ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Resolution of Electronic and Structural Factors Underlying Oxygen-Evolving Performance in Amorphous Cobalt Oxide Catalysts

  • Gihan Kwon
    Gihan Kwon
    Argonne-Northwestern Solar Energy Research (ANSER) Center  and  Northwestern Argonne Institute of Science and Engineering (NAISE), Northwestern University, Evanston, Illinois 60208, United States
    Materials Science Division  and  Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
    More by Gihan Kwon
  • Hoyoung Jang
    Hoyoung Jang
    Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
    More by Hoyoung Jang
  • Jun-Sik Lee
    Jun-Sik Lee
    Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
    More by Jun-Sik Lee
  • Anil Mane
    Anil Mane
    Energy Systems Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
    More by Anil Mane
  • David J. Mandia
    David J. Mandia
    Energy Systems Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
  • Sarah R. Soltau
    Sarah R. Soltau
    Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
  • Lisa M. Utschig
    Lisa M. Utschig
    Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
  • Alex B. F. Martinson
    Alex B. F. Martinson
    Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208, United States
    Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
  • David M. Tiede*
    David M. Tiede
    Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208, United States
    Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
    *[email protected]
  • Hacksung Kim*
    Hacksung Kim
    Center for Catalysis and Surface Science, Northwestern University, Evanston, Illinois 60208, United States
    Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
    *[email protected]
    More by Hacksung Kim
  • , and 
  • Jungho Kim*
    Jungho Kim
    X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
    *[email protected]
    More by Jungho Kim
Cite this: J. Am. Chem. Soc. 2018, 140, 34, 10710–10720
Publication Date (Web):July 20, 2018
https://doi.org/10.1021/jacs.8b02719
Copyright © 2018 American Chemical Society

Article Views

5120

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
Read OnlinePDF (4 MB)
Supporting Info (1)»

Abstract

Abstract Image

Non-noble-metal, thin-film oxides are widely investigated as promising catalysts for oxygen evolution reactions (OER). Amorphous cobalt oxide films electrochemically formed in the presence of borate (CoBi) and phosphate (CoPi) share a common cobaltate domain building block, but differ significantly in OER performance that derives from different electron–proton charge transport properties. Here, we use a combination of L edge synchrotron X-ray absorption (XAS), resonant X-ray emission (RXES), resonant inelastic X-ray scattering (RIXS), resonant Raman (RR) scattering, and high-energy X-ray pair distribution function (PDF) analyses that identify electronic and structural factors correlated to the charge transport differences for CoPi and CoBi. The analyses show that CoBi is composed primarily of cobalt in octahedral coordination, whereas CoPi contains approximately 17% tetrahedral Co(II), with the remainder in octahedral coordination. Oxygen-mediated 4p–3d hybridization through Co–O–Co bonding was detected by RXES and the intersite dd excitation was observed by RIXS in CoBi, but not in CoPi. RR shows that CoBi resembles a disordered layered LiCoO2-like structure, whereas CoPi is amorphous. Distinct domain models in the nanometer range for CoBi and CoPi have been proposed on the basis of the PDF analysis coupled to XAS data. The observed differences provide information on electronic and structural factors that enhance oxygen evolving catalysis performance.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.8b02719.

  • Experimental details(PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 47 publications.

  1. Samuel S. Veroneau, Agnes E. Thorarinsdottir, Daniel M. Loh, Alaina C. Hartnett, Thomas P. Keane, Daniel G. Nocera. Electrolyte-Induced Restructuring of Acid-Stable Oxygen Evolution Catalysts. Chemistry of Materials 2023, 35 (8) , 3218-3225. https://doi.org/10.1021/acs.chemmater.3c00032
  2. Yang Hu, Haowen Chen, Qiyang Lu. Understanding the Phase Equilibrium and Kinetics of Electrochemically Driven Phase Transition in CoOxHy during Electrocatalytic Reactions. The Journal of Physical Chemistry C 2022, 126 (43) , 18198-18207. https://doi.org/10.1021/acs.jpcc.2c04813
  3. Emily A. Sprague-Klein, Xiang He, Michael W. Mara, Benjamin J. Reinhart, Sungsik Lee, Lisa M. Utschig, Karen L. Mulfort, Lin X. Chen, David M. Tiede. Photo-electrochemical Effect in the Amorphous Cobalt Oxide Water Oxidation Catalyst Cobalt–Phosphate (CoPi). ACS Energy Letters 2022, 7 (9) , 3129-3138. https://doi.org/10.1021/acsenergylett.2c01560
  4. Ru-Pan Wang, Meng-Jie Huang, Atsushi Hariki, Jun Okamoto, Hsiao-Yu Huang, Amol Singh, Di-Jing Huang, Peter Nagel, Stefan Schuppler, Ties Haarman, Boyang Liu, Frank M. F. de Groot. Analyzing the Local Electronic Structure of Co3O4 Using 2p3d Resonant Inelastic X-ray Scattering. The Journal of Physical Chemistry C 2022, 126 (20) , 8752-8759. https://doi.org/10.1021/acs.jpcc.2c01521
  5. Daniel G. Nocera. Proton-Coupled Electron Transfer: The Engine of Energy Conversion and Storage. Journal of the American Chemical Society 2022, 144 (3) , 1069-1081. https://doi.org/10.1021/jacs.1c10444
  6. Lukas Reith, Carlos A. Triana, Faezeh Pazoki, Mehran Amiri, May Nyman, Greta R. Patzke. Unraveling Nanoscale Cobalt Oxide Catalysts for the Oxygen Evolution Reaction: Maximum Performance, Minimum Effort. Journal of the American Chemical Society 2021, 143 (37) , 15022-15038. https://doi.org/10.1021/jacs.1c03375
  7. Edward Barry, Raelyn Burns, Wei Chen, Guilhem X. De Hoe, Joan Manuel Montes De Oca, Juan J. de Pablo, James Dombrowski, Jeffrey W. Elam, Alanna M. Felts, Giulia Galli, John Hack, Qiming He, Xiang He, Eli Hoenig, Aysenur Iscen, Benjamin Kash, Harold H. Kung, Nicholas H. C. Lewis, Chong Liu, Xinyou Ma, Anil Mane, Alex B. F. Martinson, Karen L. Mulfort, Julia Murphy, Kristian Mølhave, Paul Nealey, Yijun Qiao, Vepa Rozyyev, George C. Schatz, Steven J. Sibener, Dmitri Talapin, David M. Tiede, Matthew V. Tirrell, Andrei Tokmakoff, Gregory A. Voth, Zhongyang Wang, Zifan Ye, Murat Yesibolati, Nestor J. Zaluzec, Seth B. Darling. Advanced Materials for Energy-Water Systems: The Central Role of Water/Solid Interfaces in Adsorption, Reactivity, and Transport. Chemical Reviews 2021, 121 (15) , 9450-9501. https://doi.org/10.1021/acs.chemrev.1c00069
  8. Hongmin Seo, Sunghak Park, Kang Hee Cho, Seungwoo Choi, Changwan Ko, Hyacinthe Randriamahazaka, Ki Tae Nam. Complex Impedance Analysis on Charge Accumulation Step of Mn3O4 Nanoparticles during Water Oxidation. ACS Omega 2021, 6 (28) , 18404-18413. https://doi.org/10.1021/acsomega.1c02397
  9. Xiang He, Ruben Z. Waldman, David J. Mandia, Nari Jeon, Nestor J. Zaluzec, Olaf J. Borkiewicz, Uta Ruett, Seth B. Darling, Alex B. F. Martinson, David M. Tiede. Resolving the Atomic Structure of Sequential Infiltration Synthesis Derived Inorganic Clusters. ACS Nano 2020, 14 (11) , 14846-14860. https://doi.org/10.1021/acsnano.0c03848
  10. Lejing Li, Zhuofeng Hu, Li Tao, Jianbin Xu, Jimmy C. Yu. Efficient Electronic Transport in Partially Disordered Co3O4 Nanosheets for Electrocatalytic Oxygen Evolution Reaction. ACS Applied Energy Materials 2020, 3 (3) , 3071-3081. https://doi.org/10.1021/acsaem.0c00190
  11. Moo Young Lee, Heonjin Ha, Kang Hee Cho, Hongmin Seo, Sunghak Park, Yoon Ho Lee, Sung-Joo Kwon, Tae-Woo Lee, Ki Tae Nam. Importance of Interfacial Band Structure between the Substrate and Mn3O4 Nanocatalysts during Electrochemical Water Oxidation. ACS Catalysis 2020, 10 (2) , 1237-1245. https://doi.org/10.1021/acscatal.9b03831
  12. Heebin Lee, Keon-Han Kim, Won Ho Choi, Byeong Cheul Moon, Hyung Jun Kong, Jeung Ku Kang. Cobalt–Phosphate Catalysts with Reduced Bivalent Co-Ion States and Doped Nitrogen Atoms Playing as Active Sites for Facile Adsorption, Fast Charge Transfer, and Robust Stability in Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces 2019, 11 (47) , 44366-44374. https://doi.org/10.1021/acsami.9b16523
  13. Renjie Wei, Xiuming Bu, Wei Gao, Rovi Angelo B. Villaos, Gennevieve Macam, Zhi-Quan Huang, Changyong Lan, Feng-Chuan Chuang, Yongquan Qu, Johnny C. Ho. Engineering Surface Structure of Spinel Oxides via High-Valent Vanadium Doping for Remarkably Enhanced Electrocatalytic Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2019, 11 (36) , 33012-33021. https://doi.org/10.1021/acsami.9b10868
  14. Bin Wang, Wen-Xiu Lu, Zhao-Qian Huang, Wei-Jun Chen, Jie-Ling Xie, Dong-Sheng Pan, Ling-Li Zhou, Jun-Ling Song. Amorphous N-Doped Cobalt Borophosphate Nanoparticles as Robust and Durable Electrocatalyst for Water Oxidation. ACS Sustainable Chemistry & Engineering 2019, 7 (16) , 13981-13988. https://doi.org/10.1021/acssuschemeng.9b02449
  15. Hongmin Seo, Kyoungsuk Jin, Sunghak Park, Kang Hee Cho, Heonjin Ha, Kang-Gyu Lee, Yoon Ho Lee, Dang Thanh Nguyen, Hyacinthe Randriamahazaka, Jong-Sook Lee, Ki Tae Nam. Mechanistic Investigation with Kinetic Parameters on Water Oxidation Catalyzed by Manganese Oxide Nanoparticle Film. ACS Sustainable Chemistry & Engineering 2019, 7 (12) , 10595-10604. https://doi.org/10.1021/acssuschemeng.9b01159
  16. Tianchi Dai, Hao Zhou, Yang Liu, Ranran Cao, Jingjing Zhan, Lifen Liu, Ben W.-L. Jang. Synergy of Lithium, Cobalt, and Oxygen Vacancies in Lithium Cobalt Oxide for Airborne Benzene Oxidation: A Concept of Reusing Electronic Wastes for Air Pollutant Removal. ACS Sustainable Chemistry & Engineering 2019, 7 (5) , 5072-5081. https://doi.org/10.1021/acssuschemeng.8b05894
  17. Cyrille Costentin, Daniel G. Nocera. Dual-Phase Molecular-like Charge Transport in Nanoporous Transition Metal Oxides. The Journal of Physical Chemistry C 2019, 123 (3) , 1966-1973. https://doi.org/10.1021/acs.jpcc.8b10948
  18. Meng-Xuan Gu, Yu Kou, Shi-Chao Qi, Ming-Qi Shao, Ming Bo Yue, Xiao-Qin Liu, Lin-Bing Sun. Highly Dispersive Cobalt Oxide Constructed in Confined Space for Oxygen Evolution Reaction. ACS Sustainable Chemistry & Engineering 2019, 7 (2) , 2837-2843. https://doi.org/10.1021/acssuschemeng.8b06214
  19. Álvaro Vílchez-Cózar, Rosario M.P. Colodrero, Montse Bazaga-García, David Marrero-López, Sayed M. El-refaei, Patrícia A. Russo, Nicola Pinna, Pascual Olivera-Pastor, Aurelio Cabeza. Tuning the activity of cobalt 2-hydroxyphosphonoacetates-derived electrocatalysts for water splitting and oxygen reduction: Insights into the local order by pair distribution function analysis. Applied Catalysis B: Environmental 2023, 337 , 122963. https://doi.org/10.1016/j.apcatb.2023.122963
  20. Xiaofeng Wang, Zuyi Zhang, Ziyi Yan, Qingbo Li, Chengcheng Zhang, Xinhua Liang. Synergistic contribution of metal–acid sites in selective hydrodeoxygenation of biomass derivatives over Cu/CoOx catalysts. Journal of Colloid and Interface Science 2023, 648 , 1-11. https://doi.org/10.1016/j.jcis.2023.05.207
  21. Si Liu, Shima Farhoosh, Paul Beyer, Stefan Mebs, Ivelina Zaharieva, Michael Haumann, Holger Dau. Role of Potassium in Electrocatalytic Water Oxidation Investigated in a Volume‐Active Cobalt Material at Neutral pH. Advanced Sustainable Systems 2023, 50 https://doi.org/10.1002/adsu.202300008
  22. Jianbo Liang, Hang Zu, Huiling Si, Yanhong Ma, Mengyao Li. Synthesis of ethane-disulfonate pillared layered cobalt hydroxide towards the electrocatalytic oxygen evolution reaction. Dalton Transactions 2023, 52 (7) , 2115-2123. https://doi.org/10.1039/D2DT03358E
  23. Agnes E. Thorarinsdottir, Samuel S. Veroneau, Daniel G. Nocera. Self-healing oxygen evolution catalysts. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-28723-9
  24. J. Niklas Hausmann, Stefan Mebs, Holger Dau, Matthias Driess, Prashanth W. Menezes. Oxygen Evolution Activity of Amorphous Cobalt Oxyhydroxides: Interconnecting Precatalyst Reconstruction, Long‐Range Order, Buffer‐Binding, Morphology, Mass Transport, and Operation Temperature. Advanced Materials 2022, 34 (50) , 2207494. https://doi.org/10.1002/adma.202207494
  25. Yiwen Chen, Junguo He, Heliang Pang, Peigen Jiang, Fangshu Qu, Dehai Yu, Jie Zhang. New insight into electrochemical denitrification using a self-organized nanoporous VO-Co3O4/Co cathode: Plasma-assistant oxygen vacancies catalyzed efficient nitrate reduction. Science of The Total Environment 2022, 850 , 157845. https://doi.org/10.1016/j.scitotenv.2022.157845
  26. Nora K. Zimmerli, Christoph R. Müller, Paula M. Abdala. Deciphering the structure of heterogeneous catalysts across scales using pair distribution function analysis. Trends in Chemistry 2022, 4 (9) , 807-821. https://doi.org/10.1016/j.trechm.2022.06.006
  27. Jie Wu, Meilin Hou, Ziliang Chen, Weiju Hao, Xuelei Pan, Hongyuan Yang, Wanglai Cen, Yang Liu, Hui Huang, Prashanth W. Menezes, Zhenhui Kang. Composition Engineering of Amorphous Nickel Boride Nanoarchitectures Enabling Highly Efficient Electrosynthesis of Hydrogen Peroxide. Advanced Materials 2022, 34 (32) , 2202995. https://doi.org/10.1002/adma.202202995
  28. Chunhua Xiong, Chao Cai. Co-Based Nanosheets with Transitional Metal Doping for Oxygen Evolution Reaction. Nanomaterials 2022, 12 (11) , 1788. https://doi.org/10.3390/nano12111788
  29. Yiwen Chen, Junguo He, Peigen Jiang, Heliang Pang, Xuhui Hu, Jie Zhang, Wenjing Zhang. New insight into degradation of chloramphenicol using a nanoporous Pd/Co 3 O 4 cathode: characterization and pathways analysis. Nanotechnology 2022, 33 (21) , 210001. https://doi.org/10.1088/1361-6528/ac530c
  30. Yunrui Zhao, Fahao Ma, Zeyan Wang, Peng Wang, Yuanyuan Liu, Hefeng Cheng, Ying Dai, Zhaoke Zheng, Baibiao Huang. Borate-modulated amorphous NiFeB nanocatalysts as highly active and stable electrocatalysts for oxygen evolution reaction. Journal of Alloys and Compounds 2022, 903 , 163741. https://doi.org/10.1016/j.jallcom.2022.163741
  31. Ruo-Yao Fan, Jing-Yi Xie, Ning Yu, Yong-Ming Chai, Bin Dong. Interface design and composition regulation of cobalt-based electrocatalysts for oxygen evolution reaction. International Journal of Hydrogen Energy 2022, 47 (19) , 10547-10572. https://doi.org/10.1016/j.ijhydene.2021.12.239
  32. Zhu‐Lin Xie, Xiaolin Liu, Andrew J. S. Valentine, Vincent M. Lynch, David M. Tiede, Xiaosong Li, Karen L. Mulfort. Bimetallic Copper/Ruthenium/Osmium Complexes: Observation of Conformational Differences Between the Solution Phase and Solid State by Atomic Pair Distribution Function Analysis. Angewandte Chemie 2022, 134 (5) https://doi.org/10.1002/ange.202111764
  33. Zhu‐Lin Xie, Xiaolin Liu, Andrew J. S. Valentine, Vincent M. Lynch, David M. Tiede, Xiaosong Li, Karen L. Mulfort. Bimetallic Copper/Ruthenium/Osmium Complexes: Observation of Conformational Differences Between the Solution Phase and Solid State by Atomic Pair Distribution Function Analysis. Angewandte Chemie International Edition 2022, 61 (5) https://doi.org/10.1002/anie.202111764
  34. Junzhe Zhang, Dongjian Jiang, Pin Wang, Jun Zhong, Gengzhi Sun, Yingfang Yao, Wenjun Luo, Zhigang Zou. A high-voltage solar rechargeable device based on a CoPi/BiVO 4 faradaic junction. Journal of Materials Chemistry A 2022, 10 (4) , 1802-1807. https://doi.org/10.1039/D1TA08949H
  35. Wenfang Zhai, Thangavel Sakthivel, Fuyi Chen, Chengfeng Du, Hong Yu, Zhengfei Dai. Amorphous materials for elementary-gas-involved electrocatalysis: an overview. Nanoscale 2021, 13 (47) , 19783-19811. https://doi.org/10.1039/D1NR06764H
  36. Nancy Li, Ryan G. Hadt, Dugan Hayes, Lin X. Chen, Daniel G. Nocera. Detection of high-valent iron species in alloyed oxidic cobaltates for catalysing the oxygen evolution reaction. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-24453-6
  37. Javier Villalobos, Diego González‐Flores, Roberto Urcuyo, Mavis L. Montero, Götz Schuck, Paul Beyer, Marcel Risch. Requirements for Beneficial Electrochemical Restructuring: A Model Study on a Cobalt Oxide in Selected Electrolytes. Advanced Energy Materials 2021, 11 (36) , 2101737. https://doi.org/10.1002/aenm.202101737
  38. Junwei Chen, Haixin Chen, Tongwen Yu, Ruchun Li, Yi Wang, Zongping Shao, Shuqin Song. Recent Advances in the Understanding of the Surface Reconstruction of Oxygen Evolution Electrocatalysts and Materials Development. Electrochemical Energy Reviews 2021, 347 https://doi.org/10.1007/s41918-021-00104-8
  39. Agnes E. Thorarinsdottir, Daniel G. Nocera. Energy catalysis needs ligands with high oxidative stability. Chem Catalysis 2021, 1 (1) , 32-43. https://doi.org/10.1016/j.checat.2021.05.012
  40. Huanhuan Liu, Jia Lei, Shangjie Yang, Fengfeng Qin, Lei Cui, Yuan Kong, Xiao Zheng, Tao Duan, Wenkun Zhu, Rong He. Boosting the oxygen evolution activity over cobalt nitride nanosheets through optimizing the electronic configuration. Applied Catalysis B: Environmental 2021, 286 , 119894. https://doi.org/10.1016/j.apcatb.2021.119894
  41. Xochitl-Andrea Hernández-Contreras, Inti Zumeta-Dubé, Geonel Rodríguez Gattorno, Nicolás Cayetano Castro, José Luis Casas Espínola, Edilso Reguera. Unraveling amazing structural features of a highly efficient “oxo-Co/phosphate” catalyst for water oxidation. Applied Catalysis B: Environmental 2021, 282 , 119549. https://doi.org/10.1016/j.apcatb.2020.119549
  42. Jan Niklas Hausmann, Stefan Mebs, Konstantin Laun, Ingo Zebger, Holger Dau, Prashanth W. Menezes, Matthias Driess. Understanding the formation of bulk- and surface-active layered (oxy)hydroxides for water oxidation starting from a cobalt selenite precursor. Energy & Environmental Science 2020, 13 (10) , 3607-3619. https://doi.org/10.1039/D0EE01912G
  43. Nancy Li, Thomas P. Keane, Samuel S. Veroneau, Daniel G. Nocera. Role of electrolyte composition on the acid stability of mixed-metal oxygen evolution catalysts. Chemical Communications 2020, 56 (72) , 10477-10480. https://doi.org/10.1039/D0CC03863F
  44. David M. Tiede, Gihan Kwon, Xiang He, Karen L. Mulfort, Alex B. F. Martinson. Characterizing electronic and atomic structures for amorphous and molecular metal oxide catalysts at functional interfaces by combining soft X-ray spectroscopy and high-energy X-ray scattering. Nanoscale 2020, 12 (25) , 13276-13296. https://doi.org/10.1039/D0NR02350G
  45. Chiara Pasquini, Luca D’Amario, Ivelina Zaharieva, Holger Dau. Operando Raman spectroscopy tracks oxidation-state changes in an amorphous Co oxide material for electrocatalysis of the oxygen evolution reaction. The Journal of Chemical Physics 2020, 152 (19) , 194202. https://doi.org/10.1063/5.0006306
  46. Jintang Li, Jianfeng Zheng, Xian Cheng, Guanghui Yue, Xuetao Luo. NiFeP nanocages Embedded in Melamine Sponge derived nitrogen doped porous carbon foam as an efficient oxygen evolution electrocatalyst. Journal of Solid State Chemistry 2019, 278 , 120881. https://doi.org/10.1016/j.jssc.2019.07.042
  47. Javier Villalobos, Diego González-Flores, Katharina Klingan, Petko Chernev, Paul Kubella, Roberto Urcuyo, Chiara Pasquini, Mohammad Reza Mohammadi, Rodney D. L. Smith, Mavis L. Montero, Holger Dau. Structural and functional role of anions in electrochemical water oxidation probed by arsenate incorporation into cobalt-oxide materials. Physical Chemistry Chemical Physics 2019, 21 (23) , 12485-12493. https://doi.org/10.1039/C9CP01754B

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect