Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Achieving Superprotonic Conduction in Metal–Organic Frameworks through Iterative Design Advances

View Author Information
Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
Cite this: J. Am. Chem. Soc. 2018, 140, 3, 1077–1082
Publication Date (Web):December 22, 2017
https://doi.org/10.1021/jacs.7b11364
Copyright © 2017 American Chemical Society

    Article Views

    6093

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Two complementary design strategies, isomorphous ligand replacement and heterocycle doping, have been applied to iteratively enhance the proton conductivity of a metal–organic framework, β-PCMOF2. The resulting materials, PCMOF21/2(Pz) and PCMOF21/2(Tz) (Pz = 1H-pyrazole, Tz = 1H-1,2,4-triazole), have their proton conduction raised almost 2 orders of magnitude compared to β-PCMOF2. The bulk conductivities of these materials are over 10–1 S cm–1 at 85 °C and 90% relative humidity (RH), while maintaining the parent MOF structure. A solid state synthetic route for doping 1-D channels is also presented.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b11364.

    • Details of synthesis, powder XRD, and impedance analysis (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 251 publications.

    1. Shyam Chand Pal, Debolina Mukherjee, Yasaswini Oruganti, Byoung Gwan Lee, Dae-Woon Lim, Bikram Pramanik, Arun K. Manna, Madhab C. Das. Room-Temperature Superprotonic Conductivity beyond 10–1 S cm–1 in a Co(II) Coordination Polymer. Journal of the American Chemical Society 2024, 146 (21) , 14546-14557. https://doi.org/10.1021/jacs.4c01113
    2. Cong Wang, Yexin Shen, Xiuyuan Wang, Yugang Zhang, Chengzhen Wang, Qin Wang, Hui Li, Shuao Wang, Daxiang Gui. Imparting Stable and Ultrahigh Proton Conductivity to a Layered Rare Earth Hydroxide via Ion Exchange. ACS Applied Materials & Interfaces 2024, 16 (17) , 22648-22656. https://doi.org/10.1021/acsami.4c01241
    3. Ying Yang, Siriluk Kanchanakungwankul, Suman Bhaumik, Qing Ma, Sol Ahn, Donald G. Truhlar, Joseph T. Hupp. Bioinspired Cu(II) Defect Sites in ZIF-8 for Selective Methane Oxidation. Journal of the American Chemical Society 2023, 145 (40) , 22019-22030. https://doi.org/10.1021/jacs.3c06981
    4. Jin Chen, Bing An, Yinlin Chen, Xue Han, Qingqing Mei, Meng He, Yongqiang Cheng, Inigo J. Vitorica-Yrezabal, Louise S. Natrajan, Daniel Lee, Anibal J. Ramirez-Cuesta, Sihai Yang, Martin Schröder. Ultra-fast Proton Conduction and Photocatalytic Water Splitting in a Pillared Metal–Organic Framework. Journal of the American Chemical Society 2023, 145 (35) , 19225-19231. https://doi.org/10.1021/jacs.3c03943
    5. Xin Chen, Shuai-Long Zhang, Shang-Hao Xiao, Zi-Feng Li, Gang Li. Ultrahigh Proton Conductivities of Postmodified Hf(IV) Metal–Organic Frameworks and Related Chitosan-Based Composite Membranes. ACS Applied Materials & Interfaces 2023, 15 (29) , 35128-35139. https://doi.org/10.1021/acsami.3c08007
    6. Ying-Bing Lu, Jing Huang, Ya-Qing Liao, Xue-Lian Lin, Si-Yu Huang, Cai-Ming Liu, He-Rui Wen, Sui-Jun Liu, Fei-Yang Wang, Shui-Dong Zhu. Multifunctional Dinuclear Dy-Based Coordination Complex Showing Visible Photoluminescence, Single-Molecule Magnet Behavior, and Proton Conduction. Inorganic Chemistry 2022, 61 (46) , 18545-18553. https://doi.org/10.1021/acs.inorgchem.2c02822
    7. Hee Sun Park, Ruijing Sun, Eun Joo Lee, Jungho Kim, Nam Hwi Hur. Triazole-Bridged Zinc Dinuclear Complexes: Mechanochemical Synthesis, Crystal Structure, and Biological Activity. ACS Omega 2022, 7 (45) , 40860-40868. https://doi.org/10.1021/acsomega.2c03715
    8. Max Rautenberg, Biswajit Bhattacharya, Chayanika Das, Franziska Emmerling. Mechanochemical Synthesis of Phosphonate-Based Proton Conducting Metal–Organic Frameworks. Inorganic Chemistry 2022, 61 (28) , 10801-10809. https://doi.org/10.1021/acs.inorgchem.2c01023
    9. Tomohiro Ogawa, Kazuki Takahashi, Takuya Kurihara, Sanjog S. Nagarkar, Koji Ohara, Yusuke Nishiyama, Satoshi Horike. Network Size Control in Coordination Polymer Glasses and Its Impact on Viscosity and H+ Conductivity. Chemistry of Materials 2022, 34 (13) , 5832-5841. https://doi.org/10.1021/acs.chemmater.2c00494
    10. Palak Mehra, Midhula Wilson, Amit Paul. Acid-Base Synergism in Nitrogen- and Oxygen-Functionalized Few-Layer Graphene for Low-Activation Barrier Solid-State Proton Conduction. The Journal of Physical Chemistry C 2022, 126 (25) , 10534-10545. https://doi.org/10.1021/acs.jpcc.2c02377
    11. Daxiang Gui, Yugang Zhang, Hui Li, Jie Shu, Lanhua Chen, Ling Zhao, Juan Diwu, Zhifang Chai, Shuao Wang. Developing a Unique Hydrogen-Bond Network in a Uranyl Coordination Framework for Fuel Cell Applications. Inorganic Chemistry 2022, 61 (20) , 8036-8042. https://doi.org/10.1021/acs.inorgchem.2c00844
    12. Fahui Xiang, Shimin Chen, Zhen Yuan, Lu Li, Zhiwen Fan, Zizhu Yao, Chulong Liu, Shengchang Xiang, Zhangjing Zhang. Switched Proton Conduction in Metal–Organic Frameworks. JACS Au 2022, 2 (5) , 1043-1053. https://doi.org/10.1021/jacsau.2c00069
    13. Yan-Jun Xu, Ying Li, Jun-Jun Li, Zhen-Jie Feng, Xin-Long Wang, Ming-Yue Fan, Xue-Song Wu, Jing Sun, Kui-Zhan Shao, Zhong-Min Su. Coordination Environment Regulation of Cucurbit[6]uril-Based Metal–Organic Rotaxane Networks for Proton Conduction. Crystal Growth & Design 2022, 22 (5) , 2793-2798. https://doi.org/10.1021/acs.cgd.2c00068
    14. Xin Chen, Shi-Zhuo Wang, Shang-Hao Xiao, Zi-Feng Li, Gang Li. High Protonic Conductivity of Three Highly Stable Nanoscale Hafnium(IV) Metal–Organic Frameworks and Their Imidazole-Loaded Products. Inorganic Chemistry 2022, 61 (12) , 4938-4947. https://doi.org/10.1021/acs.inorgchem.1c03679
    15. Ying-Bing Lu, Jing Huang, Xue-Ru Yuan, Sui-Jun Liu, Rong Li, Huijin Liu, Mei-Pin Liu, He-Rui Wen, Shui-Dong Zhu, Yong-Rong Xie. A Three-Dimensional Porous Mn(II)-Metal–Organic Framework Based on a Caged Structure Showing High Room-Temperature Proton Conductivity. Crystal Growth & Design 2022, 22 (2) , 1045-1053. https://doi.org/10.1021/acs.cgd.1c00872
    16. Yonghe He, Jiale Dong, Zhiqing Liu, Mu-Qing Li, Jieying Hu, Yan Zhou, Zhengtao Xu, Jun He. Dense Dithiolene Units on Metal–Organic Frameworks for Mercury Removal and Superprotonic Conduction. ACS Applied Materials & Interfaces 2022, 14 (1) , 1070-1076. https://doi.org/10.1021/acsami.1c20762
    17. Jin Zhang, Ru Zhang, Yangyang Liu, Ya-Ru Kong, Hong-Bin Luo, Yang Zou, Lu Zhai, Xiao-Ming Ren. Acidic Groups Functionalized Carbon Dots Capping Channels of a Proton Conductive Metal–Organic Framework by Coordination Bonds to Improve the Water-Retention Capacity and Boost Proton Conduction. ACS Applied Materials & Interfaces 2021, 13 (50) , 60084-60091. https://doi.org/10.1021/acsami.1c20884
    18. Xiao-Qian Xu, Li-Hui Cao, Yan Yang, Fang Zhao, Xiang-Tian Bai, Shuang-Quan Zang. Hybrid Nafion Membranes of Ionic Hydrogen-Bonded Organic Framework Materials for Proton Conduction and PEMFC Applications. ACS Applied Materials & Interfaces 2021, 13 (47) , 56566-56574. https://doi.org/10.1021/acsami.1c15748
    19. Ying-Bing Lu, Ya-Qing Liao, Lu Dong, Shui-Dong Zhu, He-Rui Wen, Jing Huang, Xue-Xun Dai, Ping Lian, Xiao-Ming Jiang, Rong Li, Yong-Rong Xie. Ultra-Stable Metal–Organic Framework with Concurrent High Proton Conductivity and Fluorescence Sensing for Nitrobenzene. Chemistry of Materials 2021, 33 (19) , 7858-7868. https://doi.org/10.1021/acs.chemmater.1c02562
    20. Zih-Yi Lin, Amitabha Datta, Kuheli Das, Arif I. Inamdar, Hsi-Yuan Hsieh, Yao-Huei Huang, Ming-Hsi Chiang, Chia-Jyi Liu, Liang-Rui Chen, Yang-Wei Lin, Hon Man Lee. Proton-Conducting Cobalt(II) 3D MOFs Incorporating Bis(imidazole) and Polycarboxylate Linkages: Framework Topology and Interpenetration. Crystal Growth & Design 2021, 21 (10) , 5594-5602. https://doi.org/10.1021/acs.cgd.1c00385
    21. Jin Zhang, Xin He, Ya-Ru Kong, Hong-Bin Luo, Meng Liu, Yangyang Liu, Xiao-Ming Ren. Efficiently Boosting Moisture Retention Capacity of Porous Superprotonic Conducting MOF-802 at Ambient Humidity via Forming a Hydrogel Composite Strategy. ACS Applied Materials & Interfaces 2021, 13 (31) , 37231-37238. https://doi.org/10.1021/acsami.1c11054
    22. Tao He, Xiang-Jing Kong, Jian Zhou, Chen Zhao, Kecheng Wang, Xue-Qian Wu, Xiu-Liang Lv, Guang-Rui Si, Jian-Rong Li, Zuo-Ren Nie. A Practice of Reticular Chemistry: Construction of a Robust Mesoporous Palladium Metal–Organic Framework via Metal Metathesis. Journal of the American Chemical Society 2021, 143 (26) , 9901-9911. https://doi.org/10.1021/jacs.1c04077
    23. Shyamapada Nandi, Sujing Wang, Mohammad Wahiduzzaman, Vibhav Yadav, Kiran Taksande, Guillaume Maurin, Christian Serre, Sabine Devautour-Vinot. Multivariate Sulfonic-Based Titanium Metal–Organic Frameworks as Super-protonic Conductors. ACS Applied Materials & Interfaces 2021, 13 (17) , 20194-20200. https://doi.org/10.1021/acsami.1c03644
    24. Gouri Chakraborty, In-Hyeok Park, Raghavender Medishetty, Jagadese J. Vittal. Two-Dimensional Metal-Organic Framework Materials: Synthesis, Structures, Properties and Applications. Chemical Reviews 2021, 121 (7) , 3751-3891. https://doi.org/10.1021/acs.chemrev.0c01049
    25. Avik De, Olivia Basu, Tannistha Basu, Raju Mondal. Applying the Influence of Conformational Freedom on the Network Topologies Showing Impressive Proton Conductivity. Crystal Growth & Design 2021, 21 (3) , 1461-1472. https://doi.org/10.1021/acs.cgd.0c01042
    26. Arindam Gupta, Soumyabrata Goswami, Syed Meheboob Elahi, Sanjit Konar. Role of Framework–Carrier Interactions in Proton-Conducting Crystalline Porous Materials. Crystal Growth & Design 2021, 21 (3) , 1378-1388. https://doi.org/10.1021/acs.cgd.0c01394
    27. Hongfei Wang, Yujie Zhao, Zhichao Shao, Wenjuan Xu, Qiong Wu, Xiaolin Ding, Hongwei Hou. Proton Conduction of Nafion Hybrid Membranes Promoted by NH3-Modified Zn-MOF with Host–Guest Collaborative Hydrogen Bonds for H2/O2 Fuel Cell Applications. ACS Applied Materials & Interfaces 2021, 13 (6) , 7485-7497. https://doi.org/10.1021/acsami.0c21840
    28. Sérgio M. F. Vilela, Jorge A. R. Navarro, Paula Barbosa, Ricardo F. Mendes, Germán Pérez-Sánchez, Harriott Nowell, Duarte Ananias, Filipe Figueiredo, José R. B. Gomes, João P. C. Tomé, Filipe A. Almeida Paz. Multifunctionality in an Ion-Exchanged Porous Metal–Organic Framework. Journal of the American Chemical Society 2021, 143 (3) , 1365-1376. https://doi.org/10.1021/jacs.0c10421
    29. Santanu Chand, Shyam Chand Pal, Dae-Woon Lim, Kazuya Otsubo, Arun Pal, Hiroshi Kitagawa, Madhab C. Das. A 2D Mg(II)-MOF with High Density of Coordinated Waters as Sole Intrinsic Proton Sources for Ultrahigh Superprotonic Conduction. ACS Materials Letters 2020, 2 (10) , 1343-1350. https://doi.org/10.1021/acsmaterialslett.0c00358
    30. Xue-Yun Zeng, Yu-Ling Wang, Zhao-Ting Lin, Qing-Yan Liu. Proton-Conductive Coordination Polymers Based on Diphenylsulfone-3,3′-disulfo-4,4′-dicarboxylate with Well-Defined Hydrogen Bonding Networks. Inorganic Chemistry 2020, 59 (17) , 12314-12321. https://doi.org/10.1021/acs.inorgchem.0c01419
    31. Mark D. Allendorf, Renhao Dong, Xinliang Feng, Stefan Kaskel, Dariusz Matoga, Vitalie Stavila. Electronic Devices Using Open Framework Materials. Chemical Reviews 2020, 120 (16) , 8581-8640. https://doi.org/10.1021/acs.chemrev.0c00033
    32. Dae-Woon Lim, Hiroshi Kitagawa. Proton Transport in Metal–Organic Frameworks. Chemical Reviews 2020, 120 (16) , 8416-8467. https://doi.org/10.1021/acs.chemrev.9b00842
    33. Subhabrata Mukhopadhyay, Anupam Das, Tushar Jana, Samar K. Das. Fabricating a MOF Material with Polybenzimidazole into an Efficient Proton Exchange Membrane. ACS Applied Energy Materials 2020, 3 (8) , 7964-7977. https://doi.org/10.1021/acsaem.0c01322
    34. Jiaomin Lin, Ning Li, Shiping Yang, Mingjie Jia, Jiang Liu, Xiao-Min Li, Lu An, Qiwei Tian, Long-Zhang Dong, Ya-Qian Lan. Self-Assembly of Giant Mo240 Hollow Opening Dodecahedra. Journal of the American Chemical Society 2020, 142 (32) , 13982-13988. https://doi.org/10.1021/jacs.0c06582
    35. Sheng-Zheng Huang, Shan-Shan Liu, Hui-ju Zhang, Zhen Han, Ge Zhao, Xi-Yan Dong, Shuang-Quan Zang. Dual-Functional Proton-Conducting and pH-Sensing Polymer Membrane Benefiting from a Eu-MOF. ACS Applied Materials & Interfaces 2020, 12 (25) , 28720-28726. https://doi.org/10.1021/acsami.0c08103
    36. Hongfei Wang, Qiong Wu, Xianyong Ding, Zhichao Shao, Wenjuan Xu, Yujie Zhao, Qiong Xie, Xiangru Meng, Hongwei Hou. The 50-Fold Enhanced Proton Conductivity Brought by Aqueous-Phase Single-Crystal-to-Single-Crystal Central Metal Exchange. Inorganic Chemistry 2020, 59 (12) , 8361-8368. https://doi.org/10.1021/acs.inorgchem.0c00766
    37. Shuai Li, Yanze Liu, Li Li, Caixia Liu, Jiani Li, Shumaila Ashraf, Pengfei Li, Bo Wang. Enhanced Proton Conductivity of Imidazole-Doped Thiophene-Based Covalent Organic Frameworks via Subtle Hydrogen Bonding Modulation. ACS Applied Materials & Interfaces 2020, 12 (20) , 22910-22916. https://doi.org/10.1021/acsami.0c04002
    38. Qianqian Yang, Yijie Wang, Yanxue Shang, Juan Du, Jianbo Yin, Di Liu, Zixi Kang, Rongming Wang, Daofeng Sun, Jianzhuang Jiang. Three Hydrogen-Bonded Organic Frameworks with Water-Induced Single-Crystal-to-Single-Crystal Transformation and High Proton Conductivity. Crystal Growth & Design 2020, 20 (5) , 3456-3465. https://doi.org/10.1021/acs.cgd.0c00235
    39. Shan-Shan Liu, Zhen Han, Jin-Sen Yang, Sheng-Zheng Huang, Xi-Yan Dong, Shuang-Quan Zang. Sulfonic Groups Lined along Channels of Metal–Organic Frameworks (MOFs) for Super-Proton Conductor. Inorganic Chemistry 2020, 59 (1) , 396-402. https://doi.org/10.1021/acs.inorgchem.9b02649
    40. Liyuan Wang, Nanping Deng, Gang Wang, Jingge Ju, Bowen Cheng, Weimin Kang. Constructing Amino-Functionalized Flower-like Metal–Organic Framework Nanofibers in Sulfonated Poly(ether sulfone) Proton Exchange Membrane for Simultaneously Enhancing Interface Compatibility and Proton Conduction. ACS Applied Materials & Interfaces 2019, 11 (43) , 39979-39990. https://doi.org/10.1021/acsami.9b13496
    41. Yin Qin, Tian-li Gao, Wen-Ping Xie, Zifeng Li, Gang Li. Ultrahigh Proton Conduction in Two Highly Stable Ferrocenyl Carboxylate Frameworks. ACS Applied Materials & Interfaces 2019, 11 (34) , 31018-31027. https://doi.org/10.1021/acsami.9b11056
    42. Pier-Luc Champagne, David Ester, Danielle Polan, Vance E. Williams, Venkataraman Thangadurai, Chang-Chun Ling. Amphiphilic Cyclodextrin-Based Liquid Crystals for Proton Conduction. Journal of the American Chemical Society 2019, 141 (23) , 9217-9224. https://doi.org/10.1021/jacs.8b13888
    43. Michael Adams, Mariana Kozlowska, Nicolò Baroni, Michael Oldenburg, Rui Ma, Dmitry Busko, Andrey Turshatov, Ganapathi Emandi, Mathias O. Senge, Ritesh Haldar, Christof Wöll, G. Ulrich Nienhaus, Bryce S. Richards, Ian A. Howard. Highly Efficient One-Dimensional Triplet Exciton Transport in a Palladium–Porphyrin-Based Surface-Anchored Metal–Organic Framework. ACS Applied Materials & Interfaces 2019, 11 (17) , 15688-15697. https://doi.org/10.1021/acsami.9b03079
    44. Subhabrata Mukhopadhyay, Joyashish Debgupta, Chandani Singh, Rudraditya Sarkar, Olivia Basu, Samar K. Das. Designing UiO-66-Based Superprotonic Conductor with the Highest Metal–Organic Framework Based Proton Conductivity. ACS Applied Materials & Interfaces 2019, 11 (14) , 13423-13432. https://doi.org/10.1021/acsami.9b01121
    45. Mohammad Wahiduzzaman, Sujing Wang, Josefine Schnee, Alexandre Vimont, Vanessa Ortiz, Pascal G. Yot, Richard Retoux, Marco Daturi, Ji Sun Lee, Jong-San Chang, Christian Serre, Guillaume Maurin, Sabine Devautour-Vinot. A High Proton Conductive Hydrogen-Sulfate Decorated Titanium Carboxylate Metal−Organic Framework. ACS Sustainable Chemistry & Engineering 2019, 7 (6) , 5776-5783. https://doi.org/10.1021/acssuschemeng.8b05306
    46. Yarong Liu, Wenjia Wu, Ping Li, Jianlong Lin, Zhihao Yang, Jingtao Wang. Constructing Long-Range Transfer Pathways with Ordered Acid–Base Pairs for Highly Enhanced Proton Conduction. ACS Applied Materials & Interfaces 2019, 11 (10) , 9964-9973. https://doi.org/10.1021/acsami.8b21081
    47. Zheng Meng, Aylin Aykanat, Katherine A. Mirica. Proton Conduction in 2D Aza-Fused Covalent Organic Frameworks. Chemistry of Materials 2019, 31 (3) , 819-825. https://doi.org/10.1021/acs.chemmater.8b03897
    48. Ruilan Liu, Yaru Liu, Shihang Yu, Chenglin Yang, Zifeng Li, Gang Li. A Highly Proton-Conductive 3D Ionic Cadmium–Organic Framework for Ammonia and Amines Impedance Sensing. ACS Applied Materials & Interfaces 2019, 11 (1) , 1713-1722. https://doi.org/10.1021/acsami.8b18891
    49. Xi-Yan Dong, Jun-Hao Wang, Shan-Shan Liu, Zhen Han, Qing-Jie Tang, Fei-Fei Li, Shuang-Quan Zang. Synergy between Isomorphous Acid and Basic Metal–Organic Frameworks for Anhydrous Proton Conduction of Low-Cost Hybrid Membranes at High Temperatures. ACS Applied Materials & Interfaces 2018, 10 (44) , 38209-38216. https://doi.org/10.1021/acsami.8b12846
    50. Koya Prabhakara Rao, Masakazu Higuchi, Jettiboina Suryachandram, Susumu Kitagawa. Temperature-Stable Compelled Composite Superhydrophobic Porous Coordination Polymers Achieved via an Unattainable de Novo Synthetic Method. Journal of the American Chemical Society 2018, 140 (42) , 13786-13792. https://doi.org/10.1021/jacs.8b07577
    51. Paulo G. M. Mileo, Karim Adil, Louisa Davis, Amandine Cadiau, Youssef Belmabkhout, Himanshu Aggarwal, Guillaume Maurin, Mohamed Eddaoudi, Sabine Devautour-Vinot. Achieving Superprotonic Conduction with a 2D Fluorinated Metal–Organic Framework. Journal of the American Chemical Society 2018, 140 (41) , 13156-13160. https://doi.org/10.1021/jacs.8b06582
    52. Ruilan Liu, Lili Zhao, Shihang Yu, Xi Liang, Zifeng Li, Gang Li. Enhancing Proton Conductivity of a 3D Metal–Organic Framework by Attaching Guest NH3 Molecules. Inorganic Chemistry 2018, 57 (18) , 11560-11568. https://doi.org/10.1021/acs.inorgchem.8b01606
    53. A-Man Zhang, Mi Zhang, Di Lan, Hai-Ning Wang, Yu-Jia Tang, Xiao-Li Wang, Long-Zhang Dong, Lei Zhang, Shun-Li Li, Ya-Qian Lan. Polyoxometalate-Based Metal–Organic Framework on Carbon Cloth with a Hot-Pressing Method for High-Performance Lithium-Ion Batteries. Inorganic Chemistry 2018, 57 (18) , 11726-11731. https://doi.org/10.1021/acs.inorgchem.8b01860
    54. Jin Zhang, Hui-Juan Bai, Qiu Ren, Hong-Bin Luo, Xiao-Ming Ren, Zheng-Fang Tian, Shanfu Lu. Extra Water- and Acid-Stable MOF-801 with High Proton Conductivity and Its Composite Membrane for Proton-Exchange Membrane. ACS Applied Materials & Interfaces 2018, 10 (34) , 28656-28663. https://doi.org/10.1021/acsami.8b09070
    55. Wen-Wen Zhang, Yu-Ling Wang, Qingyou Liu, Qing-Yan Liu. Lanthanide-benzophenone-3,3′-disulfonyl-4,4′-dicarboxylate Frameworks: Temperature and 1-Hydroxypyren Luminescence Sensing and Proton Conduction. Inorganic Chemistry 2018, 57 (13) , 7805-7814. https://doi.org/10.1021/acs.inorgchem.8b00865
    56. Kaimeng Guo, Lili Zhao, Shihang Yu, Wenyan Zhou, Zifeng Li, Gang Li. A Water-Stable Proton-Conductive Barium(II)-Organic Framework for Ammonia Sensing at High Humidity. Inorganic Chemistry 2018, 57 (12) , 7104-7112. https://doi.org/10.1021/acs.inorgchem.8b00806
    57. Daxiang Gui, Xing Dai, Zetian Tao, Tao Zheng, Xiangxiang Wang, Mark A. Silver, Jie Shu, Lanhua Chen, Yanlong Wang, Tiantian Zhang, Jian Xie, Lin Zou, Yuanhua Xia, Jujia Zhang, Jin Zhang, Ling Zhao, Juan Diwu, Ruhong Zhou, Zhifang Chai, Shuao Wang. Unique Proton Transportation Pathway in a Robust Inorganic Coordination Polymer Leading to Intrinsically High and Sustainable Anhydrous Proton Conductivity. Journal of the American Chemical Society 2018, 140 (19) , 6146-6155. https://doi.org/10.1021/jacs.8b02598
    58. Zohreh Hassanzadeh Fard, Norman E. Wong, Christos D. Malliakas, Padmini Ramaswamy, Jared M. Taylor, Kazuya Otsubo, and George K. H. Shimizu . Superprotonic Phase Change to a Robust Phosphonate Metal–Organic Framework. Chemistry of Materials 2018, 30 (2) , 314-318. https://doi.org/10.1021/acs.chemmater.7b04467
    59. Kang-Jing Li, Yuan Shen, Shi-Li Li, Xian-Ming Zhang. A multifunctional Eu-MOF with multi-color and proton conduction switching and its anti-counterfeiting applications. Dyes and Pigments 2024, 224 , 112033. https://doi.org/10.1016/j.dyepig.2024.112033
    60. Sheng Zhu, Xiaoxin Yang, Lan Li, Xiao Wang, Gaoyi Han. Confined grotthuss proton-conduction along polyoxometalate chains inside carbon nanotubes for high-rate charge storage. Chemical Engineering Journal 2024, 488 , 150744. https://doi.org/10.1016/j.cej.2024.150744
    61. Bingbing Li, Yuxin Lan, Heyang Su, Jiaxin Xu, Qixin Zhao, Yubin Ma, Qi Zheng, Weimin Xuan. {Mo 4 }-directed structural evolution of highly reduced molybdenum red clusters for efficient proton conduction. Dalton Transactions 2024, 53 (14) , 6184-6189. https://doi.org/10.1039/D4DT00187G
    62. Shi-Yi Liu, Xue-Xin Li, Wei-Chao Chen, Kui-Zhan Shao, Xin-Long Wang, Chao Qin, Zhong-Min Su. A highly reduced Mo74 polyoxometalate featuring high proton conductivity accessed by building block strategy. Science China Chemistry 2024, 67 (3) , 862-868. https://doi.org/10.1007/s11426-023-1776-0
    63. Shui-Dong Zhu, Yu-Lin Zhou, Yu Lei, He-Rui Wen, Sui-Jun Liu, Cai-Ming Liu, Shi-Yong Zhang, Ying-Bing Lu. Combined performance of circularly polarized luminescence and proton conduction in homochiral cadmium( ii )–terbium( iii ) complexes. Inorganic Chemistry Frontiers 2024, 11 (5) , 1531-1539. https://doi.org/10.1039/D3QI02327C
    64. Rui-Lan Liu, Zeng-Chen Liu, Ya-Hong Chen, Ying-Ying Xue, Zhe-Jun Ye, Gang Li. Synthesis, crystal structure and proton conductive properties of one stable cobalt(II) coordination polymer from thiourea carboxylate. Journal of Solid State Chemistry 2024, 330 , 124491. https://doi.org/10.1016/j.jssc.2023.124491
    65. Amitosh Sharma, Seonghwan Lee, Jaewoong Lim, Myoung Soo Lah. Post‐synthetic modifications in metal–organic frameworks for high proton conductivity. Bulletin of the Korean Chemical Society 2024, 45 (2) , 145-156. https://doi.org/10.1002/bkcs.12801
    66. Cao Xiao, Jindou Tian, Qihui Chen, Maochun Hong. Water-stable metal–organic frameworks (MOFs): rational construction and carbon dioxide capture. Chemical Science 2024, 15 (5) , 1570-1610. https://doi.org/10.1039/D3SC06076D
    67. Ke Wang, Lipeng Si, Yanze Tian, Fan Yang. Ionization of a neutral MOF to disperse and anchor acid for boosting anhydrous proton conductivity. Microporous and Mesoporous Materials 2024, 363 , 112825. https://doi.org/10.1016/j.micromeso.2023.112825
    68. Baoqiu Yu, Rui-Biao Lin, Gang Xu, Zhi-Hua Fu, Hui Wu, Wei Zhou, Shanfu Lu, Qian-Wen Li, Yucheng Jin, Jing-Hong Li, Zhenguo Zhang, Hailong Wang, Zier Yan, Xiaolin Liu, Kang Wang, Banglin Chen, Jianzhuang Jiang. Linkage conversions in single-crystalline covalent organic frameworks. Nature Chemistry 2024, 16 (1) , 114-121. https://doi.org/10.1038/s41557-023-01334-7
    69. Rui-Lan Liu, Jing Li, Ya-Ling Zhao, Ya-Rui Wang, Xue-Hua Fan, Gang Li, Dan-Yang Wang. Two-in-one: Proton-conductive and luminescence properties of one strontium(II)-organic framework bearing imidazole dicarboxylate. Journal of Solid State Chemistry 2024, 61 , 124557. https://doi.org/10.1016/j.jssc.2024.124557
    70. Lu Zhang, Xiaoxue Ma, Xin Li, Ronghua Liu, Xin Zhao, Hongguo Hao, Hui Yan, Hongjie Zhu, Huawei Zhou, Dichang Zhong. Pore size effects on high-efficiency proton conduction in three stable 3D Al-based MOFs modified with imidazole. Inorganic Chemistry Frontiers 2023, 10 (24) , 7359-7368. https://doi.org/10.1039/D3QI01941A
    71. Yafang Zhang, Yan Wang, Qingwen Gao, Hui Li, Wenpeng Li, Jiajia Huang, Jingtao Wang, Wenjia Wu. usCNT-assisted synthesis of water-stable MOF nanosheet for highly proton-conducting membrane. Applied Surface Science 2023, 640 , 158357. https://doi.org/10.1016/j.apsusc.2023.158357
    72. Xue-Xin Li, Cai-Hong Li, Ming-Jun Hou, Bo Zhu, Wei-Chao Chen, Chun-Yi Sun, Ye Yuan, Wei Guan, Chao Qin, Kui-Zhan Shao, Xin-Long Wang, Zhong-Min Su. Ce-mediated molecular tailoring on gigantic polyoxometalate {Mo132} into half-closed {Ce11Mo96} for high proton conduction. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-40685-0
    73. Krishna Sundar Das, Mainak Das, Sayan Saha, Amit Adhikary, Sukhen Bala, Partha Pratim Ray, Raju Mondal. The synthesis and combined electrical–magnetic and toxic dye sequestration properties of a Cr( iii )-metallogel. Materials Advances 2023, 4 (23) , 6367-6380. https://doi.org/10.1039/D3MA00645J
    74. Jiawei Liu, Li Ding, Huiqi Zou, Zhipeng Huan, Houting Liu, Jing Lu, Suna Wang, Yunwu Li. A simple MOF constructed using Pb( ii ) with strong polarizing force: a filler of Nafion membrane to increase proton conductivity. Dalton Transactions 2023, 52 (45) , 16650-16660. https://doi.org/10.1039/D3DT02911E
    75. Mariyappan Shanmugam, Nithish Agamendran, Karthikeyan Sekar, Thillai Sivakumar Natarajan. Metal–organic frameworks (MOFs) for energy production and gaseous fuel and electrochemical energy storage applications. Physical Chemistry Chemical Physics 2023, 25 (44) , 30116-30144. https://doi.org/10.1039/D3CP04297A
    76. Fang-Ru Lin, Zhi-Yuan Liu, Guo-Qin Zhang, Jin Zhang, Xiao-Ming Ren. Understanding proton conduction enhancement of MOF-802 through in situ incorporation of imidazole into its channels. Inorganic Chemistry Communications 2023, 157 , 111340. https://doi.org/10.1016/j.inoche.2023.111340
    77. Hong-Liang Jia, Bing-Xue Han, Gang Li. Two proton-conductive metal-organic frameworks constructed by pyridyl imidazole dicarboxylate ligands. Journal of Solid State Chemistry 2023, 327 , 124268. https://doi.org/10.1016/j.jssc.2023.124268
    78. Shui-Dong Zhu, Yu-Lin Zhou, Fang Liu, Yu Lei, Sui-Jun Liu, He-Rui Wen, Bin Shi, Shi-Yong Zhang, Cai-Ming Liu, Ying-Bing Lu. A Pair of Multifunctional Cu(II)–Dy(III) Enantiomers with Zero–Field Single–Molecule Magnet Behaviors, Proton Conduction Properties and Magneto–Optical Faraday Effects. Molecules 2023, 28 (22) , 7506. https://doi.org/10.3390/molecules28227506
    79. Xiu‐Li Yang, Zheng‐Ying Yang, Rong Shao, Rong‐Feng Guan, Su‐Li Dong, Ming‐Hua Xie. Chiral MOF Derived Wearable Logic Sensor for Intuitive Discrimination of Physiologically Active Enantiomer. Advanced Materials 2023, 35 (38) https://doi.org/10.1002/adma.202304046
    80. Tasmia Irshad, Muhammad Saeed, Vaneeza Aiman, Muntaha Ali, Hadia Ahsan, Shahzad Ameen, Mamoona Munir. Metal–organic frameworks for energy storage applications: Recent advances. Journal of the Chinese Chemical Society 2023, 70 (9) , 1692-1714. https://doi.org/10.1002/jccs.202300115
    81. Shuo Lin, Stephanie A. Kedzior, Jinfeng Zhang, Meng Yu, Vinay Saini, Racheal P.S. Huynh, George K.H. Shimizu, Milana Trifkovic. A superprotonic membrane derived from proton-conducting metal-organic frameworks and cellulose nanocrystals. Chem 2023, 9 (9) , 2547-2560. https://doi.org/10.1016/j.chempr.2023.05.002
    82. Nam Ho Kwon, Seunghee Han, Jihan Kim, Eun Seon Cho. Super Proton Conductivity Through Control of Hydrogen‐Bonding Networks in Flexible Metal–Organic Frameworks. Small 2023, 19 (32) https://doi.org/10.1002/smll.202301122
    83. Qianqian Yang, Xinyu Li, Changsong Xie, Ning Liu, Jianjian Yang, Zhihui Kong, Zixi Kang, Rongming Wang, Xiyou Li, Daofeng Sun. Expanding the dimensionality of proton conduction enables ultrahigh anhydrous proton conductivity of phosphoric acid-doped covalent-organic frameworks. Nano Research 2023, 16 (8) , 10946-10955. https://doi.org/10.1007/s12274-023-5812-x
    84. Amitosh Sharma, Jaewoong Lim, Seonghwan Lee, Seungwan Han, Junmo Seong, Seung Bin Baek, Myoung Soo Lah. Superprotonic Conductivity of MOFs Confining Zwitterionic Sulfamic Acid as Proton Source and Conducting Medium. Angewandte Chemie 2023, 135 (29) https://doi.org/10.1002/ange.202302376
    85. Amitosh Sharma, Jaewoong Lim, Seonghwan Lee, Seungwan Han, Junmo Seong, Seung Bin Baek, Myoung Soo Lah. Superprotonic Conductivity of MOFs Confining Zwitterionic Sulfamic Acid as Proton Source and Conducting Medium. Angewandte Chemie International Edition 2023, 62 (29) https://doi.org/10.1002/anie.202302376
    86. Shridevi Salagare, Manjushree S. G., Prashanth S. Adarakatti. An electroanalytical overview of metal–organic frameworks (MOFs). 2023, 468-503. https://doi.org/10.1039/BK9781839169366-00468
    87. Yun Zhang, Duo Chen, Wang He, Jie Tan, Yanbing Yang, Quan Yuan. Bioinspired Solid‐State Ion Nanochannels: Insight from Channel Fabrication and Ion Transport. Advanced Materials Technologies 2023, 8 (12) https://doi.org/10.1002/admt.202202014
    88. Yi-Lun Wang, Yan-Lan Wu, Qing-Xin Zeng, Xin-Xiong Li, Shou-Tian Zheng. Two new inorganic-organic hybrid polyoxotantalates with proton conduction property. Journal of Solid State Chemistry 2023, 322 , 123943. https://doi.org/10.1016/j.jssc.2023.123943
    89. Zhen-Jie Feng, Jun-Jun Li, Jing Sun, Xue-Song Wu, Ying Li, Di Wu, Shi-Hao Li, Xin-Long Wang, Zhong-Min Su. Enhanced proton conductivity by guest molecule exchange in an acylamide-functionalized metal–organic framework. Dalton Transactions 2023, 52 (20) , 6847-6852. https://doi.org/10.1039/D3DT01028G
    90. Huiqi Zou, Rongyun Li, Li Ding, Jing Lu, Haiquan Tian, Hui Yan, Houting Liu, Suna Wang, Yunwu Li. Three isostructural MOFs based on different metal cations: proton conductivities and SC–SC transformation leading to magnetic changes. CrystEngComm 2023, 25 (18) , 2755-2766. https://doi.org/10.1039/D3CE00046J
    91. Sacha Fop, Riccardo Vivani, Silvia Masci, Mario Casciola, Anna Donnadio. Anhydrous Superprotonic Conductivity in the Zirconium Acid Triphosphate ZrH 5 (PO 4 ) 3 **. Angewandte Chemie 2023, 135 (18) https://doi.org/10.1002/ange.202218421
    92. Sacha Fop, Riccardo Vivani, Silvia Masci, Mario Casciola, Anna Donnadio. Anhydrous Superprotonic Conductivity in the Zirconium Acid Triphosphate ZrH 5 (PO 4 ) 3 **. Angewandte Chemie International Edition 2023, 62 (18) https://doi.org/10.1002/anie.202218421
    93. Muhammad Saeed, Aswa Firdous, Muhammad Saleh Zaman, Fatima Izhar, Mubeshar Riaz, Sabah Haider, Muzamil Majeed, Shahzaib Tariq. MOFs for desulfurization of fuel oil: Recent advances and future insights. Journal of the Chinese Chemical Society 2023, 70 (4) , 789-824. https://doi.org/10.1002/jccs.202200546
    94. Ahmad Rajabizadeh, Maryam Alihosseini, Hawraz Ibrahim M. Amin, Haider Abdulkareem Almashhadani, Faride Mousazadeh, Marcos Augusto Lima Nobre, Maryam Dehghani Soltani, Shapari Sharaki, Abduladheem Turki Jalil, Mustafa M. Kadhim. The Recent Advances of Metal–Organic Frameworks in Electric Vehicle Batteries. Journal of Inorganic and Organometallic Polymers and Materials 2023, 33 (4) , 867-884. https://doi.org/10.1007/s10904-022-02467-x
    95. Dongming Cheng, Ke Li, Hongying Zang, Jiajia Chen. Recent Advances on Polyoxometalate‐Based Ion‐Conducting Electrolytes for Energy‐Related Devices. ENERGY & ENVIRONMENTAL MATERIALS 2023, 6 (2) https://doi.org/10.1002/eem2.12341
    96. Amitosh Sharma, Jaewoong Lim, Myoung Soo Lah. Strategies for designing metal–organic frameworks with superprotonic conductivity. Coordination Chemistry Reviews 2023, 479 , 214995. https://doi.org/10.1016/j.ccr.2022.214995
    97. Shao-Zhen Luo, Zhi-Hua Fu, Jian-Ze Xiao, Xiao-Liang Ye, Qian Liu, Guan-E Wang, Gang Xu. Synergistic effect of organic metal chalcogenides acid-base pairs for enhancing proton conduction. FlatChem 2023, 38 , 100479. https://doi.org/10.1016/j.flatc.2023.100479
    98. Sunil Dutt, Ashwani Kumar, Shivendra Singh. Synthesis of Metal Organic Frameworks (MOFs) and Their Derived Materials for Energy Storage Applications. Clean Technologies 2023, 5 (1) , 140-166. https://doi.org/10.3390/cleantechnol5010009
    99. Yayong Sun, Jing Wei, Zhihua Fu, Minyi Zhang, Sangen Zhao, Gang Xu, Chunsen Li, Jian Zhang, Tianhua Zhou. Bio‐Inspired Synthetic Hydrogen‐Bonded Organic Frameworks for Efficient Proton Conduction. Advanced Materials 2023, 35 (7) https://doi.org/10.1002/adma.202208625
    100. Sang A Han, Hamzeh Qutaish, Jong‐Won Lee, Min‐Sik Park, Jung Ho Kim. Metal‐organic framework derived porous structures towards lithium rechargeable batteries. EcoMat 2023, 5 (2) https://doi.org/10.1002/eom2.12283
    Load more citations