ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Multiple Click-Selective tRNA Synthetases Expand Mammalian Cell-Specific Proteomics

  • Andrew C. Yang
    Andrew C. Yang
    Department of Bioengineering,  Chemistry, Engineering, and Medicine for Human Health (ChEM-H)  and  Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, United States
  • Haley du Bois
    Haley du Bois
    Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, United States
  • Niclas Olsson
    Niclas Olsson
    Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
  • David Gate
    David Gate
    Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, United States
    More by David Gate
  • Benoit Lehallier
    Benoit Lehallier
    Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, United States
  • Daniela Berdnik
    Daniela Berdnik
    Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, United States
    Center for Tissue Regeneration, Repair and Restoration, V.A. Palo Alto Healthcare System, Palo Alto, California 94304, United States
  • Kyle D. Brewer
    Kyle D. Brewer
    Chemistry, Engineering, and Medicine for Human Health (ChEM-H)  and  Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, United States
  • Carolyn R. Bertozzi
    Carolyn R. Bertozzi
    Chemistry, Engineering, and Medicine for Human Health (ChEM-H),  Department of Chemistry  and  Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, United States
  • Joshua E. Elias
    Joshua E. Elias
    Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
  • , and 
  • Tony Wyss-Coray*
    Tony Wyss-Coray
    Department of Neurology and Neurological Sciences  and 
    Center for Tissue Regeneration, Repair and Restoration, V.A. Palo Alto Healthcare System, Palo Alto, California 94304, United States
    Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, California 94305, United States
    *[email protected]
Cite this: J. Am. Chem. Soc. 2018, 140, 23, 7046–7051
Publication Date (Web):May 18, 2018
https://doi.org/10.1021/jacs.8b03074
Copyright © 2018 American Chemical Society

    Article Views

    8224

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (2)»

    Abstract

    Abstract Image

    Bioorthogonal tools enable cell-type-specific proteomics, a prerequisite to understanding biological processes in multicellular organisms. Here we report two engineered aminoacyl-tRNA synthetases for mammalian bioorthogonal labeling: a tyrosyl (ScTyrY43G) and a phenylalanyl (MmPheT413G) tRNA synthetase that incorporate azide-bearing noncanonical amino acids specifically into the nascent proteomes of host cells. Azide-labeled proteins are chemoselectively tagged via azide–alkyne cycloadditions with fluorophores for imaging or affinity resins for mass spectrometric characterization. Both mutant synthetases label human, hamster, and mouse cell line proteins and selectively activate their azido-bearing amino acids over 10-fold above the canonical. ScTyrY43G and MmPheT413G label overlapping but distinct proteomes in human cell lines, with broader proteome coverage upon their coexpression. In mice, ScTyrY43G and MmPheT413G label the melanoma tumor proteome and plasma secretome. This work furnishes new tools for mammalian residue-specific bioorthogonal chemistry, and enables more robust and comprehensive cell-type-specific proteomics in live mammals.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.8b03074.

    • Experimental methods and supplemental figures (PDF)

    • List of proteins identified by shotgun proteomics (XLSX)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 23 publications.

    1. David Vargas-Diaz, Maarten Altelaar. Automated High-Throughput Method for the Fast, Robust, and Reproducible Enrichment of Newly Synthesized Proteins. Journal of Proteome Research 2022, 21 (1) , 189-199. https://doi.org/10.1021/acs.jproteome.1c00743
    2. Patrick W. Erickson, James M. Fulcher, Paul Spaltenstein, Michael S. Kay. Traceless Click-Assisted Native Chemical Ligation Enabled by Protecting Dibenzocyclooctyne from Acid-Mediated Rearrangement with Copper(I). Bioconjugate Chemistry 2021, 32 (10) , 2233-2244. https://doi.org/10.1021/acs.bioconjchem.1c00403
    3. Nancy G. Azizian, Delaney K. Sullivan, Litong Nie, Sammy Pardo, Dana Molleur, Junjie Chen, Susan T. Weintraub, Yulin Li. Selective Labeling and Identification of the Tumor Cell Proteome of Pancreatic Cancer In Vivo. Journal of Proteome Research 2021, 20 (1) , 858-866. https://doi.org/10.1021/acs.jproteome.0c00666
    4. Andreas Enström, Robert Carlsson, Carolina Buizza, Marvel Lewi, Gesine Paul. Pericyte-Specific Secretome Profiling in Hypoxia Using TurboID in a Multicellular In Vitro Spheroid-Model. Molecular & Cellular Proteomics 2024, 468 , 100782. https://doi.org/10.1016/j.mcpro.2024.100782
    5. Yankun Wang, Wei Qin. Revealing protein trafficking by proximity labeling-based proteomics. Bioorganic Chemistry 2024, 143 , 107041. https://doi.org/10.1016/j.bioorg.2023.107041
    6. Mirjana Malnar Črnigoj, Urša Čerček, Xiaoke Yin, Manh Tin Ho, Barbka Repic Lampret, Manuela Neumann, Andreas Hermann, Guy Rouleau, Beat Suter, Manuel Mayr, Boris Rogelj. Phenylalanine-tRNA aminoacylation is compromised by ALS/FTD-associated C9orf72 C4G2 repeat RNA. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-41511-3
    7. Haitham Hajjo, Neerupma Bhardwaj, Tal Gefen, Naama Geva-Zatorsky. Combinatorial fluorescent labeling of live anaerobic bacteria via the incorporation of azide-modified sugars into newly synthesized macromolecules. Nature Protocols 2023, 18 (12) , 3767-3786. https://doi.org/10.1038/s41596-023-00896-7
    8. Qi Tang, Xing Chen. Nascent Proteomics: Chemical Tools for Monitoring Newly Synthesized Proteins. Angewandte Chemie 2023, 135 (40) https://doi.org/10.1002/ange.202305866
    9. Qi Tang, Xing Chen. Nascent Proteomics: Chemical Tools for Monitoring Newly Synthesized Proteins. Angewandte Chemie International Edition 2023, 62 (40) https://doi.org/10.1002/anie.202305866
    10. Vahid Gazestani, Tushar Kamath, Naeem M. Nadaf, Antonios Dougalis, S.J. Burris, Brendan Rooney, Antti Junkkari, Charles Vanderburg, Anssi Pelkonen, Mireia Gomez-Budia, Nelli-Noora Välimäki, Tuomas Rauramaa, Martine Therrien, Anne M. Koivisto, Matthew Tegtmeyer, Sanna-Kaisa Herukka, Abdulraouf Abdulraouf, Samuel E. Marsh, Mikko Hiltunen, Ralda Nehme, Tarja Malm, Beth Stevens, Ville Leinonen, Evan Z. Macosko. Early Alzheimer’s disease pathology in human cortex involves transient cell states. Cell 2023, 186 (20) , 4438-4453.e23. https://doi.org/10.1016/j.cell.2023.08.005
    11. Friederike Kirschner, Danielle Arnold-Schild, Christian Leps, Mateusz Krzysztof Łącki, Matthias Klein, Yannic Chen, Annekathrin Ludt, Federico Marini, Can Kücük, Lara Stein, Ute Distler, Malte Sielaff, Thomas Michna, Kristina Riegel, Krishnaraj Rajalingam, Tobias Bopp, Stefan Tenzer, Hansjörg Schild. Modulation of cellular transcriptome and proteome composition by azidohomoalanine—implications on click chemistry–based secretome analysis. Journal of Molecular Medicine 2023, 101 (7) , 855-867. https://doi.org/10.1007/s00109-023-02333-4
    12. Kitty Reemst, Heba Shahin, Or David Shahar. Learning and memory formation in zebrafish: Protein dynamics and molecular tools. Frontiers in Cell and Developmental Biology 2023, 11 https://doi.org/10.3389/fcell.2023.1120984
    13. Weibing Liu, Qi Tang, Liying Meng, Shufan Hu, De‐en Sun, Shan Li, Peng Dai, Xing Chen. Interbacterial Chemical Communication‐Triggered Nascent Proteomics. Angewandte Chemie 2023, 135 (5) https://doi.org/10.1002/ange.202214010
    14. Weibing Liu, Qi Tang, Liying Meng, Shufan Hu, De‐en Sun, Shan Li, Peng Dai, Xing Chen. Interbacterial Chemical Communication‐Triggered Nascent Proteomics. Angewandte Chemie International Edition 2023, 62 (5) https://doi.org/10.1002/anie.202214010
    15. Kyle D. Brewer, Sophia M. Shi, Tony Wyss-Coray. Unraveling protein dynamics to understand the brain – the next molecular frontier. Molecular Neurodegeneration 2022, 17 (1) https://doi.org/10.1186/s13024-022-00546-8
    16. Andrew C. Yang, Ryan T. Vest, Fabian Kern, Davis P. Lee, Maayan Agam, Christina A. Maat, Patricia M. Losada, Michelle B. Chen, Nicholas Schaum, Nathalie Khoury, Angus Toland, Kruti Calcuttawala, Heather Shin, Róbert Pálovics, Andrew Shin, Elizabeth Y. Wang, Jian Luo, David Gate, Walter J. Schulz-Schaeffer, Pauline Chu, Julie A. Siegenthaler, M. Windy McNerney, Andreas Keller, Tony Wyss-Coray. A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk. Nature 2022, 603 (7903) , 885-892. https://doi.org/10.1038/s41586-021-04369-3
    17. Xuling Xue, Chenggen Qian, Qin Tao, Yuanxin Dai, Mengdi Lv, Jingwen Dong, Zhi Su, Yong Qian, Jing Zhao, Hong-Ke Liu, Zijian Guo. Using bio-orthogonally catalyzed lethality strategy to generate mitochondria-targeting anti-tumor metallodrugs in vitro and in vivo. National Science Review 2021, 8 (9) https://doi.org/10.1093/nsr/nwaa286
    18. Harrison Tudor Evans, Daniel Blackmore, Jürgen Götz, Liviu-Gabriel Bodea. De novo proteomic methods for examining the molecular mechanisms underpinning long-term memory. Brain Research Bulletin 2021, 169 , 94-103. https://doi.org/10.1016/j.brainresbull.2020.12.015
    19. Wei Wei, Nicholas M. Riley, Andrew C. Yang, Joon T. Kim, Stephanie M. Terrell, Veronica L. Li, Marta Garcia-Contreras, Carolyn R. Bertozzi, Jonathan Z. Long. Cell type-selective secretome profiling in vivo. Nature Chemical Biology 2021, 17 (3) , 326-334. https://doi.org/10.1038/s41589-020-00698-y
    20. Andrew C. Yang, Marc Y. Stevens, Michelle B. Chen, Davis P. Lee, Daniel Stähli, David Gate, Kévin Contrepois, Winnie Chen, Tal Iram, Lichao Zhang, Ryan T. Vest, Aisling Chaney, Benoit Lehallier, Niclas Olsson, Haley du Bois, Ryan Hsieh, Haley C. Cropper, Daniela Berdnik, Lulin Li, Elizabeth Y. Wang, Gavin M. Traber, Carolyn R. Bertozzi, Jian Luo, Michael P. Snyder, Joshua E. Elias, Stephen R. Quake, Michelle L. James, Tony Wyss-Coray. Physiological blood–brain transport is impaired with age by a shift in transcytosis. Nature 2020, 583 (7816) , 425-430. https://doi.org/10.1038/s41586-020-2453-z
    21. John V. Pluvinage, Tony Wyss-Coray. Systemic factors as mediators of brain homeostasis, ageing and neurodegeneration. Nature Reviews Neuroscience 2020, 21 (2) , 93-102. https://doi.org/10.1038/s41583-019-0255-9
    22. Harrison Tudor Evans, Liviu-Gabriel Bodea, Jürgen Götz. Cell-specific non-canonical amino acid labelling identifies changes in the de novo proteome during memory formation. eLife 2020, 9 https://doi.org/10.7554/eLife.52990
    23. Aya M. Saleh, Kristen M. Wilding, Sarah Calve, Bradley C. Bundy, Tamara L. Kinzer-Ursem. Non-canonical amino acid labeling in proteomics and biotechnology. Journal of Biological Engineering 2019, 13 (1) https://doi.org/10.1186/s13036-019-0166-3

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect