ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Synthetic Control over Quantum Well Width Distribution and Carrier Migration in Low-Dimensional Perovskite Photovoltaics

View Author Information
Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S 3G4
The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, Ontario, Canada, M5S 3G4
§ Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada, M5S 3M2
Cite this: J. Am. Chem. Soc. 2018, 140, 8, 2890–2896
Publication Date (Web):February 3, 2018
https://doi.org/10.1021/jacs.7b12551
Copyright © 2018 American Chemical Society

    Article Views

    6478

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Metal halide perovskites have achieved photovoltaic efficiencies exceeding 22%, but their widespread use is hindered by their instability in the presence of water and oxygen. To bolster stability, researchers have developed low-dimensional perovskites wherein bulky organic ligands terminate the perovskite lattice, forming quantum wells (QWs) that are protected by the organic layers. In thin films, the width of these QWs exhibits a distribution that results in a spread of bandgaps in the material arising due to varying degrees of quantum confinement across the population. Means to achieve refined control over this QW width distribution, and to examine and understand its influence on photovoltaic performance, are therefore of intense interest. Here we show that moving to the ligand allylammonium enables a narrower distribution of QW widths, creating a flattened energy landscape that leads to ×1.4 and ×1.9 longer diffusion lengths for electrons and holes, respectively. We attribute this to reduced ultrafast shallow hole trapping that originates from the most strongly confined QWs. We observe an increased PCE of 14.4% for allylammonium-based perovskite QW photovoltaics, compared to 11–12% PCEs obtained for analogous devices using phenethylammonium and butylammonium ligands. We then optimize the devices using mixed-cation strategies, achieving 16.5% PCE for allylammonium devices. The devices retain 90% of their initial PCEs after >650 h when stored under ambient atmospheric conditions.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b12551.

    • Materials and methods and supplementary Figures S1–S16 (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 275 publications.

    1. Haojin Li, Xinmei Liu, Tinghuan Yang, Chuang Ma, Yachao Du, Peng Xu, Lu Zhang, Xin Song, Qingyue Cui, Shengli Zhao, Zhou Yang, Shengzhong Frank Liu, Shengye Jin, Kui Zhao. Flexible Large-Scale Self-Driven Perovskite X-ray Detector by Precise Heterogeneous Integration. ACS Energy Letters 2023, Article ASAP.
    2. Lisanne M. Einhaus, Xiao Zhang, Kaijian Zhu, Jeroen P. Korterik, Robert Molenaar, Sven H. C. Askes, Guido Mul, Johan E. ten Elshof, Annemarie Huijser. Disentangling Hot Carrier Decay and the Nature of Low-n to High-n Transfer Processes in Quasi-Two-Dimensional Layered Perovskites. The Journal of Physical Chemistry C 2023, Article ASAP.
    3. Yongchao Xie, Jia Zhang, Haomiao Yu, Jinpeng Li, Kai Wang, Xixiang Zhu. Broad Two-Photon Up-Conversion Photoluminescence Realized by Locally Polarized Heterostructures in 2D Perovskite. The Journal of Physical Chemistry C 2023, 127 (43) , 21220-21226. https://doi.org/10.1021/acs.jpcc.3c05604
    4. Herman Duim, Alex J. Rommens, Shuyan Shao, Giuseppe Portale, Maria A. Loi. Addition of Ammonium Thiocyanate Alters the Microstructure and Energetic Landscape of 2D/3D Perovskite Films. ACS Applied Energy Materials 2023, 6 (20) , 10285-10293. https://doi.org/10.1021/acsaem.3c00545
    5. Isaac Metcalf, Siraj Sidhik, Hao Zhang, Ayush Agrawal, Jessica Persaud, Jin Hou, Jacky Even, Aditya D. Mohite. Synergy of 3D and 2D Perovskites for Durable, Efficient Solar Cells and Beyond. Chemical Reviews 2023, 123 (15) , 9565-9652. https://doi.org/10.1021/acs.chemrev.3c00214
    6. Hao A. Nguyen, Grant Dixon, Florence Y. Dou, Shaun Gallagher, Stephen Gibbs, Dylan M. Ladd, Emanuele Marino, Justin C. Ondry, James P. Shanahan, Eugenia S. Vasileiadou, Stephen Barlow, Daniel R. Gamelin, David S. Ginger, David M. Jonas, Mercouri G. Kanatzidis, Seth R. Marder, Daniel Morton, Christopher B. Murray, Jonathan S. Owen, Dmitri V. Talapin, Michael F. Toney, Brandi M. Cossairt. Design Rules for Obtaining Narrow Luminescence from Semiconductors Made in Solution. Chemical Reviews 2023, 123 (12) , 7890-7952. https://doi.org/10.1021/acs.chemrev.3c00097
    7. Kumari Raksha, Noufal Kandoth, Shresth Gupta, Subhadeep Gupta, Sumit Kumar Pramanik, Amitava Das. Modulating Resonance Energy Transfer with Supramolecular Control in a Layered Hybrid Perovskite and Chromium Photosensitizer Assembly. ACS Applied Materials & Interfaces 2023, 15 (21) , 25148-25160. https://doi.org/10.1021/acsami.2c09281
    8. Dejian Yu, Fei Cao, Chenliang Su, Guichuan Xing. Exploring, Identifying, and Removing the Efficiency-Limiting Factor of Mixed-Dimensional 2D/3D Perovskite Solar Cells. Accounts of Chemical Research 2023, 56 (8) , 959-970. https://doi.org/10.1021/acs.accounts.3c00015
    9. Qing Dai, Qin Ling, Like Huang, Xiaohui Liu, Houcheng Zhang, Jing Zhang, Yuejin Zhu, Ziyang Hu. Regulating Radial Morphology in Hot-Casting Two-Dimensional Ruddlesden–Popper Perovskite Film Growth for High-Efficient Photovoltaics. ACS Applied Energy Materials 2023, 6 (3) , 1585-1594. https://doi.org/10.1021/acsaem.2c03458
    10. Chenhui Wang, Sheng Huang, Yu Chen, Shuai Chang, Haizheng Zhong. Illustrating the Key Role of Hydrogen Bonds in Fabricating Pure-Phase Two-Dimensional Perovskites. The Journal of Physical Chemistry C 2022, 126 (51) , 21857-21863. https://doi.org/10.1021/acs.jpcc.2c07613
    11. Hardik L. Kagdada, Shovit Bhattacharya, Arnulf Materny, Dheeraj K. Singh. Two-Dimensional Halide Perovskite Materials Featuring 2-(Methylthio)ethylamine Organic Spacers for Efficient Solar and Thermal Energy Harvesting. The Journal of Physical Chemistry C 2022, 126 (50) , 21518-21526. https://doi.org/10.1021/acs.jpcc.2c07738
    12. Jien Yang, Tingwei He, Meng Li, Guixiang Li, Hairui Liu, Jinjin Xu, Meng Zhang, Weiwei Zuo, Ruiping Qin, Mahmoud H. Aldamasy, Mingjian Yuan, Zhe Li, Mahdi Malekshahi Byranvand, Michael Saliba, Antonio Abate. π-Conjugated Carbazole Cations Enable Wet-Stable Quasi-2D Perovskite Photovoltaics. ACS Energy Letters 2022, 7 (12) , 4451-4458. https://doi.org/10.1021/acsenergylett.2c02219
    13. Binbin Tu, Liuhong Xu, Yuan Qin, Leting Shan, Chaochao Qin, Zhijun Xiong, Liang Shen, Alex K.-Y. Jen, Kai Yao. Tailoring the Quantum Well Structure and Distribution of Reduced-Dimensional Perovskites for Charge Dynamics Optimization. ACS Energy Letters 2022, 7 (11) , 3917-3926. https://doi.org/10.1021/acsenergylett.2c01877
    14. Rui Wang, Xiyue Dong, Qin Ling, Qiang Fu, Ziyang Hu, Zhiyuan Xu, Hao Zhang, Qiaohui Li, Yongsheng Liu. Spacer Engineering for 2D Ruddlesden–Popper Perovskites with an Ultralong Carrier Lifetime of Over 18 μs Enable Efficient Solar Cells. ACS Energy Letters 2022, 7 (10) , 3656-3665. https://doi.org/10.1021/acsenergylett.2c01800
    15. Lifu Zhang, Jie Jiang, Yang Hu, Zonghuan Lu, Xixing Wen, Saloni Pendse, Ru Jia, Gwo-Ching Wang, Toh-Ming Lu, Jian Shi. Liquid-Phase van der Waals Epitaxy of a Few-Layer and Unit-Cell Thick Ruddlesden–Popper Halide Perovskite. Journal of the American Chemical Society 2022, 144 (38) , 17588-17596. https://doi.org/10.1021/jacs.2c07069
    16. Jafar I. Khan, Murali Gedda, Mingcong Wang, Emre Yengel, Joshua A. Kreß, Yana Vaynzof, Thomas D. Anthopoulos, Frédéric Laquai. Photophysics of Defect-Passivated Quasi-2D (PEA)2PbBr4 Perovskite Using an Organic Small Molecule. ACS Energy Letters 2022, 7 (8) , 2450-2458. https://doi.org/10.1021/acsenergylett.2c00597
    17. Jin Liu, Yue Chen, Chenxin Ran, Jianfei Hu, Yuexin Lin, Yingdong Xia, Yonghua Chen. Unraveling the Role of Chloride in Vertical Growth of Low-Dimensional Ruddlesden–Popper Perovskites for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces 2022, 14 (30) , 34189-34197. https://doi.org/10.1021/acsami.1c16124
    18. Yalan Zhang, Tinghuan Yang, Raja sekhar Bobba, Abiral Baniya, Tianqi Niu, Sally Mabrouk, Shengzhong Liu, Quinn Qiao, Kui Zhao. Roles of Organic Ligands in Ambient Stability of Layered Halide Perovskites. ACS Applied Materials & Interfaces 2022, 14 (29) , 33085-33093. https://doi.org/10.1021/acsami.2c05348
    19. Li Hong, Zaiwei Wang, Jovana V. Milić, Claudia E. Avalos, Weihua Zhang, Dan Ren, Cheng Wang, Brian Carlsen, Yuhang Liu, Shaik Mohammed Zakeeruddin, Anders Hagfeldt, Ti Wang, Hongwei Han, Michael Graetzel. Thiocyanate-Mediated Dimensionality Transformation of Low-Dimensional Perovskites for Photovoltaics. Chemistry of Materials 2022, 34 (14) , 6331-6338. https://doi.org/10.1021/acs.chemmater.2c00760
    20. Tao Jiang, Hao Min, Renmeng Zou, Mingchao Wang, Kaichuan Wen, Jingya Lai, Lei Xu, Ying Wang, Wenjie Xu, Chengcheng Wang, Kang Wei, Nikhil V. Medhekar, Qiming Peng, Jin Chang, Wei Huang, Jianpu Wang. Molecularly Controlled Quantum Well Width Distribution and Optoelectronic Properties in Quasi-2D Perovskite Light-Emitting Diodes. The Journal of Physical Chemistry Letters 2022, 13 (18) , 4098-4103. https://doi.org/10.1021/acs.jpclett.2c00360
    21. Yukta, Soumitra Satapathi. Strategies to Enhance Light Emission from Two-Dimensional Perovskite Light-Emitting Diodes: Challenges and Future Opportunities. ACS Applied Electronic Materials 2022, 4 (4) , 1469-1484. https://doi.org/10.1021/acsaelm.1c01142
    22. Eugenia S. Vasileiadou, Xinyi Jiang, Mikaël Kepenekian, Jacky Even, Michael C. De Siena, Vladislav V. Klepov, Daniel Friedrich, Ioannis Spanopoulos, Qing Tu, Imra S. Tajuddin, Emily A. Weiss, Mercouri G. Kanatzidis. Thick-Layer Lead Iodide Perovskites with Bifunctional Organic Spacers Allylammonium and Iodopropylammonium Exhibiting Trap-State Emission. Journal of the American Chemical Society 2022, 144 (14) , 6390-6409. https://doi.org/10.1021/jacs.2c00571
    23. Rubén Vázquez-Cárdenas, Jesús Rodríguez-Romero, Carlos Echeverría-Arrondo, Jesús Sanchez-Diaz, Vladimir S. Chirvony, Juan P. Martínez-Pastor, Pedro Díaz-Leyva, Juan Reyes-Gómez, Isaac Zarazua, Iván Mora-Seró. Suppressing the Formation of High n-Phase and 3D Perovskites in the Fabrication of Ruddlesden–Popper Perovskite Thin Films by Bulky Organic Cation Engineering. Chemistry of Materials 2022, 34 (7) , 3076-3088. https://doi.org/10.1021/acs.chemmater.1c04135
    24. Chenhui Wang, Guang Dai, Junhui Wang, Minghuan Cui, Yingguo Yang, Sirui Yang, Chaochao Qin, Shuai Chang, Kaifeng Wu, Yufang Liu, Haizheng Zhong. Low-Threshold Blue Quasi-2D Perovskite Laser through Domain Distribution Control. Nano Letters 2022, 22 (3) , 1338-1344. https://doi.org/10.1021/acs.nanolett.1c04666
    25. Min Xiong, Wenjun Zou, Ke Fan, Chaochao Qin, Sibo Li, Linfeng Fei, Jizhong Jiang, Haitao Huang, Liang Shen, Feng Gao, Alex K.-Y. Jen, Kai Yao. Tailoring Phase Purity in the 2D/3D Perovskite Heterostructures Using Lattice Mismatch. ACS Energy Letters 2022, 7 (1) , 550-559. https://doi.org/10.1021/acsenergylett.1c02580
    26. Wei Yang, Yu Zhan, Fu Yang, Yaowen Li. Hot-Casting and Anti-solvent Free Fabrication of Efficient and Stable Two-Dimensional Ruddlesden–Popper Perovskite Solar Cells. ACS Applied Materials & Interfaces 2021, 13 (51) , 61039-61046. https://doi.org/10.1021/acsami.1c17169
    27. Rhiannon M. Kennard, Clayton J. Dahlman, Juil Chung, Benjamin L. Cotts, Alexander A. Mikhailovsky, Lingling Mao, Ryan A. DeCrescent, Kevin H. Stone, Naveen R. Venkatesan, Yahya Mohtashami, Sepanta Assadi, Alberto Salleo, Jon A. Schuller, Ram Seshadri, Michael L. Chabinyc. Growth-Controlled Broad Emission in Phase-Pure Two-Dimensional Hybrid Perovskite Films. Chemistry of Materials 2021, 33 (18) , 7290-7300. https://doi.org/10.1021/acs.chemmater.1c01641
    28. Sheng-Ning Hsu, Wenchao Zhao, Yao Gao, Akriti, Mauricio Segovia, Xianfan Xu, Bryan W. Boudouris, Letian Dou. Thermoelectric Performance of Lead-Free Two-Dimensional Halide Perovskites Featuring Conjugated Ligands. Nano Letters 2021, 21 (18) , 7839-7844. https://doi.org/10.1021/acs.nanolett.1c02890
    29. Jovana V. Milić, Shaik M. Zakeeruddin, Michael Grätzel. Layered Hybrid Formamidinium Lead Iodide Perovskites: Challenges and Opportunities. Accounts of Chemical Research 2021, 54 (12) , 2729-2740. https://doi.org/10.1021/acs.accounts.0c00879
    30. Yuanyuan Fang, Tianyin Shao, Long Zhang, Laizhi Sui, Guorong Wu, Kaijun Yuan, Kai Wang, Bo Zou. Harvesting High-Quality White-Light Emitting and Remarkable Emission Enhancement in One-Dimensional Halide Perovskites Upon Compression. JACS Au 2021, 1 (4) , 459-466. https://doi.org/10.1021/jacsau.1c00024
    31. Yuanzhi Jiang, Junli Wei, Mingjian Yuan. Energy-Funneling Process in Quasi-2D Perovskite Light-Emitting Diodes. The Journal of Physical Chemistry Letters 2021, 12 (10) , 2593-2606. https://doi.org/10.1021/acs.jpclett.1c00072
    32. Yawen Huang, Yahong Li, Eng Liang Lim, Tengfei Kong, Yang Zhang, Jing Song, Anders Hagfeldt, Dongqin Bi. Stable Layered 2D Perovskite Solar Cells with an Efficiency of over 19% via Multifunctional Interfacial Engineering. Journal of the American Chemical Society 2021, 143 (10) , 3911-3917. https://doi.org/10.1021/jacs.0c13087
    33. Xiaotong Li, Justin M. Hoffman, Mercouri G. Kanatzidis. The 2D Halide Perovskite Rulebook: How the Spacer Influences Everything from the Structure to Optoelectronic Device Efficiency. Chemical Reviews 2021, 121 (4) , 2230-2291. https://doi.org/10.1021/acs.chemrev.0c01006
    34. Anu Bala, Vijay Kumar. Effects of Cl and F Substitution in Phenylethylammonium Spacer Cations on Stability, Structure, and Optical Properties of 2D–3D Ruddlesden–Popper Perovskite Layers. ACS Applied Energy Materials 2021, 4 (2) , 1860-1867. https://doi.org/10.1021/acsaem.0c02851
    35. David Giovanni, Sankaran Ramesh, Marcello Righetto, Jia Wei Melvin Lim, Qiannan Zhang, Yue Wang, Senyun Ye, Qiang Xu, Nripan Mathews, Tze Chien Sum. The Physics of Interlayer Exciton Delocalization in Ruddlesden–Popper Lead Halide Perovskites. Nano Letters 2021, 21 (1) , 405-413. https://doi.org/10.1021/acs.nanolett.0c03800
    36. Andrew H. Proppe, Marie-Hélène Tremblay, Yadong Zhang, Zhenyu Yang, Rafael Quintero-Bermudez, Shana O. Kelley, Stephen Barlow, Seth R. Marder, Edward H. Sargent. Naphthalenediimide Cations Inhibit 2D Perovskite Formation and Facilitate Subpicosecond Electron Transfer. The Journal of Physical Chemistry C 2020, 124 (44) , 24379-24390. https://doi.org/10.1021/acs.jpcc.0c05521
    37. Lin Zhu, Dawei Liu, Jianpu Wang, Nana Wang. Large Organic Cations in Quasi-2D Perovskites for High-Performance Light-Emitting Diodes. The Journal of Physical Chemistry Letters 2020, 11 (20) , 8502-8510. https://doi.org/10.1021/acs.jpclett.0c02476
    38. Eli D. Kinigstein, Hsinhan Tsai, Wanyi Nie, Jean-Christophe Blancon, Kevin G. Yager, Kannatassen Appavoo, Jacky Even, Mercouri G. Kanatzidis, Aditya D. Mohite, Matthew Y. Sfeir. Edge States Drive Exciton Dissociation in Ruddlesden–Popper Lead Halide Perovskite Thin Films. ACS Materials Letters 2020, 2 (10) , 1360-1367. https://doi.org/10.1021/acsmaterialslett.0c00333
    39. Clayton J. Dahlman, Naveen R. Venkatesan, Patrick T. Corona, Rhiannon M. Kennard, Lingling Mao, Noah C. Smith, Jiamin Zhang, Ram Seshadri, Matthew E. Helgeson, Michael L. Chabinyc. Structural Evolution of Layered Hybrid Lead Iodide Perovskites in Colloidal Dispersions. ACS Nano 2020, 14 (9) , 11294-11308. https://doi.org/10.1021/acsnano.0c03219
    40. Ala’a O. El-Ballouli, Osman M. Bakr, Omar F. Mohammed. Structurally Tunable Two-Dimensional Layered Perovskites: From Confinement and Enhanced Charge Transport to Prolonged Hot Carrier Cooling Dynamics. The Journal of Physical Chemistry Letters 2020, 11 (14) , 5705-5718. https://doi.org/10.1021/acs.jpclett.0c00359
    41. Sam Teale, Andrew H. Proppe, Eui Hyuk Jung, Andrew Johnston, Darshan H. Parmar, Bin Chen, Yi Hou, Shana O. Kelley, Edward H. Sargent. Dimensional Mixing Increases the Efficiency of 2D/3D Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2020, 11 (13) , 5115-5119. https://doi.org/10.1021/acs.jpclett.0c01444
    42. Qingqian Wang, Shuyan Shao, Bowei Xu, Herman Duim, Jingjin Dong, Sampson Adjokatse, Giuseppe Portale, Jianhui Hou, Michele Saba, Maria A. Loi. Impact of the Hole Transport Layer on the Charge Extraction of Ruddlesden–Popper Perovskite Solar Cells. ACS Applied Materials & Interfaces 2020, 12 (26) , 29505-29512. https://doi.org/10.1021/acsami.0c05290
    43. Guojun Zhou, Yan Xu, Zhiguo Xia. Perovskite Multiple Quantum Wells on Layered Materials toward Narrow-Band Green Emission for Backlight Display Applications. ACS Applied Materials & Interfaces 2020, 12 (24) , 27386-27393. https://doi.org/10.1021/acsami.0c07718
    44. Grant Walters, Louis Haeberlé, Rafael Quintero-Bermudez, Julien Brodeur, Stéphane Kéna-Cohen, Edward H. Sargent. Directional Light Emission from Layered Metal Halide Perovskite Crystals. The Journal of Physical Chemistry Letters 2020, 11 (9) , 3458-3465. https://doi.org/10.1021/acs.jpclett.0c00901
    45. Zhiyuan Xu, Di Lu, Feng Liu, Hongtao Lai, Xiangjian Wan, Xiaodan Zhang, Yongsheng Liu, Yongsheng Chen. Phase Distribution and Carrier Dynamics in Multiple-Ring Aromatic Spacer-Based Two-Dimensional Ruddlesden–Popper Perovskite Solar Cells. ACS Nano 2020, 14 (4) , 4871-4881. https://doi.org/10.1021/acsnano.0c00875
    46. Jesús Rodríguez-Romero, Jesús Sanchez-Diaz, Carlos Echeverría-Arrondo, Sofia Masi, Diego Esparza, Eva M. Barea, Iván Mora-Seró. Widening the 2D/3D Perovskite Family for Efficient and Thermal-Resistant Solar Cells by the Use of Secondary Ammonium Cations. ACS Energy Letters 2020, 5 (4) , 1013-1021. https://doi.org/10.1021/acsenergylett.9b02755
    47. Ziren Zhou, Shuang Yang, Kaixuan Xu, Hong Wei Qiao, Jin Xie, Zeqing Lin, Bing Ge, Jingjing He, Mengjiong Chen, Jun Zhang, Yu Hou, Hua Gui Yang. Diammonium-Cesium Lead Halide Perovskite with Phase-Segregated Interpenetrating Morphology for Photovoltaics. The Journal of Physical Chemistry Letters 2020, 11 (3) , 747-754. https://doi.org/10.1021/acs.jpclett.9b03414
    48. Arup Mahata, Edoardo Mosconi, Daniele Meggiolaro, Filippo De Angelis. Modulating Band Alignment in Mixed Dimensionality 3D/2D Perovskites by Surface Termination Ligand Engineering. Chemistry of Materials 2020, 32 (1) , 105-113. https://doi.org/10.1021/acs.chemmater.9b02560
    49. Shuyan Shao, Herman Duim, Qingqian Wang, Bowei Xu, Jingjin Dong, Sampson Adjokatse, Graeme R. Blake, Loredana Protesescu, Giuseppe Portale, Jianhui Hou, Michele Saba, Maria Antonietta Loi. Tuning the Energetic Landscape of Ruddlesden–Popper Perovskite Films for Efficient Solar Cells. ACS Energy Letters 2020, 5 (1) , 39-46. https://doi.org/10.1021/acsenergylett.9b02397
    50. Peng Huang, Samrana Kazim, Mingkui Wang, Shahzada Ahmad. Toward Phase Stability: Dion–Jacobson Layered Perovskite for Solar Cells. ACS Energy Letters 2019, 4 (12) , 2960-2974. https://doi.org/10.1021/acsenergylett.9b02063
    51. Raphael F. Moral, Luiz Gustavo Bonato, José Carlos Germino, Willian Xerxes Coelho Oliveira, Rupini Kamat, Junwei Xu, Christopher J. Tassone, Samuel D. Stranks, Michael F. Toney, Ana Flávia Nogueira. Synthesis of Polycrystalline Ruddlesden–Popper Organic Lead Halides and Their Growth Dynamics. Chemistry of Materials 2019, 31 (22) , 9472-9479. https://doi.org/10.1021/acs.chemmater.9b03439
    52. Bryan R. Wygant, Alexandre Z. Ye, Andrei Dolocan, Quyen Vu, David M. Abbot, C. Buddie Mullins. Probing the Degradation Chemistry and Enhanced Stability of 2D Organolead Halide Perovskites. Journal of the American Chemical Society 2019, 141 (45) , 18170-18181. https://doi.org/10.1021/jacs.9b08895
    53. Tianqi Niu, Jing Lu, Xuguang Jia, Zhuo Xu, Ming-Chun Tang, Dounya Barrit, Ningyi Yuan, Jianning Ding, Xu Zhang, Yuanyuan Fan, Tao Luo, Yalan Zhang, Detlef-M. Smilgies, Zhike Liu, Aram Amassian, Shengye Jin, Kui Zhao, Shengzhong Liu. Interfacial Engineering at the 2D/3D Heterojunction for High-Performance Perovskite Solar Cells. Nano Letters 2019, 19 (10) , 7181-7190. https://doi.org/10.1021/acs.nanolett.9b02781
    54. Andrew H. Proppe, Mingyang Wei, Bin Chen, Rafael Quintero-Bermudez, Shana O. Kelley, Edward H. Sargent. Photochemically Cross-Linked Quantum Well Ligands for 2D/3D Perovskite Photovoltaics with Improved Photovoltage and Stability. Journal of the American Chemical Society 2019, 141 (36) , 14180-14189. https://doi.org/10.1021/jacs.9b05083
    55. Rafael Quintero-Bermudez, Andrew H. Proppe, Arup Mahata, Petar Todorović́, Shana O. Kelley, Filippo De Angelis, Edward H. Sargent. Ligand-Induced Surface Charge Density Modulation Generates Local Type-II Band Alignment in Reduced-Dimensional Perovskites. Journal of the American Chemical Society 2019, 141 (34) , 13459-13467. https://doi.org/10.1021/jacs.9b04801
    56. Watcharaphol Paritmongkol, Nabeel S. Dahod, Alexia Stollmann, Nannan Mao, Charles Settens, Shao-Liang Zheng, William A. Tisdale. Synthetic Variation and Structural Trends in Layered Two-Dimensional Alkylammonium Lead Halide Perovskites. Chemistry of Materials 2019, 31 (15) , 5592-5607. https://doi.org/10.1021/acs.chemmater.9b01318
    57. Clayton J. Dahlman, Ryan A. DeCrescent, Naveen R. Venkatesan, Rhiannon M. Kennard, Guang Wu, Michael A. Everest, Jon A. Schuller, Michael L. Chabinyc. Controlling Solvate Intermediate Growth for Phase-Pure Organic Lead Iodide Ruddlesden–Popper (C4H9NH3)2(CH3NH3)n−1PbnI3n+1 Perovskite Thin Films. Chemistry of Materials 2019, 31 (15) , 5832-5844. https://doi.org/10.1021/acs.chemmater.9b01952
    58. Peirui Cheng, Peijun Wang, Zhuo Xu, Xuguang Jia, Qilin Wei, Ningyi Yuan, Jianning Ding, Ruipeng Li, Guangtao Zhao, Yingchun Cheng, Kui Zhao, Shengzhong Frank Liu. Ligand-Size Related Dimensionality Control in Metal Halide Perovskites. ACS Energy Letters 2019, 4 (8) , 1830-1838. https://doi.org/10.1021/acsenergylett.9b01100
    59. Ziru Huang, Andrew H. Proppe, Hairen Tan, Makhsud I. Saidaminov, Furui Tan, Anyi Mei, Chih-Shan Tan, Mingyang Wei, Yi Hou, Hongwei Han, Shana O. Kelley, Edward H. Sargent. Suppressed Ion Migration in Reduced-Dimensional Perovskites Improves Operating Stability. ACS Energy Letters 2019, 4 (7) , 1521-1527. https://doi.org/10.1021/acsenergylett.9b00892
    60. Youyu Jiang, Xinyi He, Tiefeng Liu, Nan Zhao, Minchao Qin, Junxue Liu, Fangyuan Jiang, Fei Qin, Lulu Sun, Xinhui Lu, Shengye Jin, Zewen Xiao, Toshio Kamiya, Yinhua Zhou. Intralayer A-Site Compositional Engineering of Ruddlesden–Popper Perovskites for Thermostable and Efficient Solar Cells. ACS Energy Letters 2019, 4 (6) , 1216-1224. https://doi.org/10.1021/acsenergylett.9b00403
    61. Silvia G. Motti, Timothy Crothers, Rong Yang, Yu Cao, Renzhi Li, Michael B. Johnston, Jianpu Wang, Laura M. Herz. Heterogeneous Photon Recycling and Charge Diffusion Enhance Charge Transport in Quasi-2D Lead-Halide Perovskite Films. Nano Letters 2019, 19 (6) , 3953-3960. https://doi.org/10.1021/acs.nanolett.9b01242
    62. Tingting Niu, Hui Ren, Bo Wu, Yingdong Xia, Xiaoji Xie, Yingguo Yang, Xingyu Gao, Yonghua Chen, Wei Huang. Reduced-Dimensional Perovskite Enabled by Organic Diamine for Efficient Photovoltaics. The Journal of Physical Chemistry Letters 2019, 10 (10) , 2349-2356. https://doi.org/10.1021/acs.jpclett.9b00750
    63. Xianxiong He, Yaguang Wang, Kun Li, Xi Wang, Peng Liu, Yijun Yang, Qing Liao, Tianyou Zhai, Jiannian Yao, Hongbing Fu. Oriented Growth of Ultrathin Single Crystals of 2D Ruddlesden–Popper Hybrid Lead Iodide Perovskites for High-Performance Photodetectors. ACS Applied Materials & Interfaces 2019, 11 (17) , 15905-15912. https://doi.org/10.1021/acsami.9b01825
    64. Han Pan, Xiaojuan Zhao, Xiu Gong, Yan Shen, Mingkui Wang. Atomic-Scale Tailoring of Organic Cation of Layered Ruddlesden–Popper Perovskite Compounds. The Journal of Physical Chemistry Letters 2019, 10 (8) , 1813-1819. https://doi.org/10.1021/acs.jpclett.9b00479
    65. Fei Zhang, Dong Hoe Kim, Haipeng Lu, Ji-Sang Park, Bryon W. Larson, Jun Hu, Liguo Gao, Chuanxiao Xiao, Obadiah G. Reid, Xihan Chen, Qian Zhao, Paul F. Ndione, Joseph J. Berry, Wei You, Aron Walsh, Matthew C. Beard, Kai Zhu. Enhanced Charge Transport in 2D Perovskites via Fluorination of Organic Cation. Journal of the American Chemical Society 2019, 141 (14) , 5972-5979. https://doi.org/10.1021/jacs.9b00972
    66. Lingfeng Chao, Tingting Niu, Yingdong Xia, Xueqin Ran, Yonghua Chen, Wei Huang. Efficient and Stable Low-Dimensional Ruddlesden–Popper Perovskite Solar Cells Enabled by Reducing Tunnel Barrier. The Journal of Physical Chemistry Letters 2019, 10 (6) , 1173-1179. https://doi.org/10.1021/acs.jpclett.9b00276
    67. Matthew D. Smith, Bridget A. Connor, Hemamala I. Karunadasa. Tuning the Luminescence of Layered Halide Perovskites. Chemical Reviews 2019, 119 (5) , 3104-3139. https://doi.org/10.1021/acs.chemrev.8b00477
    68. Ye Wu, Xiaoming Li, Haibo Zeng. Highly Luminescent and Stable Halide Perovskite Nanocrystals. ACS Energy Letters 2019, 4 (3) , 673-681. https://doi.org/10.1021/acsenergylett.8b02100
    69. Yalan Zhang, Peijun Wang, Ming-Chun Tang, Dounya Barrit, Weijun Ke, Junxue Liu, Tao Luo, Yucheng Liu, Tianqi Niu, Detlef-M Smilgies, Zhou Yang, Zhike Liu, Shengye Jin, Mercouri G. Kanatzidis, Aram Amassian, Shengzhong Frank Liu, Kui Zhao. Dynamical Transformation of Two-Dimensional Perovskites with Alternating Cations in the Interlayer Space for High-Performance Photovoltaics. Journal of the American Chemical Society 2019, 141 (6) , 2684-2694. https://doi.org/10.1021/jacs.8b13104
    70. Andrew H. Proppe, Madeline H. Elkins, Oleksandr Voznyy, Ryan D. Pensack, Felipe Zapata, Lucas V. Besteiro, Li Na Quan, Rafael Quintero-Bermudez, Petar Todorovic, Shana O. Kelley, Alexander O. Govorov, Stephen K. Gray, Ivan Infante, Edward H. Sargent, Gregory D. Scholes. Spectrally Resolved Ultrafast Exciton Transfer in Mixed Perovskite Quantum Wells. The Journal of Physical Chemistry Letters 2019, 10 (3) , 419-426. https://doi.org/10.1021/acs.jpclett.9b00018
    71. Lingling Mao, Constantinos C. Stoumpos, Mercouri G. Kanatzidis. Two-Dimensional Hybrid Halide Perovskites: Principles and Promises. Journal of the American Chemical Society 2019, 141 (3) , 1171-1190. https://doi.org/10.1021/jacs.8b10851
    72. Yang Li, Jovana V. Milić, Amita Ummadisingu, Ji-Youn Seo, Jeong-Hyeok Im, Hui-Seo Kim, Yuhang Liu, M. Ibrahim Dar, Shaik M. Zakeeruddin, Peng Wang, Anders Hagfeldt, Michael Grätzel. Bifunctional Organic Spacers for Formamidinium-Based Hybrid Dion–Jacobson Two-Dimensional Perovskite Solar Cells. Nano Letters 2019, 19 (1) , 150-157. https://doi.org/10.1021/acs.nanolett.8b03552
    73. Naveen R. Venkatesan, Rhiannon M. Kennard, Ryan A. DeCrescent, Hidenori Nakayama, Clayton J. Dahlman, Erin E. Perry, Jon A. Schuller, Michael L. Chabinyc. Phase Intergrowth and Structural Defects in Organic Metal Halide Ruddlesden–Popper Thin Films. Chemistry of Materials 2018, 30 (23) , 8615-8623. https://doi.org/10.1021/acs.chemmater.8b03832
    74. Andrew H. Proppe, Jixian Xu, Randy P. Sabatini, James Z. Fan, Bin Sun, Sjoerd Hoogland, Shana O. Kelley, Oleksandr Voznyy, Edward H. Sargent. Picosecond Charge Transfer and Long Carrier Diffusion Lengths in Colloidal Quantum Dot Solids. Nano Letters 2018, 18 (11) , 7052-7059. https://doi.org/10.1021/acs.nanolett.8b03020
    75. Liang Yan, Jun Hu, Zhenkun Guo, Hong Chen, Michael F. Toney, Andrew M. Moran, Wei You. General Post-annealing Method Enables High-Efficiency Two-Dimensional Perovskite Solar Cells. ACS Applied Materials & Interfaces 2018, 10 (39) , 33187-33197. https://doi.org/10.1021/acsami.8b10230
    76. Weifei Fu, Jian Wang, Lijian Zuo, Ke Gao, Feng Liu, David S. Ginger, Alex K.-Y. Jen. Two-Dimensional Perovskite Solar Cells with 14.1% Power Conversion Efficiency and 0.68% External Radiative Efficiency. ACS Energy Letters 2018, 3 (9) , 2086-2093. https://doi.org/10.1021/acsenergylett.8b01181
    77. Peirui Cheng, Zhuo Xu, Jianbo Li, Yucheng Liu, Yuanyuan Fan, Liyang Yu, Detlef-M. Smilgies, Christian Müller, Kui Zhao, Shengzhong Frank Liu. Highly Efficient Ruddlesden–Popper Halide Perovskite PA2MA4Pb5I16 Solar Cells. ACS Energy Letters 2018, 3 (8) , 1975-1982. https://doi.org/10.1021/acsenergylett.8b01153
    78. Yani Chen, Shuang Yu, Yong Sun, Ziqi Liang. Phase Engineering in Quasi-2D Ruddlesden–Popper Perovskites. The Journal of Physical Chemistry Letters 2018, 9 (10) , 2627-2631. https://doi.org/10.1021/acs.jpclett.8b00840
    79. Wenbo Ma, Zhenlong Zhang, Yuefeng Liu, Huiping Gao, Yanli Mao. Enhanced efficiency and stability of quasi two-dimensional perovskite solar cells via dual additives. Journal of Alloys and Compounds 2024, 972 , 172841. https://doi.org/10.1016/j.jallcom.2023.172841
    80. Yuping Gao, Xiyue Dong, Yongsheng Liu. Recent Progress of Layered Perovskite Solar Cells Incorporating Aromatic Spacers. Nano-Micro Letters 2023, 15 (1) https://doi.org/10.1007/s40820-023-01141-2
    81. Yuan-Yu Chiu, Shih-Hsuan Chen, Kun-Mu Lee, Tz-Feng Lin, Ming-Chung Wu. Side chain modulated carbazole-based bifunctional hole-shuttle interlayer simultaneously improves interfacial energy level alignment and defect passivation in high-efficiency perovskite solar cells. Chemical Engineering Journal 2023, 477 , 147208. https://doi.org/10.1016/j.cej.2023.147208
    82. Ruixuan Jiang, Ting Tian, Bingcan Ke, Zongkui Kou, Peter Müller-Buschbaum, Fuzhi Huang, Yi-Bing Cheng, Tongle Bu. Insights into the effects of oriented crystallization on the performance of quasi-two-dimensional perovskite solar cells. Next Materials 2023, 1 (4) , 100044. https://doi.org/10.1016/j.nxmate.2023.100044
    83. Shuyan Chen, Na Liu, Fan Xu, Guodan Wei. Challenges and Strategies Toward Future Stable Perovskite Photovoltaics. Solar RRL 2023, 7 (23) https://doi.org/10.1002/solr.202300479
    84. Rui Wang, Xiyue Dong, Qin Ling, Ziyang Hu, Yuping Gao, Yu Chen, Yongsheng Liu. Nucleation and Crystallization in 2D Ruddlesden‐Popper Perovskites using Formamidinium‐based Organic Semiconductor Spacers for Efficient Solar Cells. Angewandte Chemie 2023, 12 https://doi.org/10.1002/ange.202314690
    85. Rui Wang, Xiyue Dong, Qin Ling, Ziyang Hu, Yuping Gao, Yu Chen, Yongsheng Liu. Nucleation and Crystallization in 2D Ruddlesden‐Popper Perovskites using Formamidinium‐based Organic Semiconductor Spacers for Efficient Solar Cells. Angewandte Chemie International Edition 2023, 12 https://doi.org/10.1002/anie.202314690
    86. Rui Liu, Xin Hu, Maoxia Xu, Haorong Ren, Hua Yu. Layered Low‐Dimensional Ruddlesden‐Popper and Dion‐Jacobson Perovskites: From Material Properties to Photovoltaic Device Performance. ChemSusChem 2023, 16 (19) https://doi.org/10.1002/cssc.202300736
    87. Xueqing Chang, Jun‐Xing Zhong, Sibo Li, Qin Yao, Yuxuan Fang, Guo Yang, Ying Tan, Qifan Xue, Longbin Qiu, Qingqian Wang, Yong Peng, Wu‐Qiang Wu. Two‐Second‐Annealed 2D/3D Perovskite Films with Graded Energy Funnels and Toughened Heterointerfaces for Efficient and Durable Solar Cells. Angewandte Chemie 2023, 135 (38) https://doi.org/10.1002/ange.202309292
    88. Xueqing Chang, Jun‐Xing Zhong, Sibo Li, Qin Yao, Yuxuan Fang, Guo Yang, Ying Tan, Qifan Xue, Longbin Qiu, Qingqian Wang, Yong Peng, Wu‐Qiang Wu. Two‐Second‐Annealed 2D/3D Perovskite Films with Graded Energy Funnels and Toughened Heterointerfaces for Efficient and Durable Solar Cells. Angewandte Chemie International Edition 2023, 62 (38) https://doi.org/10.1002/anie.202309292
    89. Joydip Ghosh, Sumaiya Parveen, P. J. Sellin, P. K. Giri. Recent Advances and Opportunities in Low‐Dimensional Layered Perovskites for Emergent Applications beyond Photovoltaics. Advanced Materials Technologies 2023, 8 (17) https://doi.org/10.1002/admt.202300400
    90. Wenbo Ma, Zhenlong Zhang, Yuefeng Liu, Huiping Gao, Yanli Mao. Highly efficient and stable quasi two-dimensional perovskite solar cells via synergistic effect of dual additives. Journal of Colloid and Interface Science 2023, 646 , 922-931. https://doi.org/10.1016/j.jcis.2023.05.132
    91. Hao Gu, Junmin Xia, Chao Liang, Yonghua Chen, Wei Huang, Guichuan Xing. Phase-pure two-dimensional layered perovskite thin films. Nature Reviews Materials 2023, 8 (8) , 533-551. https://doi.org/10.1038/s41578-023-00560-2
    92. Ke Ma, Jiaonan Sun, Harindi R. Atapattu, Bryon W. Larson, Hanjun Yang, Dewei Sun, Ke Chen, Kang Wang, Yoonho Lee, Yuanhao Tang, Anika Bhoopalam, Libai Huang, Kenneth R. Graham, Jianguo Mei, Letian Dou. Holistic energy landscape management in 2D/3D heterojunction via molecular engineering for efficient perovskite solar cells. Science Advances 2023, 9 (23) https://doi.org/10.1126/sciadv.adg0032
    93. Rudai Zhao, Lutong Guo, He Zhu, Ting Zhang, Pengwei Li, Yiqiang Zhang, Yanlin Song. Regulation of Quantum Wells Width Distribution in Quasi‐2D Perovskite Films for High‐Performance Photodetectors. Advanced Materials 2023, 35 (25) https://doi.org/10.1002/adma.202301232
    94. Yulin Liu, Songyang Yuan, Huiqun Zheng, Min Wu, Shiting Zhang, Jing Lan, Wenzhe Li, Jiandong Fan. Structurally Dimensional Engineering in Perovskite Photovoltaics. Advanced Energy Materials 2023, 13 (23) https://doi.org/10.1002/aenm.202300188
    95. Hongtao Lai, Zhiyuan Xu, Zhihui Shao, Bing Cui, Binqiang Tian, Huanhuan Wang, Qiang Fu. Rational Regulation of Organic Spacer Cations for Quasi‐2D Perovskite Solar Cells. Solar RRL 2023, 7 (10) https://doi.org/10.1002/solr.202300132
    96. Lucas Scalon, Yana Vaynzof, Ana Flavia Nogueira, Caio C. Oliveira. How organic chemistry can affect perovskite photovoltaics. Cell Reports Physical Science 2023, 4 (5) , 101358. https://doi.org/10.1016/j.xcrp.2023.101358
    97. Qian Zhou, Baibai Liu, Xuxia Shai, Yuelong Li, Peng He, Hua Yu, Cong Chen, Zong-Xiang Xu, Dong Wei, Jiangzhao Chen. Precise modulation strategies of 2D/3D perovskite heterojunctions in efficient and stable solar cells. Chemical Communications 2023, 59 (28) , 4128-4141. https://doi.org/10.1039/D2CC07048K
    98. Pengwei Li, Linfang Yan, Qingli Cao, Chao Liang, He Zhu, Sihui Peng, Yongpeng Yang, Yuncai Liang, Rudai Zhao, Shuangquan Zang, Yiqiang Zhang, Yanlin Song. Dredging the Charge‐Carrier Transfer Pathway for Efficient Low‐Dimensional Ruddlesden‐Popper Perovskite Solar Cells. Angewandte Chemie 2023, 135 (13) https://doi.org/10.1002/ange.202217910
    99. Pengwei Li, Linfang Yan, Qingli Cao, Chao Liang, He Zhu, Sihui Peng, Yongpeng Yang, Yuncai Liang, Rudai Zhao, Shuangquan Zang, Yiqiang Zhang, Yanlin Song. Dredging the Charge‐Carrier Transfer Pathway for Efficient Low‐Dimensional Ruddlesden‐Popper Perovskite Solar Cells. Angewandte Chemie International Edition 2023, 62 (13) https://doi.org/10.1002/anie.202217910
    100. Shaofu Wang, Yumin Liu, Junjie Zou, Junjun Jin, Yun Jiang, Tao Zeng, Wenyan Zhao, Rong‐Xiang He, Bolei Chen, Yu Chen, Shuoxue Jin, Hong‐Xiang Li, Zhipeng Xie, Chang‐An Wang, Weiwei Sun, Qiang Cao, Xing‐Zhong Zhao. Intermediate phase assisted sequential deposition of reverse‐graded quasi‐ 2D alternating cation perovskites for MA‐free perovskite solar cells. InfoMat 2023, 5 (3) https://doi.org/10.1002/inf2.12396
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect