ACS Publications. Most Trusted. Most Cited. Most Read
Simulating the Chelate Effect
My Activity

Figure 1Loading Img
    Communication

    Simulating the Chelate Effect
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (2)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2018, 140, 45, 15166–15169
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.8b09371
    Published November 1, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Despite the rich history of experimental studies focusing on the thermochemistry and kinetics associated with the chelate effect, molecular-level computational studies on the chelate ring opening/ring closure are scarce. The challenge lies in an accurate description of both the metal ion and its aqueous environment. Herein, we demonstrate that an optimized 12-6-4 Lennard-Jones (LJ) model can capture the thermodynamics and provide detailed structural and mechanistic insights into the formation of ethylenediamine (en) complexes with metal ions. The water molecules in the first solvation shell of the metal ion are found to facilitate the chelate ring formation. The optimized parameters further simulate the formation of bis and tris(en) complexes representing the wide applicability of the model to simulate coordination chemistry and self-assembly processes.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.8b09371.

    • Details of the simulation protocols, parameter fitting, computed binding free energies for different divalent ions and en for m12-6-4 ion model (PDF)

    • Video showing reaction profile of metal ligand association (AVI)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 32 publications.

    1. Basak Koca Fındık, Majid Jafari, Lin Frank Song, Zhen Li, Viktorya Aviyente, Kenneth M. Merz, Jr.. Binding of Phosphate Species to Ca2+ and Mg2+ in Aqueous Solution. Journal of Chemical Theory and Computation 2024, 20 (10) , 4298-4307. https://doi.org/10.1021/acs.jctc.4c00218
    2. Madelyn Smith, Zhen Li, Luke Landry, Kenneth M. Merz, Jr., Pengfei Li. Consequences of Overfitting the van der Waals Radii of Ions. Journal of Chemical Theory and Computation 2023, 19 (7) , 2064-2074. https://doi.org/10.1021/acs.jctc.2c01255
    3. Zhen Li, Lin Frank Song, Gaurav Sharma, Basak Koca Fındık, Kenneth M. Merz, Jr.. Accurate Metal–Imidazole Interactions. Journal of Chemical Theory and Computation 2023, 19 (2) , 619-625. https://doi.org/10.1021/acs.jctc.2c01081
    4. Yongguang Zhang, Yang Jiang, Jiarong Peng, Haiyang Zhang. Rational Design of Nonbonded Point Charge Models for Divalent Metal Cations with Lennard-Jones 12-6 Potential. Journal of Chemical Information and Modeling 2021, 61 (8) , 4031-4044. https://doi.org/10.1021/acs.jcim.1c00580
    5. Isabelle M. Dixon, Sylvestre Bonnet, Fabienne Alary, Jérôme Cuny. Photoinduced Ligand Exchange Dynamics of a Polypyridyl Ruthenium Complex in Aqueous Solution. The Journal of Physical Chemistry Letters 2021, 12 (30) , 7278-7284. https://doi.org/10.1021/acs.jpclett.1c01424
    6. Han Liu, Haohao Fu, Christophe Chipot, Xueguang Shao, Wensheng Cai. Accuracy of Alternate Nonpolarizable Force Fields for the Determination of Protein–Ligand Binding Affinities Dominated by Cation−π Interactions. Journal of Chemical Theory and Computation 2021, 17 (7) , 3908-3915. https://doi.org/10.1021/acs.jctc.1c00219
    7. Arkajyoti Sengupta, Zhen Li, Lin Frank Song, Pengfei Li, Kenneth M. Merz, Jr.. Parameterization of Monovalent Ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB Water Models. Journal of Chemical Information and Modeling 2021, 61 (2) , 869-880. https://doi.org/10.1021/acs.jcim.0c01390
    8. Han Liu, Haohao Fu, Xueguang Shao, Wensheng Cai, Christophe Chipot. Accurate Description of Cation−π Interactions in Proteins with a Nonpolarizable Force Field at No Additional Cost. Journal of Chemical Theory and Computation 2020, 16 (10) , 6397-6407. https://doi.org/10.1021/acs.jctc.0c00637
    9. Zhen Li, Lin Frank Song, Pengfei Li, Kenneth M. Merz, Jr.. Systematic Parametrization of Divalent Metal Ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB Water Models. Journal of Chemical Theory and Computation 2020, 16 (7) , 4429-4442. https://doi.org/10.1021/acs.jctc.0c00194
    10. Lin Frank Song, Arkajyoti Sengupta, Kenneth M. Merz, Jr.. Thermodynamics of Transition Metal Ion Binding to Proteins. Journal of the American Chemical Society 2020, 142 (13) , 6365-6374. https://doi.org/10.1021/jacs.0c01329
    11. Hugo MacDermott-Opeskin, Christopher A. McDevitt, Megan L. O’Mara. Comparing Nonbonded Metal Ion Models in the Divalent Cation Binding Protein PsaA. Journal of Chemical Theory and Computation 2020, 16 (3) , 1913-1923. https://doi.org/10.1021/acs.jctc.9b01180
    12. C. I. León-Pimentel, M. Martínez-Jiménez, H. Saint-Martin. Study of the Elusive Hydration of Pb2+ from the Gas Phase to the Liquid Aqueous Solution: Modeling the Hemidirected Solvation with a Polarizable MCDHO Force-Field. The Journal of Physical Chemistry B 2019, 123 (43) , 9155-9166. https://doi.org/10.1021/acs.jpcb.9b04541
    13. Jiaying Gu, Jin Xiao, Xingyu Wu, Xi Zhu, Huimin Chen, John Z. H. Zhang, Tong Zhu, Ya Gao, Zhixiang Yin. Interaction of magnesium ion and acetate anion in bulk water: Toward high-level machine learning potential. Chinese Journal of Chemical Physics 2025, 38 (1) , 95-101. https://doi.org/10.1063/1674-0068/cjcp2402023
    14. Braulio M. Puerta Lombardi, Morgan R. Faas, Daniel West, Roope A. Suvinen, Heikki M. Tuononen, Roland Roesler. An isolable, chelating bis[cyclic (alkyl)(amino)carbene] stabilizes a strongly bent, dicoordinate Ni(0) complex. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-47036-7
    15. Kyle Salmon, Marcel Schlaf. A relative stability scale of nitrogen donor ligand ruthenium complexes based on their stability constants calculated from first principles by DFT methods. Canadian Journal of Chemistry 2024, 102 (12) , 854-864. https://doi.org/10.1139/cjc-2024-0035
    16. Gilles Stebens, David Kury, Lukas Jakob, Burkhard Butschke. Ligand and Metal Effects in the Gas‐Phase Fragmentation of Thiomethoxymethyl Complexes. European Journal of Inorganic Chemistry 2024, 27 (32) https://doi.org/10.1002/ejic.202400472
    17. Bo Huang, Shengzhen Hou, Zhao Hua, Jian Zhang, Huan Yang, Yuejun Zhu, Yumiao Tang, Benru Wang. Comprehensive Utilization of Formation Water Scale to Prepare Controllable Size CaCO3 Nanoparticles: A New Method to Improve Oil Recovery. Nanomaterials 2024, 14 (17) , 1452. https://doi.org/10.3390/nano14171452
    18. Rubén D. Parra. Alkali Metal-Ion Binding by a Model Macrocycle Containing a C-I···N Halogen Bonded Network: A DFT Study of C-I···M+ and N···M+ Binding Interactions, M+ = Li+, Na+, K+, and Rb+. Inorganics 2024, 12 (6) , 161. https://doi.org/10.3390/inorganics12060161
    19. Yang Wei, Pengfei Li. Modeling Metal Ions in Enzyme Catalysis. 2024, 767-785. https://doi.org/10.1016/B978-0-12-821978-2.00019-2
    20. Yuhan Jiang, Zhen Li, Dexin Sui, Gaurav Sharma, Tianqi Wang, Keith MacRenaris, Hideki Takahashi, Kenneth Merz, Jian Hu. Rational engineering of an elevator-type metal transporter ZIP8 reveals a conditional selectivity filter critically involved in determining substrate specificity. Communications Biology 2023, 6 (1) https://doi.org/10.1038/s42003-023-05146-w
    21. Qi Zhang, Tong Zhu. Interaction of divalent cations and amino acids in bulk water: Molecular simulations with neural network potentials. Chinese Journal of Chemical Physics 2023, 36 (2) , 162. https://doi.org/10.1063/1674-0068/cjcp2203037
    22. Okke Melse, Iris Antes, Ville R. I. Kaila, Martin Zacharias. Benchmarking biomolecular force field‐based Zn 2+ for mono‐ and bimetallic ligand binding sites. Journal of Computational Chemistry 2023, 44 (8) , 912-926. https://doi.org/10.1002/jcc.27052
    23. Tania Hidalgo, David Fabra, Raul Allende, Ana I. Matesanz, Patricia Horcajada, Tarita Biver, Adoracion G. Quiroga. Two novel Pd thiosemicarbazone complexes as efficient and selective antitumoral drugs. Inorganic Chemistry Frontiers 2023, 10 (7) , 1986-1998. https://doi.org/10.1039/D2QI02424A
    24. Fredrik Haeffner, Thomas C. Pickel, April Hou, Donald G. Walker, William F. Kiesman, Xianglin Shi. The Chelate Effect Rationalizes Observed Rate Acceleration and Enantioselectivity in BINOL‐Catalyzed Petasis Reactions. Chemistry – A European Journal 2023, 29 (13) https://doi.org/10.1002/chem.202203331
    25. M.A. Silin, L.A. Magadova, L.F. Davletshina, T.I. Yunusov. REVIEW OF CHELATING AGENTS USE FOR WELL STIMULATION IN CARBONATE RESERVOIRS. Petroleum Engineering 2022, 20 (3) , 29. https://doi.org/10.17122/ngdelo-2022-3-29-45
    26. A. A. Mukadam, A. L. L. East. Challenges in predicting ΔrxnG in solution: The chelate effect. The Journal of Chemical Physics 2022, 157 (3) https://doi.org/10.1063/5.0097291
    27. Lachlan S. R. Adamson, Nuren Tasneem, Michael P. Andreas, William Close, Eric N. Jenner, Taylor N. Szyszka, Reginald Young, Li Chen Cheah, Alexander Norman, Hugo I. MacDermott-Opeskin, Megan L. O’Mara, Frank Sainsbury, Tobias W. Giessen, Yu Heng Lau. Pore structure controls stability and molecular flux in engineered protein cages. Science Advances 2022, 8 (5) https://doi.org/10.1126/sciadv.abl7346
    28. Thomas Scattolin, Steven P. Nolan. Reaction Parameterization as a Tool for Development in Organometallic Catalysis. 2022, 456-501. https://doi.org/10.1016/B978-0-12-820206-7.00088-3
    29. Pengfei Li. Bridging the 12-6-4 Model and the Fluctuating Charge Model. Frontiers in Chemistry 2021, 9 https://doi.org/10.3389/fchem.2021.721960
    30. Brian M. Gentry, Tae Hoon Choi, William S. Belfield, John A. Keith. Computational predictions of metal–macrocycle stability constants require accurate treatments of local solvent and pH effects. Physical Chemistry Chemical Physics 2021, 23 (15) , 9189-9197. https://doi.org/10.1039/D1CP00611H
    31. Leng Wang, Ruiyuan Liu, Fang Li, Yue Meng, Huizhe Lu. Unveiling the novel characteristics of IGPD polymer and inhibitors binding affinities using 12-6-4 LJ-type nonbonded Mn2+ model. Journal of Molecular Liquids 2021, 322 , 114992. https://doi.org/10.1016/j.molliq.2020.114992
    32. Natalie Fey, Alexander Koumi, Andrei V. Malkov, Jonathan D. Moseley, Bao N. Nguyen, Simon N. G. Tyler, Charlotte E. Willans. Mapping the properties of bidentate ligands with calculated descriptors (LKB-bid). Dalton Transactions 2020, 49 (24) , 8169-8178. https://doi.org/10.1039/D0DT01694B

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2018, 140, 45, 15166–15169
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.8b09371
    Published November 1, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    3771

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.