ACS Publications. Most Trusted. Most Cited. Most Read
Highly Sensitive Diagnosis of Small Hepatocellular Carcinoma Using pH-Responsive Iron Oxide Nanocluster Assemblies
My Activity

Figure 1Loading Img
    Communication

    Highly Sensitive Diagnosis of Small Hepatocellular Carcinoma Using pH-Responsive Iron Oxide Nanocluster Assemblies
    Click to copy article linkArticle link copied!

    • Jingxiong Lu
      Jingxiong Lu
      Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
      More by Jingxiong Lu
    • Jihong Sun
      Jihong Sun
      Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
      More by Jihong Sun
    • Fangyuan Li
      Fangyuan Li
      Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences  and  MOE Key Laboratory of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310058, China
      More by Fangyuan Li
    • Jin Wang
      Jin Wang
      Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
      More by Jin Wang
    • Jianan Liu
      Jianan Liu
      Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
      More by Jianan Liu
    • Dokyoon Kim
      Dokyoon Kim
      Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
      More by Dokyoon Kim
    • Chunhai Fan
      Chunhai Fan
      Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
      School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
      More by Chunhai Fan
    • Taeghwan Hyeon
      Taeghwan Hyeon
      Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
      School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
    • Daishun Ling*
      Daishun Ling
      Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences  and  MOE Key Laboratory of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310058, China
      *[email protected]
      More by Daishun Ling
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2018, 140, 32, 10071–10074
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.8b04169
    Published July 30, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Iron oxide nanoparticle (IONP)-based magnetic resonance imaging (MRI) contrast agents have been widely used for the diagnosis of hepatic lesions. However, current IONP-based liver-specific MRI contrast agents rely on single-phase contrast enhancement of the normal liver, which is not sensitive enough to detect early stage small hepatocellular carcinomas (HCCs). We herein report i-motif DNA-assisted pH-responsive iron oxide nanocluster assemblies (termed RIAs), which provide an inverse contrast enhancemt effect to improve the distinction between normal liver and target HCC tissues. The acidic pH of the tumor microenvironment triggers the disassembly of the RIAs, which leads to a drastic decrease in their relaxivity ratio (r2/r1), thus converting the RIAs from a T2 to T1 contrast agent. This inverse contrast enhancement of normal liver darkening and HCC brightening under T1 imaging mode was validated on an orthotopic HCC model. Our design provides a novel strategy for the exploitation of the next-generation intelligent MRI contrast agents.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.8b04169.

    • Experimental details and methods and figures (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 192 publications.

    1. Yidong Zou, Zhenkun Sun, Qiyue Wang, Yanmin Ju, Nianrong Sun, Qin Yue, Yu Deng, Shanbiao Liu, Shengfei Yang, Zhiyi Wang, Fangyuan Li, Yanglong Hou, Chunhui Deng, Daishun Ling, Yonghui Deng. Core–Shell Magnetic Particles: Tailored Synthesis and Applications. Chemical Reviews 2025, 125 (2) , 972-1048. https://doi.org/10.1021/acs.chemrev.4c00710
    2. Cheng Zhang, Xia Wang, Juntao Xu, Li Xu, Yue Sun, Chang Lu, Shiyi Liao, Huiyi Liu, Xiao-Bing Zhang, Guosheng Song. Ultrathin Gd-Oxide Nanosheet as Ultrasensitive Companion Diagnostic Tool for MR Imaging and Therapy of Submillimeter Microhepatocellular Carcinoma. Nano Letters 2024, 24 (35) , 11002-11011. https://doi.org/10.1021/acs.nanolett.4c03078
    3. Zhongzhong Lu, Jincong Yan, Mingsheng Xu, Jihuan Liu, Jianxian Zeng, Yuxin Ren, Lina Sun, Ye Zhang, Yi Cao, Renjun Pei. A “Dual-Key-and-Lock” MRI Contrast Agent with T1–T2 Switchable Function for Accurate Diagnosis of Tumors. Nano Letters 2024, 24 (30) , 9406-9414. https://doi.org/10.1021/acs.nanolett.4c02669
    4. Xun Liu, Zeyu Liang, Hui Du, Bo Zhang, Qiyue Wang, Shangzhi Xie, Lin Xiao, Ying Chen, Yuqi Wang, Fangyuan Li, Daishun Ling. DNA-Mediated Magnetic-Dimer Assembly for Fault-Free Ultra-High-Field Magnetic Resonance Imaging of Tumors. Nano Letters 2024, 24 (22) , 6696-6705. https://doi.org/10.1021/acs.nanolett.4c01389
    5. Linlin Huo, Jie Zeng, Zhenyu Wang, Xin Sun, Yu Guo, Zhile Cao, Shiqi Zhu, Mingya Tan, Muyao Li, Xiao Chen, Zhenghuan Zhao. Magnetic Field-Optimized Paramagnetic Nanoprobe for T2/T1 Switchable Histopathological-Level MRI. ACS Nano 2024, 18 (19) , 12453-12467. https://doi.org/10.1021/acsnano.4c01723
    6. Jisu Choi, Jongwook Kim, Jin-young Park, Jerome Kartham Hyun, So-Jung Park. Domain-Selective Enzymatic Cross-linking and Etching for Shape-Morphing DNA-Linked Nanoparticle Films. Nano Letters 2024, 24 (8) , 2574-2580. https://doi.org/10.1021/acs.nanolett.3c04637
    7. Zhongzhong Lu, Jincong Yan, Guangyue Zu, Mingsheng Xu, Jihuan Liu, Ye Zhang, Lei Shi, Xifeng Fei, Yi Cao, Renjun Pei. Hypoxia-Responsive T2-to-T1 Dynamically Switchable Extremely Small Iron Oxide Nanoparticles for Sensitive Tumor Imaging In Vivo. Bioconjugate Chemistry 2023, 34 (9) , 1622-1632. https://doi.org/10.1021/acs.bioconjchem.3c00285
    8. Renye Yue, Mengjie Zhou, Xu Li, Li Xu, Chang Lu, Zhe Dong, Lingling Lei, Huiyi Liu, Guoqiang Guan, Qin Liu, Xiao-Bing Zhang, Guosheng Song. GSH/APE1 Cascade-Activated Nanoplatform for Imaging Therapy Resistance Dynamics and Enzyme-Mediated Adaptive Ferroptosis. ACS Nano 2023, 17 (14) , 13792-13810. https://doi.org/10.1021/acsnano.3c03443
    9. Zhenzhen Li, Ru Bai, Jia Yi, Huige Zhou, Junfang Xian, Chunying Chen. Designing Smart Iron Oxide Nanoparticles for MR Imaging of Tumors. Chemical & Biomedical Imaging 2023, 1 (4) , 315-339. https://doi.org/10.1021/cbmi.3c00026
    10. Shengfei Yang, Yuqi Wang, Qiyue Wang, Fangyuan Li, Daishun Ling. DNA-Driven Dynamic Assembly/Disassembly of Inorganic Nanocrystals for Biomedical Imaging. Chemical & Biomedical Imaging 2023, 1 (4) , 340-355. https://doi.org/10.1021/cbmi.3c00028
    11. Qiao Yu, Jie Zhou, Hui Wang, Yong Liu, Hong Zhou, Bin Kang, Hong-Yuan Chen, Jing-Juan Xu. A Multiple-Response Cascade Nanoreactor for Starvation and Deep Catalysis Chemodynamic Assisted Near-Infrared-II Mild Photothermal Therapy. Chemical & Biomedical Imaging 2023, 1 (3) , 242-250. https://doi.org/10.1021/cbmi.2c00003
    12. Qi Zhao, Lirong Zheng, Yixuan Gao, Jingjing Li, Juanjuan Wei, Min Zhang, Jianghui Sun, Jin Ouyang, Na Na. Dual Active Centers Linked by a Reversible Electron Station as a Multifunctional Nanozyme to Induce Synergetically Enhanced Cascade Catalysis for Tumor-Specific Therapy. Journal of the American Chemical Society 2023, 145 (23) , 12586-12600. https://doi.org/10.1021/jacs.3c01532
    13. Minjung Cho, Jake Villanova, Dylan M. Ines, Jingge Chen, Seung Soo Lee, Zhen Xiao, Xiaoting Guo, Joshua A. Dunn, Deanna D. Stueber, Paolo Decuzzi, Vicki L. Colvin. Sensitive T2 MRI Contrast Agents from the Rational Design of Iron Oxide Nanoparticle Surface Coatings. The Journal of Physical Chemistry C 2023, 127 (2) , 1057-1070. https://doi.org/10.1021/acs.jpcc.2c05390
    14. Zhongzhong Lu, Jincong Yan, Mingsheng Xu, Lina Sun, Jihuan Liu, Ye Zhang, Lei Shi, Xifeng Fei, Yi Cao, Renjun Pei. Hypoxia-Responsive Aggregation of Iron Oxide Nanoparticles for T1-to-T2 Switchable Magnetic Resonance Imaging of Tumors. ACS Applied Nano Materials 2023, 6 (1) , 119-130. https://doi.org/10.1021/acsanm.2c03850
    15. Jinhong Hou, Hongqian Liu, Qian Ma, Suying Xu, Leyu Wang. Coordination-Driven Self-Assembly of Iron Oxide Nanoparticles for Tumor Microenvironment-Responsive Magnetic Resonance Imaging. Analytical Chemistry 2022, 94 (45) , 15578-15585. https://doi.org/10.1021/acs.analchem.2c01341
    16. Yilin He, Zheng Mao, Zhongzhong Lu, Jincong Yan, Ye Zhang, Alberto Bianco, Yi Cao, Renjun Pei. Extremely Small Iron Oxide Nanoparticles with pH-Dependent Solubility Transition as T1/T2 Switchable Contrast Agents for MRI. ACS Applied Nano Materials 2022, 5 (10) , 15826-15836. https://doi.org/10.1021/acsanm.2c03971
    17. Xu Yan, Tianci Sun, Yonghong Song, Wei Peng, Yunjun Xu, Guangyi Luo, Min Li, Sheng Chen, Wei-Wei Fang, Liang Dong, Shouhu Xuan, Tao He, Baoqiang Cao, Yang Lu. In situ Thermal-Responsive Magnetic Hydrogel for Multidisciplinary Therapy of Hepatocellular Carcinoma. Nano Letters 2022, 22 (6) , 2251-2260. https://doi.org/10.1021/acs.nanolett.1c04413
    18. Peng Lei, Hong Chen, Cai Feng, Xi Yuan, Zongling Xiong, Yanlan Liu, Weihua Liao. Noninvasive Visualization of Sub-5 mm Orthotopic Hepatic Tumors by a Nanoprobe-Mediated Positive and Reverse Contrast-Balanced Imaging Strategy. ACS Nano 2022, 16 (1) , 897-909. https://doi.org/10.1021/acsnano.1c08477
    19. Wei Liu, Sheng-Yan Yin, Yingcai Hu, Ting Deng, Jishan Li. Microemulsion-Confined Assembly of Magnetic Nanoclusters for pH/H2O2 Dual-Responsive T2–T1 Switchable MRI. ACS Applied Materials & Interfaces 2022, 14 (2) , 2629-2637. https://doi.org/10.1021/acsami.1c22747
    20. Anna Wang, Jing Fang, Shuyue Ye, Qiulian Mao, Yan Zhao, Chaoxiang Cui, Yuqi Zhang, Yali Feng, Jiachen Li, Lei He, Ling Qiu, Haibin Shi. Assembly Transformation Jointly Driven by the LAP Enzyme and GSH Boosting Theranostic Capability for Effective Tumor Therapy. ACS Applied Materials & Interfaces 2021, 13 (50) , 59787-59802. https://doi.org/10.1021/acsami.1c21062
    21. Yunqi Guo, Yu Fan, Gaoming Li, Zhiqiang Wang, Xiangyang Shi, Mingwu Shen. “Cluster Bomb” Based on Redox-Responsive Carbon Dot Nanoclusters Coated with Cell Membranes for Enhanced Tumor Theranostics. ACS Applied Materials & Interfaces 2021, 13 (47) , 55815-55826. https://doi.org/10.1021/acsami.1c15282
    22. Kun Liu, Bilun Kang, Xiangjie Luo, Zhaoxuan Yang, Chengjie Sun, Ao Li, Yifan Fan, Xiaoyuan Chen, Jinhao Gao, Hongyu Lin. Redox-Activated Contrast-Enhanced T1-Weighted Imaging Visualizes Glutathione-Mediated Biotransformation Dynamics in the Liver. ACS Nano 2021, 15 (11) , 17831-17841. https://doi.org/10.1021/acsnano.1c06026
    23. Wei Liu, Shengyan Yin, Yingcai Hu, Ting Deng, Jishan Li. Microemulsion-Confined Biomineralization of PEGylated Ultrasmall Fe3O4 Nanocrystals for T2-T1 Switchable MRI of Tumors. Analytical Chemistry 2021, 93 (42) , 14223-14230. https://doi.org/10.1021/acs.analchem.1c03128
    24. Xiaodan Xu, Xiaoxuan Zhou, Bing Xiao, Hongxia Xu, Doudou Hu, Yue Qian, Hongjie Hu, Zhuxian Zhou, Xiangrui Liu, Jianqing Gao, Nigel K. H. Slater, Youqing Shen, Jianbin Tang. Glutathione-Responsive Magnetic Nanoparticles for Highly Sensitive Diagnosis of Liver Metastases. Nano Letters 2021, 21 (5) , 2199-2206. https://doi.org/10.1021/acs.nanolett.0c04967
    25. Yi Lu, Die Jia, Xianbin Ma, Mengyun Liang, Shengxin Hou, Wei Qiu, Yuan Gao, Peng Xue, Yuejun Kang, Zhigang Xu. Reduction-Responsive Chemo-Capsule-Based Prodrug Nanogel for Synergistic Treatment of Tumor Chemotherapy. ACS Applied Materials & Interfaces 2021, 13 (7) , 8940-8951. https://doi.org/10.1021/acsami.0c21710
    26. Huige Zhou, Mengyu Guo, Jiayang Li, Fenglan Qin, Yuqing Wang, Tao Liu, Jing Liu, Zeinab Farhadi Sabet, Yaling Wang, Ying Liu, Qing Huo, Chunying Chen. Hypoxia-Triggered Self-Assembly of Ultrasmall Iron Oxide Nanoparticles to Amplify the Imaging Signal of a Tumor. Journal of the American Chemical Society 2021, 143 (4) , 1846-1853. https://doi.org/10.1021/jacs.0c10245
    27. Yuqing Miao, Huan Zhang, Jing Cai, Yimin Chen, Huijun Ma, Shuo Zhang, Jia Bao Yi, Xiaoli Liu, Boon-Huat Bay, Yingkun Guo, Xin Zhou, Ning Gu, Haiming Fan. Structure–Relaxivity Mechanism of an Ultrasmall Ferrite Nanoparticle T1 MR Contrast Agent: The Impact of Dopants Controlled Crystalline Core and Surface Disordered Shell. Nano Letters 2021, 21 (2) , 1115-1123. https://doi.org/10.1021/acs.nanolett.0c04574
    28. Yilin He, Zheng Mao, Ye Zhang, Haiyin Lv, Jincong Yan, Yi Cao, Renjun Pei. Tumor Acid Microenvironment-Triggered Self-Assembly of ESIONPs for T1/T2 Switchable Magnetic Resonance Imaging. ACS Applied Bio Materials 2020, 3 (11) , 7752-7761. https://doi.org/10.1021/acsabm.0c00958
    29. Junjie Xu, Kai Zhu, Yanglong Hou. Magnetic Heterostructures: Interface Control to Optimize Magnetic Property and Multifunctionality. ACS Applied Materials & Interfaces 2020, 12 (33) , 36811-36822. https://doi.org/10.1021/acsami.0c09934
    30. Yi Cao, Zheng Mao, Yilin He, Ye Kuang, Min Liu, Youxin Zhou, Ye Zhang, Renjun Pei. Extremely Small Iron Oxide Nanoparticle-Encapsulated Nanogels as a Glutathione-Responsive T1 Contrast Agent for Tumor-Targeted Magnetic Resonance Imaging. ACS Applied Materials & Interfaces 2020, 12 (24) , 26973-26981. https://doi.org/10.1021/acsami.0c07288
    31. Kai Wu, Jinming Liu, Renata Saha, Bin Ma, Diqing Su, Chaoyi Peng, Jiajia Sun, Jian-Ping Wang. Irregularly Shaped Iron Nitride Nanoparticles as a Potential Candidate for Biomedical Applications: From Synthesis to Characterization. ACS Omega 2020, 5 (20) , 11756-11767. https://doi.org/10.1021/acsomega.0c01130
    32. Zhongyuan Cai, Changqiang Wu, Li Yang, Dan Wang, Hua Ai. Assembly-Controlled Magnetic Nanoparticle Clusters as MRI Contrast Agents. ACS Biomaterials Science & Engineering 2020, 6 (5) , 2533-2542. https://doi.org/10.1021/acsbiomaterials.9b01198
    33. Chen Bai, Pengcheng Hu, Nianlong Liu, Guodong Feng, Di Liu, Yi Chen, Ming Ma, Ning Gu, Yu Zhang. Synthesis of Ultrasmall Fe3O4 Nanoparticles as T1–T2 Dual-Modal Magnetic Resonance Imaging Contrast Agents in Rabbit Hepatic Tumors. ACS Applied Nano Materials 2020, 3 (4) , 3585-3595. https://doi.org/10.1021/acsanm.0c00306
    34. Simone Schuerle, Maiko Furubayashi, Ava P. Soleimany, Tinotenda Gwisai, Wei Huang, Christopher Voigt, Sangeeta N. Bhatia. Genetic Encoding of Targeted Magnetic Resonance Imaging Contrast Agents for Tumor Imaging. ACS Synthetic Biology 2020, 9 (2) , 392-401. https://doi.org/10.1021/acssynbio.9b00416
    35. Yuhuan Li, Nan Wang, Xumin Huang, Fangyuan Li, Thomas P. Davis, Ruirui Qiao, Daishun Ling. Polymer-Assisted Magnetic Nanoparticle Assemblies for Biomedical Applications. ACS Applied Bio Materials 2020, 3 (1) , 121-142. https://doi.org/10.1021/acsabm.9b00896
    36. Tianbai Shuai, Yizhou Zhou, Guoqiang Shao, Rui Yang, Letian Wang, Jinglin Wang, Jie Sun, Longfei Ren, Jintao Wang, Yan Liao, Mian Wei, Qingxiang Xu, Yuyan Li, Li Zhao. Bimodal Molecule as NIR-CT Contrast Agent for Hepatoma Specific Imaging. Analytical Chemistry 2020, 92 (1) , 1138-1146. https://doi.org/10.1021/acs.analchem.9b04212
    37. Hao-Ran Jia, Ya-Xuan Zhu, Xiaoyang Liu, Guang-Yu Pan, Ge Gao, Wei Sun, Xiaodong Zhang, Yao-Wen Jiang, Fu-Gen Wu. Construction of Dually Responsive Nanotransformers with Nanosphere–Nanofiber–Nanosphere Transition for Overcoming the Size Paradox of Anticancer Nanodrugs. ACS Nano 2019, 13 (10) , 11781-11792. https://doi.org/10.1021/acsnano.9b05749
    38. Shuang Bai, Xiaoqian Ma, Xiaoxiao Shi, Jinjun Shao, Tian Zhang, Yajun Wang, Yilong Cheng, Peng Xue, Yuejun Kang, Zhigang Xu. Smart Unimolecular Micelle-Based Polyprodrug with Dual-Redox Stimuli Response for Tumor Microenvironment: Enhanced in Vivo Delivery Efficiency and Tumor Penetration. ACS Applied Materials & Interfaces 2019, 11 (39) , 36130-36140. https://doi.org/10.1021/acsami.9b13214
    39. Jiahe Wu, Fangyuan Li, Xi Hu, Jingxiong Lu, Xiaolian Sun, Jianqing Gao, Daishun Ling. Responsive Assembly of Silver Nanoclusters with a Biofilm Locally Amplified Bactericidal Effect to Enhance Treatments against Multi-Drug-Resistant Bacterial Infections. ACS Central Science 2019, 5 (8) , 1366-1376. https://doi.org/10.1021/acscentsci.9b00359
    40. Yajun Wang, Tian Zhang, Cuilan Hou, Menghang Zu, Yi Lu, Xianbin Ma, Die Jia, Peng Xue, Yuejun Kang, Zhigang Xu. Mitochondria-Specific Anticancer Drug Delivery Based on Reduction-Activated Polyprodrug for Enhancing the Therapeutic Effect of Breast Cancer Chemotherapy. ACS Applied Materials & Interfaces 2019, 11 (32) , 29330-29340. https://doi.org/10.1021/acsami.9b10211
    41. Fangyuan Li, Zeyu Liang, Jianan Liu, Jihong Sun, Xi Hu, Meng Zhao, Jiaxin Liu, Ruiliang Bai, Dokyoon Kim, Xiaolian Sun, Taeghwan Hyeon, Daishun Ling. Dynamically Reversible Iron Oxide Nanoparticle Assemblies for Targeted Amplification of T1-Weighted Magnetic Resonance Imaging of Tumors. Nano Letters 2019, 19 (7) , 4213-4220. https://doi.org/10.1021/acs.nanolett.8b04411
    42. Runqi Yan, Yuxuan Hu, Fei Liu, Shixuan Wei, Daqing Fang, Adam J. Shuhendler, Hong Liu, Hong-Yuan Chen, Deju Ye. Activatable NIR Fluorescence/MRI Bimodal Probes for in Vivo Imaging by Enzyme-Mediated Fluorogenic Reaction and Self-Assembly. Journal of the American Chemical Society 2019, 141 (26) , 10331-10341. https://doi.org/10.1021/jacs.9b03649
    43. Wendong Ke, Junjie Li, Fathelrahman Mohammed, Yuheng Wang, Kazuko Tou, Xueying Liu, Panyue Wen, Hiroaki Kinoh, Yasutaka Anraku, Huabing Chen, Kazunori Kataoka, Zhishen Ge. Therapeutic Polymersome Nanoreactors with Tumor-Specific Activable Cascade Reactions for Cooperative Cancer Therapy. ACS Nano 2019, 13 (2) , 2357-2369. https://doi.org/10.1021/acsnano.8b09082
    44. Hua Shi, Yidan Sun, Runqi Yan, Shunli Liu, Li Zhu, Song Liu, Yuzhang Feng, Peng Wang, Jian He, Zhengyang Zhou, Deju Ye. Magnetic Semiconductor Gd-Doping CuS Nanoparticles as Activatable Nanoprobes for Bimodal Imaging and Targeted Photothermal Therapy of Gastric Tumors. Nano Letters 2019, 19 (2) , 937-947. https://doi.org/10.1021/acs.nanolett.8b04179
    45. Dongmei Zhang, Jing Zhang, Xianglin Bian, Pei Zhang, Weihua Wu, Xudong Zuo. Iron Oxide Nanoparticle-Based T1 Contrast Agents for Magnetic Resonance Imaging: A Review. Nanomaterials 2025, 15 (1) , 33. https://doi.org/10.3390/nano15010033
    46. Hong Hao, Ya’nan Zhang, Miao Yan, Jikai Xia, Maoyang Wang, Geng Tian, Hailian Lv, Kun Liu, Guilong Zhang. Aggregation-induced magnetic coupling nanoassemblies that effectively switched from T to T contrast imaging for highly specific MRI detection of micron sized hepatocellular carcinoma. Chemical Engineering Journal 2025, 68 , 159882. https://doi.org/10.1016/j.cej.2025.159882
    47. Yan Tan, Junren Wang, Qian Wan, Jinlong Yang, Jinkun Huang, Zijia Zhou, Haifeng Dong, Xueji Zhang. A switchable magnetic resonance imaging nanoplatform for in situ microRNA imaging. Chemical Science 2024, 16 (1) , 199-204. https://doi.org/10.1039/D4SC04675G
    48. Ping Yue, Thavasilingam Nagendraraj, Gaoji Wang, Ziyi Jin, Goran Angelovski. The role of responsive MRI probes in the past and the future of molecular imaging. Chemical Science 2024, 15 (48) , 20122-20154. https://doi.org/10.1039/D4SC04849K
    49. Renye Yue, Zhe Li, Huiyi Liu, Youjuan Wang, Yuhang Li, Rui Yin, Baoli Yin, Haisheng Qian, Heemin Kang, Xiaobing Zhang, Guosheng Song. Imaging-guided companion diagnostics in radiotherapy by monitoring APE1 activity with afterglow and MRI imaging. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-50688-0
    50. Yitao Fan, Han Xiao, Yan Wang, Shuhan Wang, Hui Sun. Global research on nanomaterials for liver cancer from 2004 to 2023: a bibliometric and visual analysis. Discover Oncology 2024, 15 (1) https://doi.org/10.1007/s12672-024-01735-1
    51. Qilong Li, Changjian Li, Yueqi Wang, Miaomiao Li, Zeyu Liang, Qiyue Wang, Bingzhe Wang, Canyu Huang, Jie Tian, Fangyuan Li, Daishun Ling. Bimagnetic Core/Shell Nanoprobes with Tunable Exchange Coupling for High Resolution and Sensitive Magnetic Particle Imaging. Angewandte Chemie International Edition 2024, 115 https://doi.org/10.1002/anie.202418015
    52. Qilong Li, Changjian Li, Yueqi Wang, Miaomiao Li, Zeyu Liang, Qiyue Wang, Bingzhe Wang, Canyu Huang, Jie Tian, Fangyuan Li, Daishun Ling. Bimagnetic Core/Shell Nanoprobes with Tunable Exchange Coupling for High Resolution and Sensitive Magnetic Particle Imaging. Angewandte Chemie 2024, https://doi.org/10.1002/ange.202418015
    53. Satnam Kaur, Mandeep Singh, Robert Brkljaca, Samuel R. Anderson, James Korte, Pavel Svoboda, Silvie Mašková-Černá, Sylvia Urban, Ravi Shukla, Rajesh Ramanathan, Vipul Bansal. Artificial magnetosomes: Molecularly restructured SPIONs with enhanced potential for magnetic imaging. Materials Today Chemistry 2024, 40 , 102206. https://doi.org/10.1016/j.mtchem.2024.102206
    54. Dandan Zhou, Shanshan Shan, Lei Chen, Cang Li, Hongzhao Wang, Kuan Lu, Jianxian Ge, Ning Wang, Mohammad Javad Afshari, Yaqin Zhang, Jianfeng Zeng, Mingyuan Gao. Trapped in Endosome PEGylated Ultra‐Small Iron Oxide Nanoparticles Enable Extraordinarily High MR Imaging Contrast for Hepatocellular Carcinomas. Advanced Science 2024, 5 https://doi.org/10.1002/advs.202401351
    55. Rui Yin, Qingpeng Zhang, Shiyi Liao, Chang Lu, Cheng Zhang, Qingyun Cai, Guosheng Song. Medical imaging-based companion diagnostics for solid tumors. EngMedicine 2024, 1 (1) , 100009. https://doi.org/10.1016/j.engmed.2024.100009
    56. Xueqin Wang, Xi Ye, Xiaoping Qin, Yi Fu, Hong Tang. Glutathione-Responsive T1 Contrast Agent for Tumor Imaging. Applied Magnetic Resonance 2024, 55 (4) , 387-397. https://doi.org/10.1007/s00723-023-01629-5
    57. Zeyu Liang, Lin Xiao, Qiyue Wang, Bo Zhang, Wenkui Mo, Shangzhi Xie, Xun Liu, Ying Chen, Shengfei Yang, Hui Du, Pengzhan Wang, Fangyuan Li, Daishun Ling. Ligand‐Mediated Magnetism‐Conversion Nanoprobes for Activatable Ultra‐High Field Magnetic Resonance Imaging. Angewandte Chemie 2024, 136 (10) https://doi.org/10.1002/ange.202318948
    58. Zeyu Liang, Lin Xiao, Qiyue Wang, Bo Zhang, Wenkui Mo, Shangzhi Xie, Xun Liu, Ying Chen, Shengfei Yang, Hui Du, Pengzhan Wang, Fangyuan Li, Daishun Ling. Ligand‐Mediated Magnetism‐Conversion Nanoprobes for Activatable Ultra‐High Field Magnetic Resonance Imaging. Angewandte Chemie International Edition 2024, 63 (10) https://doi.org/10.1002/anie.202318948
    59. Qiyue Wang, Tao Wang, Shengfei Yang, Hui Du, Bo Zhang, Sirui Cui, Daishun Ling, Fangyuan Li. Highly Sensitive Diagnosis of Extracellular Calcium Ions Associated Brain Diseases using Ca 2+ ‐Dependent T 2 ‐T 1 Switchable Magnetic Nanosensors. Advanced Functional Materials 2024, 34 (13) https://doi.org/10.1002/adfm.202313286
    60. Ruoxi Xie, Shengxiang Fu, Guannan Zhu, Hua Ai, Bin Song, Su Lui, Gaocan Li, Yunbing Wang, Min Wu. Iron oxide nanoclusters formed by acid-induced in situ calcium ion cross-linking for targeted magnetic resonance imaging of glioblastoma. Chemical Engineering Journal 2024, 484 , 149410. https://doi.org/10.1016/j.cej.2024.149410
    61. Kai Fan, Xue Yang, Fang-zheng Tian, Si-yu Li, Ting-ting Xu, Jian-qiong Zhang, Jin-bing Xie, Sheng-hong Ju. Acidic tumor microenvironment-activated MRI nanoprobes for modulation and visualization of anti-PD-L1 immunotherapy. Nano Today 2024, 54 , 102146. https://doi.org/10.1016/j.nantod.2023.102146
    62. Jie Zheng, Shi-Hui Chen, Biao Huang, Mingxi Zhang, Quan Yuan, Ran Cui. Imaging-guided precision oncotherapy mediated by nanoprobes: From seeing to curing. Chinese Chemical Letters 2024, 35 (1) , 108460. https://doi.org/10.1016/j.cclet.2023.108460
    63. Yansong Dong, Ye Liu, Yalan Tu, Youyong Yuan, Jun Wang. AIEgens Cross‐linked Iron Oxide Nanoparticles Synchronously Amplify Bimodal Imaging Signals in Situ by Tumor Acidity‐Mediated Click Reaction. Angewandte Chemie 2023, 135 (52) https://doi.org/10.1002/ange.202310975
    64. Yansong Dong, Ye Liu, Yalan Tu, Youyong Yuan, Jun Wang. AIEgens Cross‐linked Iron Oxide Nanoparticles Synchronously Amplify Bimodal Imaging Signals in Situ by Tumor Acidity‐Mediated Click Reaction. Angewandte Chemie International Edition 2023, 62 (52) https://doi.org/10.1002/anie.202310975
    65. Haiyang Jia, Fen Zhang, Chen Zhu, Jiawei Sun, Xiao Xie. Amino-grafted water-soluble ferrimagnetic iron oxide nanoparticles with ultra-high relaxivity for dual-modal magnetic resonance imaging. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023, 679 , 132594. https://doi.org/10.1016/j.colsurfa.2023.132594
    66. Xin Li, Yue Gao, Helin Li, Jean-Pierre Majoral, Xiangyang Shi, Andrij Pich. Smart and bioinspired systems for overcoming biological barriers and enhancing disease theranostics. Progress in Materials Science 2023, 140 , 101170. https://doi.org/10.1016/j.pmatsci.2023.101170
    67. Huan Zhang, Xiao Li Liu, Hai Ming Fan. Advances in magnetic nanoparticle-based magnetic resonance imaging contrast agents. Nano Research 2023, 16 (11) , 12531-12542. https://doi.org/10.1007/s12274-023-6214-9
    68. Chang Lu, Zhe Li, Na Wu, Dingyou Lu, Xiao-Bing Zhang, Guosheng Song. Tumor microenvironment-tailored nanoplatform for companion diagnostic applications of precise cancer therapy. Chem 2023, 9 (11) , 3185-3211. https://doi.org/10.1016/j.chempr.2023.06.011
    69. Qian Ma, Hui Wang, Qiangqiang Nie, Suying Xu, Leyu Wang. A trade-off between ligand coating and crystallinity of Gd-doped ultrasmall CeO 2 for improving relaxivity. Chemical Communications 2023, 59 (63) , 9654-9657. https://doi.org/10.1039/D3CC02095A
    70. Qiyue Wang, Hui Du, Fangyuan Li, Daishun Ling. Nano‐Metamaterial: A State‐of‐the‐Art Material for Magnetic Resonance Imaging. Small Science 2023, 3 (8) https://doi.org/10.1002/smsc.202300015
    71. Baode Chen, Liuhui Liu, Renye Yue, Zhe Dong, Chang Lu, Cheng Zhang, Guoqiang Guan, Huiyi Liu, Qingpeng Zhang, Guosheng Song. Stimuli-responsive switchable MRI nanoprobe for tumor theranostics. Nano Today 2023, 51 , 101931. https://doi.org/10.1016/j.nantod.2023.101931
    72. Fan Zhuang, Huijing Xiang, Beijian Huang, Yu Chen. Ultrasound‐Triggered Cascade Amplification of Nanotherapy. Advanced Materials 2023, 35 (33) https://doi.org/10.1002/adma.202303158
    73. Linyao Li, Maojuan Liu, Siyu Deng, Xiaokang Zhu, Yang Song, Erqun Song. A pH-responsive magnetic resonance tuning probe for precise imaging of bacterial infection in vivo. Acta Biomaterialia 2023, 164 , 487-495. https://doi.org/10.1016/j.actbio.2023.04.009
    74. Bahareh Farasati Far, Ali Attaripour Isfahani, Elnaz Nasiriyan, Ali Pourmolaei, Golnaz Mahmoudvand, Arian Karimi Rouzbahani, Mohammed Namiq Amin, Mohammad Reza Naimi-Jamal. An Updated Review on Advances in Hydrogel-Based Nanoparticles for Liver Cancer Treatment. Livers 2023, 3 (2) , 161-189. https://doi.org/10.3390/livers3020012
    75. Linyao Li, Maojuan Liu, Siyu Deng, Xiaokang Zhu, Yang Song, Erqun Song. Enzyme‐Triggered Transforming of Assembly Peptide‐Modified Magnetic Resonance‐Tuned Probe for Highly Sensitive Imaging of Bacterial Infection In Vivo. Small 2023, 19 (25) https://doi.org/10.1002/smll.202208249
    76. Qiyue Wang, Pengzhan Wang, Canyu Huang, Sirui Cui, Shengfei Yang, Fangyuan Li, Daishun Ling. Inorganic ion-sensitive imaging probes for biomedical applications. Chemical Communications 2023, 59 (39) , 5807-5822. https://doi.org/10.1039/D3CC00418J
    77. Mingqian Liu, Man Yang, Xizi Wan, Zhiyong Tang, Lei Jiang, Shutao Wang. From Nanoscopic to Macroscopic Materials by Stimuli‐Responsive Nanoparticle Aggregation. Advanced Materials 2023, 35 (20) https://doi.org/10.1002/adma.202208995
    78. Xiaoqing Wei, Dan Mu, Yingping Li, Jingya Zhao, Shaobing Zhou. A tumor-associated bacteria-responsive magnetic exosome as a clearable T1 contrast agent for targeted imaging of tumors. Nano Today 2023, 49 , 101796. https://doi.org/10.1016/j.nantod.2023.101796
    79. Chin Siew Sia, Hui Peng Lim, Yi Ning Lin, Lee Chey Beh, Beng Ti Tey, Bey-Hing Goh, Liang Ee Low. pH-controllable stability of iron oxide@chitosan nanocomposite-stabilized magnetic Pickering emulsions. European Polymer Journal 2023, 186 , 111870. https://doi.org/10.1016/j.eurpolymj.2023.111870
    80. Lei Wang, Yefan Duan, Shujie Lu, Jianfei Sun. Magnetic Nanomaterials Mediate Electromagnetic Stimulations of Nerves for Applications in Stem Cell and Cancer Treatments. Journal of Functional Biomaterials 2023, 14 (2) , 58. https://doi.org/10.3390/jfb14020058
    81. Baochan Yang, Yiming Zhang, Lixin Sun, Jian Wang, Zunling Zhao, Zhuoyue Huang, Wei Mao, Rong Xue, Runsheng Chen, Jianjun Luo, Tianyu Wang, Jianzhuang Jiang, Yan Qin. Modulated Ultrasmall γ‐Fe 2 O 3 Nanocrystal Assemblies for Switchable Magnetic Resonance Imaging and Photothermal‐Ferroptotic‐Chemical Synergistic Cancer Therapy. Advanced Functional Materials 2023, 33 (5) https://doi.org/10.1002/adfm.202211251
    82. Chien Minh Tran, Ngoc Thi-Thanh Nguyen, Minh Hieu Ho, Vinh Khanh Doan, Khanh Loan Ly, Nhi Ngoc-Thao Dang, Nam Minh-Phuong Tran, Hoai Thi-Thu Nguyen, Long Phuoc Truong, Thai Minh Do, Quyen Ngoc Tran, Hien Quoc Nguyen, Dung Thi-My Dang, Thang Bach Phan, Toi Van Vo, Hiep Thi Nguyen. One-Pot Preparation of Antibacterial Electrospun Polycaprolactone Membrane Embedded with Gamma Irradiation-Induced Silver Nanoparticles. Fibers and Polymers 2023, 24 (1) , 29-43. https://doi.org/10.1007/s12221-023-00031-z
    83. Jiaqi Xu, Mengdi Song, Zhou Fang, Lanxi Zheng, Xiaoya Huang, Kehai Liu. Applications and challenges of ultra-small particle size nanoparticles in tumor therapy. Journal of Controlled Release 2023, 353 , 699-712. https://doi.org/10.1016/j.jconrel.2022.12.028
    84. Mohammad-Nabil Savari, Ali Jabali. Drug Conjugation Chemistry in Iron Oxide Nanoparticles (IONPs). 2023, 15-34. https://doi.org/10.1007/978-981-99-6507-6_2
    85. Mohammad-Nabil Savari, Ali Jabali. Diagnosis. 2023, 241-345. https://doi.org/10.1007/978-981-99-6507-6_8
    86. Ruixue Wei, Zhe Li, Bilun Kang, Gaoliang Fu, Ke Zhang, Mengzhou Xue. Acid-triggered in vivo aggregation of Janus nanoparticles for enhanced imaging-guided photothermal therapy. Nanoscale Advances 2022, 5 (1) , 268-276. https://doi.org/10.1039/D2NA00622G
    87. Shizhen Chen, Long Xiao, Yu Li, Maosong Qiu, Yaping Yuan, Rui Zhou, Conggang Li, Lei Zhang, Zhong‐Xing Jiang, Maili Liu, Xin Zhou. In Vivo Nitroreductase Imaging via Fluorescence and Chemical Shift Dependent 19 F NMR. Angewandte Chemie 2022, 134 (50) https://doi.org/10.1002/ange.202213495
    88. Shizhen Chen, Long Xiao, Yu Li, Maosong Qiu, Yaping Yuan, Rui Zhou, Conggang Li, Lei Zhang, Zhong‐Xing Jiang, Maili Liu, Xin Zhou. In Vivo Nitroreductase Imaging via Fluorescence and Chemical Shift Dependent 19 F NMR. Angewandte Chemie International Edition 2022, 61 (50) https://doi.org/10.1002/anie.202213495
    89. Sandeep K. Mishra, Peter Herman, Michael Crair, R. Todd Constable, John J. Walsh, Adil Akif, Justus V. Verhagen, Fahmeed Hyder. Fluorescently-tagged magnetic protein nanoparticles for high-resolution optical and ultra-high field magnetic resonance dual-modal cerebral angiography. Nanoscale 2022, 14 (47) , 17770-17788. https://doi.org/10.1039/D2NR04878G
    90. Hui Du, Qiyue Wang, Zeyu Liang, Qilong Li, Fangyuan Li, Daishun Ling. Fabrication of magnetic nanoprobes for ultrahigh-field magnetic resonance imaging. Nanoscale 2022, 14 (47) , 17483-17499. https://doi.org/10.1039/D2NR04979A
    91. Xiangdong Xue, Haijing Qu, Yuanpei Li. Stimuli‐responsive crosslinked nanomedicine for cancer treatment. Exploration 2022, 2 (6) https://doi.org/10.1002/EXP.20210134
    92. Pankaj Sharma, Vinay Jain, Mukul Tailang. Selection and Role of Polymers for Designing of a Drug Carrier. 2022https://doi.org/10.5772/intechopen.103125
    93. Sana Shaikh, Muhammad Younis, Liudi Yuan. Functionalized DNA nanostructures for bioimaging. Coordination Chemistry Reviews 2022, 469 , 214648. https://doi.org/10.1016/j.ccr.2022.214648
    94. Elham Aram, Masome Moeni, Roya Abedizadeh, Davood Sabour, Hamid Sadeghi-Abandansari, Jabbar Gardy, Ali Hassanpour. Smart and Multi-Functional Magnetic Nanoparticles for Cancer Treatment Applications: Clinical Challenges and Future Prospects. Nanomaterials 2022, 12 (20) , 3567. https://doi.org/10.3390/nano12203567
    95. Jaison Darson, Mothilal Mohan. Iron Oxide Nanoparticles and Nano-Composites: An Efficient Tool for Cancer Theranostics. 2022https://doi.org/10.5772/intechopen.101934
    96. Tobias Komsthöft, Giovanni Bovone, Stéphane Bernhard, Mark W Tibbitt. Polymer functionalization of inorganic nanoparticles for biomedical applications. Current Opinion in Chemical Engineering 2022, 37 , 100849. https://doi.org/10.1016/j.coche.2022.100849
    97. An Chen, Hongwei Lu, Rong Cao, Yi Zhu, Yumeng Li, Renbin Ge, Siruo Zhang, Yulin Li, Lan Xiao, Li Su, Jinhua Zhao, Honggang Hu, Zhongling Wang. A novel MMP-responsive nanoplatform with transformable magnetic resonance property for quantitative tumor bioimaging and synergetic chemo-photothermal therapy. Nano Today 2022, 45 , 101524. https://doi.org/10.1016/j.nantod.2022.101524
    98. Jianxian Ge, Cang Li, Ning Wang, Ruru Zhang, Mohammad Javad Afshari, Can Chen, Dandan Kou, Dandan Zhou, Ling Wen, Jianfeng Zeng, Mingyuan Gao. Effects of PEG Chain Length on Relaxometric Properties of Iron Oxide Nanoparticles-Based MRI Contrast Agent. Nanomaterials 2022, 12 (15) , 2673. https://doi.org/10.3390/nano12152673
    99. Ruijie Huang, Xingyu Zhou, Guiyuan Chen, Lanhong Su, Zhaoji Liu, Peijie Zhou, Jianping Weng, Yuanzeng Min. Advances of functional nanomaterials for magnetic resonance imaging and biomedical engineering applications. WIREs Nanomedicine and Nanobiotechnology 2022, 14 (4) https://doi.org/10.1002/wnan.1800
    100. Renye Yue, Cheng Zhang, Li Xu, Youjuan Wang, Guoqiang Guan, Lingling Lei, Xiaobing Zhang, Guosheng Song. Dual key co-activated nanoplatform for switchable MRI monitoring accurate ferroptosis-based synergistic therapy. Chem 2022, 8 (7) , 1956-1981. https://doi.org/10.1016/j.chempr.2022.03.009
    Load all citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2018, 140, 32, 10071–10074
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.8b04169
    Published July 30, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    11k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.