. L.; Obermeyer, A. C.; Francis, M. B. J. Am. Chem. Soc. 2011, 133, 16970 DOI: 10.1021/ja206324q
    42. 42
      Antos, J. M.; McFarland, J. M.; Iavarone, A. T.; Francis, M. B. J. Am. Chem. Soc. 2009, 131, 6301 DOI: 10.1021/ja900094h
    43. 43
      Seki, Y.; Ishiyama, T.; Sasaki, D.; Abe, J.; Sohma, Y.; Oisaki, K.; Kanai, M. J. Am. Chem. Soc. 2016, 138, 10798 DOI: 10.1021/jacs.6b06692
    44. 44
      Lian, C.; Le, H.; Montez, B.; Patterson, J.; Harrell, S.; Laws, D.; Matsumura, I.; Pearson, J.; Oldfield, E. Biochemistry 1994, 33, 5238 DOI: 10.1021/bi00183a029
    45. 45
      Muthuselvi, L.; Miller, R.; Dhathathreyan, A. Chem. Phys. Lett. 2008, 465, 126 DOI: 10.1016/j.cplett.2008.09.037
    46. 46

      We tentatively assign I as Trp7 and II as Trp14 by comparison with universally labelled [4F]-Trp-Mb despite highly dispersed peaks in those studies. See the following ref:

    47. 47
      Pearson, J. G.; Montez, B.; Le, H. B.; Oldfield, E.; Chien, E. Y. T.; Sligar, S. G. Biochemistry 1997, 36, 3590 DOI: 10.1021/bi961664h
    48. 48
      Jash, C.; Kumar, G. S. RSC Adv. 2014, 4, 12514 DOI: 10.1039/c3ra46053c
    49. 49
      Richards, M. P. Antioxid. Redox Signaling 2013, 18, 2342 DOI: 10.1089/ars.2012.4887
    50. 50
      Winkler, W. C.; Gonzalez, G.; Wittenberg, J. B.; Hille, R.; Dakappagari, N.; Jacob, A.; Gonzalez, L. A.; Gilles-Gonzalez, M. A. Chem. Biol. 1996, 3, 841 DOI: 10.1016/S1074-5521(96)90070-8
    51. 51
      Olsson, C.; Jansson, H.; Swenson, J. J. Phys. Chem. B 2016, 120, 4723 DOI: 10.1021/acs.jpcb.6b02517
    52. 52
      Huang, X.; Wang, C. X.; Celeste, L. R.; Lovelace, L. L.; Sun, S. F.; Dawson, J. H.; Lebioda, L. Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun. 2012, 68, 1465 DOI: 10.1107/S1744309112045514
    53. 53
      Rahman, S.; Ali, S. A.; Islam, A.; Hassan, M. I.; Ahmad, F. Arch. Biochem. Biophys. 2016, 591, 7 DOI: 10.1016/j.abb.2015.11.035
    54. 54
      Labroo, V. M.; Labroo, R. B.; Cohen, L. A. Tetrahedron Lett. 1990, 31, 5705 DOI: 10.1016/S0040-4039(00)97937-1
    55. 55
      Cheng, M.; Zhang, B.; Cui, W.; Gross, M. L. Angew. Chem., Int. Ed. 2017, 56, 14007 DOI: 10.1002/anie.201706697
    56. 56
      Capone, S.; Kieltsch, I.; Flögel, O.; Lelais, G.; Togni, A.; Seebach, D. Helv. Chim. Acta 2008, 91, 2035 DOI: 10.1002/hlca.200890217
    57. 57
      O’Hara, F.; Blackmond, D. G.; Baran, P. S. J. Am. Chem. Soc. 2013, 135, 12122 DOI: 10.1021/ja406223k
    58. 58
      Abboud, M. I.; Hinchliffe, P.; Brem, J.; Macsics, R.; Pfeffer, I.; Makena, A.; Umland, K. D.; Rydzik, A. M.; Li, G. B.; Spencer, J.; Claridge, T. D.; Schofield, C. J. Angew. Chem., Int. Ed. 2017, 56, 3862 DOI: 10.1002/anie.201612185
    59. 59
      Kitevski-LeBlanc, J. L.; Evanics, F.; Prosser, R. S. J. Biomol. NMR 2010, 48, 113 DOI: 10.1007/s10858-010-9443-7
    60. 60
      Chilkoti, A.; Tan, P. H.; Stayton, P. S. Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 1754 DOI: 10.1073/pnas.92.5.1754
    61. 61
      Englert, M.; Nakamura, A.; Wang, Y. S.; Eiler, D.; Söll, D.; Guo, L. T. Nucleic Acids Res. 2015, 43, 11061 DOI: 10.1093/nar/gkv1255
    62. 62
      Ma, H.; Yang, X.; Lu, Z.; Liu, N.; Chen, Y. PLoS One 2014, 9, e103792 DOI: 10.1371/journal.pone.0103792
    63. 63
      Nakamura, A.; Tsukada, T.; Auer, S.; Furuta, T.; Wada, M.; Koivula, A.; Igarashi, K.; Samejima, M. J. Biol. Chem. 2013, 288, 13503 DOI: 10.1074/jbc.M113.452623
    64. 64
      Lakowicz, J. R. Principles of fluorescence spectroscopy; 3rd ed.; Springer: New York, NY, 2006.
    65. 65
      Budisa, N.; Pipitone, O.; Siwanowicz, I.; Rubini, M.; Pal, P. P.; Holak, T. A.; Gelmi, M. L. Chem. Biodiversity 2004, 1, 1465 DOI: 10.1002/cbdv.200490107
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b10230.

    • Experimental and characterization data (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect