ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

H4octox: Versatile Bimodal Octadentate Acyclic Chelating Ligand for Medicinal Inorganic Chemistry

  • Xiaozhu Wang
    Xiaozhu Wang
    Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
    More by Xiaozhu Wang
  • María de Guadalupe Jaraquemada-Peláez
    María de Guadalupe Jaraquemada-Peláez
    Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
  • Cristina Rodríguez-Rodríguez
    Cristina Rodríguez-Rodríguez
    Center for Comparative Medicine, 4145 Wesbrook Mall, Vancouver, British Columbia V6T 1W5, Canada
    Department of Physics and Astronomy, University of British Columbia, 6224 Agronomy Road, Vancouver, British Columbia V6T 1Z1, Canada
  • Yang Cao
    Yang Cao
    Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
    More by Yang Cao
  • Christian Buchwalder
    Christian Buchwalder
    Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
  • Neha Choudhary
    Neha Choudhary
    Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
    Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
  • Una Jermilova
    Una Jermilova
    Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
    Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
  • Caterina F. Ramogida
    Caterina F. Ramogida
    Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
    Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
  • Katayoun Saatchi
    Katayoun Saatchi
    Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
  • Urs O. Häfeli
    Urs O. Häfeli
    Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
  • Brian O. Patrick
    Brian O. Patrick
    Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
  • , and 
  • Chris Orvig*
    Chris Orvig
    Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
    *[email protected]
    More by Chris Orvig
Cite this: J. Am. Chem. Soc. 2018, 140, 45, 15487–15500
Publication Date (Web):October 16, 2018
https://doi.org/10.1021/jacs.8b09964
Copyright © 2018 American Chemical Society

    Article Views

    3104

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (4 MB)
    Supporting Info (4)»

    Abstract

    Abstract Image

    H4octox, a versatile new octadentate acyclic chelating ligand, has been investigated as an alternative to the acyclic DTPA and the macrocyclic DOTA for trivalent metal ions useful in diagnostic medical imaging or therapeutic applications (Y3+, In3+, La3+, Gd3+, Lu3+). The synthesis of H4octox is straightforward in less steps and thus more economical than those of most previously reported chelators. Complex formation equilibria in the presence of Y3+, In3+, La3+, Gd3+, and Lu3+ revealed fast chelation and high metal-sequestering capacity. Quantitative labeling with 111In3+ was achieved within 15 min at room temperature at ligand concentrations as low as 10–7 M, exactly the properties required for the development of kit-based radiopharmaceuticals. In vitro serum stability studies and in vivo SPECT imaging confirmed excellent complex stability of [111In(octox)]. Moreover, it is more lipophilic than most of the multidentate carboxylate- or picolinate-based chelators; it therefore shows more liver clearance and provides a complementary choice in the design of metal-based pharmaceuticals and in the tuning of their pharmacokinetic properties. Finally, H4octox showed a large fluorescence enhancement upon complexation with different metals, in particular, with Y3+ and Lu3+, which could be useful for non-radioactive fluorescent stability and cell studies as well as bimodal imaging. Excellent in vitro stability of [Y(octox)] against transferrin and Fe3+ was confirmed employing this fluorescence.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.8b09964.

    • Protonation constants of H4octox, representative spectra of the in batch UV spectrophotometric titration of 3.06 × 10–5 M H2O solution of H4octox, representative spectra of the simultaneous UV–potentiometric titration of 9.55 × 10–4 M solution of H4octox, speciation plots of H4octox calculated using protonation constants in Table 3, representative spectra of the UV–potentiometric titration of the Y3+–H4octox system, representative spectra of the UV–potentiometric titration of the La3+–H4octox system, representative spectra of the UV–potentiometric titration of the Gd3+–H4octox system, representative spectra of the UV–potentiometric titration of the Lu3+–H4octox system, representative spectra of the in batch UV spectrophotometric titration of the In3+–H4octox system, [Y(octox)] complex stability challenge against 5 equiv of Fe3+, [In(octox)] complex stability challenge against 5 equiv of Fe3+, 1H NMR spectrum of compound 2 in CD2Cl2, 13C NMR spectrum of compound 2 in CD2Cl2, 1H NMR spectrum of H4octox (3) in D2O, 13C NMR spectrum of H4octox (3) in D2O, 1H NMR spectrum of Na[In(octox)] in D2O, 2D NOESY spectrum of Na[In(octox)] in D2O, ORTEP diagram of the [La3(octox)4]7–·6H2O, crystallographic data for the La-octox structure, DFT-optimized structures and MEP mappings of isomers of [In(octox)] and [In(octapa)] (PDF)

    • Dynamic SPECT/CT animated images of maximum intensity projections (top view) (MPG)

    • Dynamic SPECT/CT animated images of maximum intensity projections (3D view) (MPG)

    • (CIF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 27 publications.

    1. Luke Wharton, Hua Yang, María de Guadalupe Jaraquemada-Peláez, Helen Merkens, Gokce Engudar, Aidan Ingham, Helena Koniar, Valery Radchenko, Peter Kunz, Paul Schaffer, François Bénard, Chris Orvig. Rearmed Bifunctional Chelating Ligand for 225Ac/155Tb Precision-Guided Theranostic Radiopharmaceuticals─H4noneunpaX. Journal of Medicinal Chemistry 2023, Article ASAP.
    2. Monika Rana, Hong-Jun Cho, Hemant Arya, Tarun Kumar Bhatt, Kishalay Bhar, Surabhi Bhatt, Liviu M. Mirica, Anuj Kumar Sharma. Azo-Stilbene and Pyridine–Amine Hybrid Multifunctional Molecules to Target Metal-Mediated Neurotoxicity and Amyloid-β Aggregation in Alzheimer’s Disease. Inorganic Chemistry 2022, 61 (27) , 10294-10309. https://doi.org/10.1021/acs.inorgchem.2c00502
    3. Lily Southcott, Xiaozhu Wang, Neha Choudhary, Luke Wharton, Brian O. Patrick, Hua Yang, Kristof Zarschler, Manja Kubeil, Holger Stephan, María de Guadalupe Jaraquemada-Peláez, Chris Orvig. H2pyhox – Octadentate Bis(pyridyloxine). Inorganic Chemistry 2021, 60 (16) , 12186-12196. https://doi.org/10.1021/acs.inorgchem.1c01412
    4. Monica Agnoletti, Cristina Rodríguez-Rodríguez, Sylvia N. Kłodzińska, Tullio V. F. Esposito, Katayoun Saatchi, Hanne Mørck Nielsen, Urs O. Häfeli. Monosized Polymeric Microspheres Designed for Passive Lung Targeting: Biodistribution and Pharmacokinetics after Intravenous Administration. ACS Nano 2020, 14 (6) , 6693-6706. https://doi.org/10.1021/acsnano.9b09773
    5. Thomas I. Kostelnik, Xiaozhu Wang, Lily Southcott, Hannah K. Wagner, Manja Kubeil, Holger Stephan, María de Guadalupe Jaraquemada-Peláez, Chris Orvig. Rapid Thermodynamically Stable Complex Formation of [nat/111In]In3+, [nat/90Y]Y3+, and [nat/177Lu]Lu3+ with H6dappa. Inorganic Chemistry 2020, 59 (10) , 7238-7251. https://doi.org/10.1021/acs.inorgchem.0c00671
    6. Neha Choudhary, Marı́a de Guadalupe Jaraquemada-Peláez, Kristof Zarschler, Xiaozhu Wang, Valery Radchenko, Manja Kubeil, Holger Stephan, Chris Orvig. Chelation in One Fell Swoop: Optimizing Ligands for Smaller Radiometal Ions. Inorganic Chemistry 2020, 59 (8) , 5728-5741. https://doi.org/10.1021/acs.inorgchem.0c00509
    7. Xiaozhu Wang, María de Guadalupe Jaraquemada-Peláez, Yang Cao, Aidan Ingham, Cristina Rodríguez-Rodríguez, Jinhe Pan, Yongliang Wang, Katayoun Saatchi, Urs O. Häfeli, Kuo-Shyan Lin, Chris Orvig. H2CHXhox: Rigid Cyclohexane-Reinforced Nonmacrocyclic Chelating Ligand for [nat/67/68Ga]Ga3+. Inorganic Chemistry 2020, 59 (7) , 4895-4908. https://doi.org/10.1021/acs.inorgchem.0c00168
    8. Lily Li, María de Guadalupe Jaraquemada-Peláez, Eduardo Aluicio-Sarduy, Xiaozhu Wang, Dawei Jiang, Meelad Sakheie, Hsiou-Ting Kuo, Todd E. Barnhart, Weibo Cai, Valery Radchenko, Paul Schaffer, Kuo-Shyan Lin, Jonathan W. Engle, François Bénard, Chris Orvig. [nat/44Sc(pypa)]−: Thermodynamic Stability, Radiolabeling, and Biodistribution of a Prostate-Specific-Membrane-Antigen-Targeting Conjugate. Inorganic Chemistry 2020, 59 (3) , 1985-1995. https://doi.org/10.1021/acs.inorgchem.9b03347
