ACS Publications. Most Trusted. Most Cited. Most Read
Structural and Computational Bases for Dramatic Skeletal Rearrangement in Anditomin Biosynthesis
My Activity

Figure 1Loading Img
    Article

    Structural and Computational Bases for Dramatic Skeletal Rearrangement in Anditomin Biosynthesis
    Click to copy article linkArticle link copied!

    • Yu Nakashima
      Yu Nakashima
      Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
      More by Yu Nakashima
    • Takaaki Mitsuhashi
      Takaaki Mitsuhashi
      Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
    • Yudai Matsuda
      Yudai Matsuda
      Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
      Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
    • Miki Senda
      Miki Senda
      Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
      More by Miki Senda
    • Hajime Sato
      Hajime Sato
      Graduate School of Pharmaceutical Science, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
      Cluster of Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
      More by Hajime Sato
    • Mami Yamazaki
      Mami Yamazaki
      Graduate School of Pharmaceutical Science, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
    • Masanobu Uchiyama*
      Masanobu Uchiyama
      Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
      Cluster of Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
      *[email protected]
    • Toshiya Senda*
      Toshiya Senda
      Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
      Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies (Soken-dai), 1−1 Oho, Tsukuba, Ibaraki 305−0801, Japan
      *[email protected]
    • Ikuro Abe*
      Ikuro Abe
      Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
      Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
      *[email protected]
      More by Ikuro Abe
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2018, 140, 30, 9743–9750
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.8b06084
    Published July 4, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    AndA, an Fe(II)/α-ketoglutarate (αKG)-dependent enzyme, is the key enzyme that constructs the unique and congested bridged-ring system of anditomin (1), by catalyzing consecutive dehydrogenation and isomerization reactions. Although we previously characterized AndA to some extent, the means by which the enzyme facilitates this drastic structural reconstruction have remained elusive. In this study, we have solved three X-ray crystal structures of AndA, in its apo form and in the complexes with Fe(II), αKG, and two substrates. The crystal structures and mutational experiments identified several key amino acid residues important for the catalysis and provided insight into how AndA controls the reaction. Furthermore, computational calculations validated the proposed reaction mechanism for the bridged-ring formation and also revealed the requirement of a series of conformational changes during the transformation.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.8b06084.

    • Supplementary figures, scheme, and tables (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 48 publications.

    1. Xiaotao Liu, Yaoyao Xu, Lingling Li, Jian Li. Chemoenzymatic Oxidation of Labdane and Formal Synthesis of Nimbolide. Journal of the American Chemical Society 2024, 146 (38) , 26243-26250. https://doi.org/10.1021/jacs.4c07956
    2. Kai Liu, Jinyan Zhang, Guangtao Zhang, Liping Zhang, Zhen Meng, Liang Ma, Wenjun Zhang, Weiliang Xiong, Yiguang Zhu, Binju Wang, Changsheng Zhang. Deciphering Deoxynybomycin Biosynthesis Reveals Fe(II)/α-Ketoglutarate-Dependent Dioxygenase-Catalyzed Oxazoline Ring Formation and Decomposition. Journal of the American Chemical Society 2023, 145 (50) , 27886-27899. https://doi.org/10.1021/jacs.3c11772
    3. Taro Matsuyama, Ko Togashi, Moe Nakano, Hajime Sato, Masanobu Uchiyama. Revision of the Peniroquesine Biosynthetic Pathway by Retro-Biosynthetic Theoretical Analysis: Ring Strain Controls the Unique Carbocation Rearrangement Cascade. JACS Au 2023, 3 (6) , 1596-1603. https://doi.org/10.1021/jacsau.3c00039
    4. Richiro Ushimaru, Ikuro Abe. Unusual Dioxygen-Dependent Reactions Catalyzed by Nonheme Iron Enzymes in Natural Product Biosynthesis. ACS Catalysis 2023, 13 (2) , 1045-1076. https://doi.org/10.1021/acscatal.2c05247
    5. Takahiro Mori, Ziheng Yu, Hui Tao, Ikuro Abe. Rational Engineering of the Nonheme Iron- and 2-Oxoglutarate-Dependent Oxygenase SptF. Organic Letters 2022, 24 (8) , 1737-1741. https://doi.org/10.1021/acs.orglett.2c00409
    6. Lauritz Harken, Jing Liu, Oliver Kreuz, Robert Berger, Shu-Ming Li. Biosynthesis of Guatrypmethine C Implies Two Different Oxidases for exo Double Bond Installation at the Diketopiperazine Ring. ACS Catalysis 2022, 12 (1) , 648-654. https://doi.org/10.1021/acscatal.1c04609
    7. Xinyang Li, Takayoshi Awakawa, Takahiro Mori, Meiqi Ling, Dan Hu, Bin Wu, Ikuro Abe. Heterodimeric Non-heme Iron Enzymes in Fungal Meroterpenoid Biosynthesis. Journal of the American Chemical Society 2021, 143 (50) , 21425-21432. https://doi.org/10.1021/jacs.1c11548
    8. Zhong-Hui Huang, Xiao Liang, Chan-Juan Li, Qiong Gu, Xuan Ma, Shu-Hua Qi. Talaromynoids A–I, Highly Oxygenated Meroterpenoids from the Marine-Derived Fungus Talaromyces purpureogenus SCSIO 41517 and Their Lipid Accumulation Inhibitory Activities. Journal of Natural Products 2021, 84 (10) , 2727-2737. https://doi.org/10.1021/acs.jnatprod.1c00681
    9. Dexiu Yan, Yudai Matsuda. Genome Mining-Driven Discovery of 5-Methylorsellinate-Derived Meroterpenoids from Aspergillus funiculosus. Organic Letters 2021, 23 (8) , 3211-3215. https://doi.org/10.1021/acs.orglett.1c00951
    10. Hajime Sato, Takahiro Hashishin, Junichiro Kanazawa, Kazunori Miyamoto, Masanobu Uchiyama. DFT Study of a Missing Piece in Brasilane-Type Structure Biosynthesis: An Unusual Skeletal Rearrangement. Journal of the American Chemical Society 2020, 142 (47) , 19830-19834. https://doi.org/10.1021/jacs.0c09616
    11. Huaqiang Li, Wenya Feng, Xiaoxin Li, Xin Kang, Shan Yan, Menghang Chao, Shuyuan Mo, Weiguang Sun, Yuanyuan Lu, Chunmei Chen, Jianping Wang, Hucheng Zhu, Yonghui Zhang. Terreuspyridine: An Unexpected Pyridine-Fused Meroterpenoid Alkaloid with a Tetracyclic 6/6/6/6 Skeleton from Aspergillus terreus. Organic Letters 2020, 22 (17) , 7041-7046. https://doi.org/10.1021/acs.orglett.0c02641
    12. Tongxuan Bai, Yudai Matsuda, Hui Tao, Takahiro Mori, Yonghui Zhang, Ikuro Abe. Structural Diversification of Andiconin-Derived Natural Products by α-Ketoglutarate-Dependent Dioxygenases. Organic Letters 2020, 22 (11) , 4311-4315. https://doi.org/10.1021/acs.orglett.0c01358
    13. Guili Zhu, Chengying Zhou, Song Chen, Shaomin Fu, Bo Liu. Construction of BCDEF Core of Andilesin C. Organic Letters 2019, 21 (19) , 7809-7812. https://doi.org/10.1021/acs.orglett.9b02791
    14. Yaning Hou, Jingyun Chen, Weizhe Liu, Gaohua Zhu, Qianying Yang, Xin Wang. Using the Theozyme Model to Study the Dynamical Mechanism of the Post-Transition State Bifurcation Reaction by NgnD Enzyme. Molecules 2024, 29 (23) , 5518. https://doi.org/10.3390/molecules29235518
    15. Charalambos Michael, Wei-chen Chang. A survey of C–C bond formation strategies and mechanism deployed by iron-containing enzymes in natural products. Tetrahedron 2024, 161 , 134084. https://doi.org/10.1016/j.tet.2024.134084
    16. Xuan Zhang, Jia Liu, Langxing Liao, Zikuan Wang, Binju Wang. Coordination dynamics of iron enables the selective C–N coupling but bypasses unwanted C–H hydroxylation in Fe(II)/α-ketoglutarate- dependent non-heme enzymes. Chinese Journal of Catalysis 2024, 62 , 131-144. https://doi.org/10.1016/S1872-2067(24)60064-1
    17. Hajime Sato. Theoretical Study of Natural Product Biosynthesis Using Computational Chemistry. Chemical and Pharmaceutical Bulletin 2024, 72 (6) , 524-528. https://doi.org/10.1248/cpb.c24-00082
    18. Zhiyang Quan, Takayoshi Awakawa. Recent developments in the engineered biosynthesis of fungal meroterpenoids. Beilstein Journal of Organic Chemistry 2024, 20 , 578-588. https://doi.org/10.3762/bjoc.20.50
    19. Hui Tao, Ikuro Abe. Functional analysis of an α-ketoglutarate-dependent non-heme iron oxygenase in fungal meroterpenoid biosynthesis. 2024, 173-198. https://doi.org/10.1016/bs.mie.2024.05.005
    20. Xiaoyan Hu, Xue Huang, Jiao Liu, Ping Zheng, Weimin Gong, Lin Yang. Structures of L -proline trans -hydroxylase reveal the catalytic specificity and provide deeper insight into AKG-dependent hydroxylation. Acta Crystallographica Section D Structural Biology 2023, 79 (4) , 318-325. https://doi.org/10.1107/S2059798323001936
    21. Takayoshi Awakawa, Takahiro Mori, Richiro Ushimaru, Ikuro Abe. Structure-based engineering of α-ketoglutarate dependent oxygenases in fungal meroterpenoid biosynthesis. Natural Product Reports 2023, 40 (1) , 46-61. https://doi.org/10.1039/D2NP00014H
    22. Tao Zhang, Guowei Gu, Guodong Liu, Jinhua Su, Zhilai Zhan, Jianyuan Zhao, Jinxiu Qian, Guowei Cai, Shan Cen, Dewu Zhang, Liyan Yu. Late-stage cascade of oxidation reactions during the biosynthesis of oxalicine B in Penicillium oxalicum. Acta Pharmaceutica Sinica B 2023, 13 (1) , 256-270. https://doi.org/10.1016/j.apsb.2022.09.008
    23. Hui Tao, Takahiro Mori, Heping Chen, Shuang Lyu, Akihito Nonoyama, Shoukou Lee, Ikuro Abe. Molecular insights into the unusually promiscuous and catalytically versatile Fe(II)/α-ketoglutarate-dependent oxygenase SptF. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-021-27636-3
    24. Dexiu Yan, Yudai Matsuda. Biosynthetic Elucidation and Structural Revision of Brevione E: Characterization of the Key Dioxygenase for Pathway Branching from Setosusin Biosynthesis. Angewandte Chemie 2022, 134 (48) https://doi.org/10.1002/ange.202210938
    25. Dexiu Yan, Yudai Matsuda. Biosynthetic Elucidation and Structural Revision of Brevione E: Characterization of the Key Dioxygenase for Pathway Branching from Setosusin Biosynthesis. Angewandte Chemie International Edition 2022, 61 (48) https://doi.org/10.1002/anie.202210938
    26. Hui Tao, Ikuro Abe. Harnessing Fe(II)/α-ketoglutarate-dependent oxygenases for structural diversification of fungal meroterpenoids. Current Opinion in Biotechnology 2022, 77 , 102763. https://doi.org/10.1016/j.copbio.2022.102763
    27. Jia Tang, Yudai Matsuda. Discovery of branching meroterpenoid biosynthetic pathways in Aspergillus insuetus : involvement of two terpene cyclases with distinct cyclization modes. Chemical Science 2022, 13 (35) , 10361-10369. https://doi.org/10.1039/D2SC02994D
    28. Takahiro Mori, Yu Nakashima, Heping Chen, Shotaro Hoshino, Takaaki Mitsuhashi, Ikuro Abe. Structure-based redesign of Fe( ii )/2-oxoglutarate-dependent oxygenase AndA to catalyze spiro-ring formation. Chemical Communications 2022, 58 (36) , 5510-5513. https://doi.org/10.1039/D2CC00736C
    29. Takahiro Mori, Rui Zhai, Richiro Ushimaru, Yudai Matsuda, Ikuro Abe. Molecular insights into the endoperoxide formation by Fe(II)/α-KG-dependent oxygenase NvfI. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-24685-6
    30. Reito Bunno, Takayoshi Awakawa, Takahiro Mori, Ikuro Abe. Aziridine Formation by a Fe II /α‐Ketoglutarate Dependent Oxygenase and 2‐Aminoisobutyrate Biosynthesis in Fungi. Angewandte Chemie 2021, 133 (29) , 15961-15965. https://doi.org/10.1002/ange.202104644
    31. Reito Bunno, Takayoshi Awakawa, Takahiro Mori, Ikuro Abe. Aziridine Formation by a Fe II /α‐Ketoglutarate Dependent Oxygenase and 2‐Aminoisobutyrate Biosynthesis in Fungi. Angewandte Chemie International Edition 2021, 60 (29) , 15827-15831. https://doi.org/10.1002/anie.202104644
    32. Lukas Kahlert, Carsten Schotte, Russell J. Cox. Total Mycosynthesis: Rational Bioconstruction and Bioengineering of Fungal Natural Products. Synthesis 2021, 53 (14) , 2381-2394. https://doi.org/10.1055/a-1401-2716
    33. Takayoshi Awakawa, Ikuro Abe. Reconstitution of Polyketide-Derived Meroterpenoid Biosynthetic Pathway in Aspergillus oryzae. Journal of Fungi 2021, 7 (6) , 486. https://doi.org/10.3390/jof7060486
    34. Lena Barra, Ikuro Abe. Chemistry of fungal meroterpenoid cyclases. Natural Product Reports 2021, 38 (3) , 566-585. https://doi.org/10.1039/D0NP00056F
    35. Takaaki Mitsuhashi, Lena Barra, Zachary Powers, Volga Kojasoy, Andrea Cheng, Feng Yang, Yoshimasa Taniguchi, Takashi Kikuchi, Makoto Fujita, Dean J. Tantillo, John A. Porco, Ikuro Abe. Exploiting the Potential of Meroterpenoid Cyclases to Expand the Chemical Space of Fungal Meroterpenoids. Angewandte Chemie 2020, 132 (52) , 23980-23989. https://doi.org/10.1002/ange.202011171
    36. Takaaki Mitsuhashi, Lena Barra, Zachary Powers, Volga Kojasoy, Andrea Cheng, Feng Yang, Yoshimasa Taniguchi, Takashi Kikuchi, Makoto Fujita, Dean J. Tantillo, John A. Porco, Ikuro Abe. Exploiting the Potential of Meroterpenoid Cyclases to Expand the Chemical Space of Fungal Meroterpenoids. Angewandte Chemie International Edition 2020, 59 (52) , 23772-23781. https://doi.org/10.1002/anie.202011171
    37. Ikuro Abe. Nonheme Iron- and 2-Oxoglutarate-Dependent Dioxygenases in Fungal Meroterpenoid Biosynthesis. Chemical and Pharmaceutical Bulletin 2020, 68 (9) , 823-831. https://doi.org/10.1248/cpb.c20-00360
    38. Dean J. Tantillo. Interrogating chemical mechanisms in natural products biosynthesis using quantum chemical calculations. WIREs Computational Molecular Science 2020, 10 (3) https://doi.org/10.1002/wcms.1453
    39. Yu Nakashima, Takahiro Mori, Ikuro Abe. αKG‐Dependent Enzyme AndA Involved in Anditomin Biosynthesis. 2020, 1-8. https://doi.org/10.1002/9781119951438.eibc2735
    40. Yudai Matsuda, Ikuro Abe. Fungal Meroterpenoids. 2020, 445-478. https://doi.org/10.1016/B978-0-12-409547-2.14663-3
    41. Jens Christian Frisvad, Thomas Isbrandt, Thomas Ostenfeld Larsen. Fungal Partially Reducing Polyketides and Related Natural Products From Aspergillus, Penicillium, and Talaromyces. 2020, 313-332. https://doi.org/10.1016/B978-0-12-409547-2.14731-6
    42. Lide Cha, Yijie Tang, Yisong Guo, Wei-Chen Chang. Olefin, Nitrile and Isonitrile Installation Catalyzed by Metalloenzymes. 2020, 191-214. https://doi.org/10.1016/B978-0-12-409547-2.14862-0
    43. Zachary Powers, Adam Scharf, Andrea Cheng, Feng Yang, Martin Himmelbauer, Takaaki Mitsuhashi, Lena Barra, Yoshimasa Taniguchi, Takashi Kikuchi, Makoto Fujita, Ikuro Abe, John A. Porco. Biomimetic Synthesis of Meroterpenoids by Dearomatization‐Driven Polycyclization. Angewandte Chemie 2019, 131 (45) , 16287-16292. https://doi.org/10.1002/ange.201910710
    44. Zachary Powers, Adam Scharf, Andrea Cheng, Feng Yang, Martin Himmelbauer, Takaaki Mitsuhashi, Lena Barra, Yoshimasa Taniguchi, Takashi Kikuchi, Makoto Fujita, Ikuro Abe, John A. Porco. Biomimetic Synthesis of Meroterpenoids by Dearomatization‐Driven Polycyclization. Angewandte Chemie International Edition 2019, 58 (45) , 16141-16146. https://doi.org/10.1002/anie.201910710
    45. Xiwei Chen, Lu Wang, Jinmei Zhang, Tao Jiang, Changhua Hu, Dehai Li, Yi Zou. Immunosuppressant mycophenolic acid biosynthesis employs a new globin-like enzyme for prenyl side chain cleavage. Acta Pharmaceutica Sinica B 2019, 9 (6) , 1253-1258. https://doi.org/10.1016/j.apsb.2019.06.009
    46. Hajime Sato, Kazuki Saito, Mami Yamazaki. Acceleration of Mechanistic Investigation of Plant Secondary Metabolism Based on Computational Chemistry. Frontiers in Plant Science 2019, 10 https://doi.org/10.3389/fpls.2019.00802
    47. Christopher T. Walsh, Bradley S. Moore. Enzymkaskadenreaktionen in der Biosynthese. Angewandte Chemie 2019, 131 (21) , 6918-6952. https://doi.org/10.1002/ange.201807844
    48. Christopher T. Walsh, Bradley S. Moore. Enzymatic Cascade Reactions in Biosynthesis. Angewandte Chemie International Edition 2019, 58 (21) , 6846-6879. https://doi.org/10.1002/anie.201807844

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2018, 140, 30, 9743–9750
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.8b06084
    Published July 4, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    3646

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.