    9. Emily E. Racow, John J. Kreinbihl, Alexia G. Cosby, Yi Yang, Apurva Pandey, Eszter Boros, Christopher J. Johnson. General Approach to Direct Measurement of the Hydration State of Coordination Complexes in the Gas Phase: Variable Temperature Mass Spectrometry. Journal of the American Chemical Society 2019, 141 (37) , 14650-14660. https://doi.org/10.1021/jacs.9b05874
    10. Neha Choudhary, Alexander Dimmling, Xiaozhu Wang, Lily Southcott, Valery Radchenko, Brian O. Patrick, Peter Comba, Chris Orvig. Octadentate Oxine-Armed Bispidine Ligand for Radiopharmaceutical Chemistry. Inorganic Chemistry 2019, 58 (13) , 8685-8693. https://doi.org/10.1021/acs.inorgchem.9b01016
    11. Lily Li, María de Guadalupe Jaraquemada-Peláez, Hsiou-Ting Kuo, Helen Merkens, Neha Choudhary, Katrin Gitschtaler, Una Jermilova, Nadine Colpo, Carlos Uribe-Munoz, Valery Radchenko, Paul Schaffer, Kuo-Shyan Lin, François Bénard, Chris Orvig. Functionally Versatile and Highly Stable Chelator for 111In and 177Lu: Proof-of-Principle Prostate-Specific Membrane Antigen Targeting. Bioconjugate Chemistry 2019, 30 (5) , 1539-1553. https://doi.org/10.1021/acs.bioconjchem.9b00225
    12. A. N. Moiseeva, R. A. Aliev, V. N. Osipov, D. S. Khachatryan. Preparation of 155Tb-labeled short somatostatin analog. Russian Chemical Bulletin 2023, 72 (9) , 2249-2254. https://doi.org/10.1007/s11172-023-4022-8
    13. Qin Chen, Xiaomin Fu, Huawei Cai, Shengxiang Fu, Zhongyuan Cai, Mufeng Li, Xiaoai Wu, Rong Tian, Hua Ai. 68Ga-labeled amphiphilic polymer nanoparticles for PET imaging of sentinel lymph node metastasis. Regenerative Biomaterials 2023, 10 https://doi.org/10.1093/rb/rbad029
    14. Ruslan G. Tuguntaev, Abid Hussain, Chenxing Fu, Haoting Chen, Ying Tao, Yan Huang, Lu Liu, Xing-Jie Liang, Weisheng Guo. Bioimaging guided pharmaceutical evaluations of nanomedicines for clinical translations. Journal of Nanobiotechnology 2022, 20 (1) https://doi.org/10.1186/s12951-022-01451-4
    15. Karel D. Klika, Rana Alsalim, Mohammad Eftekhari, Ata Makarem. Synthesis of a polyaminocarboxylate-based aluminum complex and its structural studies using 1 H{ 13 C}-HMBC NMR and a Karplus-type function. Dalton Transactions 2022, 51 (33) , 12436-12441. https://doi.org/10.1039/D2DT01702D
    16. Lily Southcott, Jennifer N. Whetter, Luke Wharton, Brian O. Patrick, Kristof Zarschler, Manja Kubeil, Holger Stephan, María de Guadalupe Jaraquemada-Peláez, Chris Orvig. Bis(amido)bis(oxinate)diamine Ligands for theranostic radiometals. Journal of Inorganic Biochemistry 2022, 231 , 111789. https://doi.org/10.1016/j.jinorgbio.2022.111789
    17. Holis Abdul Holik, Faisal Maulana Ibrahim, Angela Alysia Elaine, Bernap Dwi Putra, Arifudin Achmad, Achmad Hussein Sundawa Kartamihardja. The Chemical Scaffold of Theranostic Radiopharmaceuticals: Radionuclide, Bifunctional Chelator, and Pharmacokinetics Modifying Linker. Molecules 2022, 27 (10) , 3062. https://doi.org/10.3390/molecules27103062
    18. Manja Kubeil, Irma Martínez, Michael Bachmann, Klaus Kopka, Kellie Tuck, Holger Stephan. Dual-Labelling Strategies for Nuclear and Fluorescence Molecular Imaging: Current Status and Future Perspectives. Pharmaceuticals 2022, 15 (4) , 432. https://doi.org/10.3390/ph15040432
    19. Lily Southcott, Chris Orvig. Inorganic radiopharmaceutical chemistry of oxine. Dalton Transactions 2021, 50 (45) , 16451-16458. https://doi.org/10.1039/D1DT02685B
    20. Neha Choudhary, Kendall E. Barrett, Manja Kubeil, Valery Radchenko, Jonathan W. Engle, Holger Stephan, María de Guadalupe Jaraquemada-Peláez, Chris Orvig. Metal ion size profoundly affects H 3 glyox chelate chemistry. RSC Advances 2021, 11 (26) , 15663-15674. https://doi.org/10.1039/D1RA01793D
    21. Lily Southcott, Xiaozhu Wang, Luke Wharton, Hua Yang, Valery Radchenko, Manja Kubeil, Holger Stephan, María de Guadalupe Jaraquemada-Peláez, Chris Orvig. High denticity oxinate-linear-backbone chelating ligand for diagnostic radiometal ions [ 111 In]In 3+ and [ 89 Zr]Zr 4+. Dalton Transactions 2021, 50 (11) , 3874-3886. https://doi.org/10.1039/D0DT04230G
    22. Charlotte Rivas, Jessica A. Jackson, Ingebjørg N. Hungnes, Michelle T. Ma. Radioactive Metals in Imaging and Therapy. 2021, 706-740. https://doi.org/10.1016/B978-0-08-102688-5.00010-6
    23. Lily Southcott, Jennifer N. Whetter, Luke Wharton, Brian O. Patrick, Kristof Zarschler, Manja Kubeil, Holger Stephan, María de Guadalupe Jaraquemada-Peláez, Chris Orvig. Bis(Amido)Bis(Oxinate)Diamine Ligands for Theranostic Radiometals. SSRN Electronic Journal 2021, 14 https://doi.org/10.2139/ssrn.3981281
    24. Yujun Zeng, Haonan Li, Zhiqian Li, Qiang Luo, Hongyan Zhu, Zhongwei Gu, Hu Zhang, Qiyong Gong, Kui Luo. Engineered gadolinium-based nanomaterials as cancer imaging agents. Applied Materials Today 2020, 20 , 100686. https://doi.org/10.1016/j.apmt.2020.100686
    25. Lily Li, Hsiou-Ting Kuo, Xiaozhu Wang, Helen Merkens, Nadine Colpo, Valery Radchenko, Paul Schaffer, Kuo-Shyan Lin, François Bénard, Chris Orvig. t Bu 4 octapa-alkyl-NHS for metalloradiopeptide preparation. Dalton Transactions 2020, 49 (22) , 7605-7619. https://doi.org/10.1039/D0DT00845A
    26. Laura Grenier, Maryline Beyler, Carlos Platas‐Iglesias, Taunia Closson, David Esteban Gómez, Dwight S. Seferos, Peng Liu, Olga I. Ornatsky, Vladimir Baranov, Raphaël Tripier. Highly Stable and Inert Complexation of Indium(III) by Reinforced Cyclam Dipicolinate and a Bifunctional Derivative for Bead Encoding in Mass Cytometry. Chemistry – A European Journal 2019, 25 (67) , 15387-15400. https://doi.org/10.1002/chem.201903969
    27. E J Padma Malar, Rebecca Jacob, S Balasubramanian. DFT studies on the structure and stability of tetraaza macrocyclic nickel(II) complexes containing dicarbinolamine ligand moiety. Journal of Chemical Sciences 2019, 131 (11) https://doi.org/10.1007/s12039-019-1688-4

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect