ACS Publications. Most Trusted. Most Cited. Most Read
Graphene Nanoribbons Derived from Zigzag Edge-Encased Poly(para-2,9-dibenzo[bc,kl]coronenylene) Polymer Chains
My Activity

Figure 1Loading Img
    ADDITION/CORRECTION. This article has been corrected. View the notice.
    Communication

    Graphene Nanoribbons Derived from Zigzag Edge-Encased Poly(para-2,9-dibenzo[bc,kl]coronenylene) Polymer Chains
    Click to copy article linkArticle link copied!

    • Doreen Beyer
      Doreen Beyer
      Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Chair for Molecular Functional Materials, Dresden University of Technology, 01062 Dresden, Germany
      More by Doreen Beyer
    • Shiyong Wang
      Shiyong Wang
      Empa, Swiss Federal Laboratories for Material Science and Technology, 8600 Dübendorf, Switzerland
      Department of Physics and Astronomy, Shanghai Jiao Tong University, 200240 Shanghai, China
      More by Shiyong Wang
    • Carlo A. Pignedoli
      Carlo A. Pignedoli
      Empa, Swiss Federal Laboratories for Material Science and Technology, 8600 Dübendorf, Switzerland
    • Jason Melidonie
      Jason Melidonie
      Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Chair for Molecular Functional Materials, Dresden University of Technology, 01062 Dresden, Germany
    • Bingkai Yuan
      Bingkai Yuan
      Department of Physics and Astronomy, Shanghai Jiao Tong University, 200240 Shanghai, China
      More by Bingkai Yuan
    • Can Li
      Can Li
      Department of Physics and Astronomy, Shanghai Jiao Tong University, 200240 Shanghai, China
      More by Can Li
    • Jan Wilhelm
      Jan Wilhelm
      Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
      More by Jan Wilhelm
    • Pascal Ruffieux
      Pascal Ruffieux
      Empa, Swiss Federal Laboratories for Material Science and Technology, 8600 Dübendorf, Switzerland
    • Reinhard Berger*
      Reinhard Berger
      Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Chair for Molecular Functional Materials, Dresden University of Technology, 01062 Dresden, Germany
      *[email protected]
    • Klaus Müllen
      Klaus Müllen
      Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
    • Roman Fasel*
      Roman Fasel
      Empa, Swiss Federal Laboratories for Material Science and Technology, 8600 Dübendorf, Switzerland
      Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
      *[email protected]
      More by Roman Fasel
    • Xinliang Feng*
      Xinliang Feng
      Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Chair for Molecular Functional Materials, Dresden University of Technology, 01062 Dresden, Germany
      *[email protected]
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2019, 141, 7, 2843–2846
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.8b10407
    Published February 7, 2019
    Copyright © 2019 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    In this work, we demonstrate the bottom-up on-surface synthesis of poly(para-dibenzo[bc,kl]-coronenylene) (PPDBC), a zigzag edge-encased analog of poly(para-phenylene) (PPP), and its lateral fusion into zigzag edge-extended graphene nanoribbons (zeeGNRs). Toward this end, we designed a dihalogenated di(meta-xylyl)anthracene monomer displaying strategic methyl groups at the substituted phenyl ring and investigated its applicability as precursor in the thermally induced surface-assisted polymerization and cyclodehydrogenation. The structure of the resulting zigzag edge-rich (70%) polymer PPDBC was unambiguously confirmed by scanning tunneling microscopy (STM) and non-contact atomic force microscopy (nc-AFM). Remarkably, by further thermal treatment at 450 °C two and three aligned PPDBC chains can be laterally fused into expanded zeeGNRs, with a ribbon width of nine (N = 9) up to 17 (N = 17) carbon atoms. Moreover, the resulting zeeGNRs exhibit a high ratio of zigzag (67%) vs armchair (25%) edge segments and feature electronic band gaps as low as 0.9 eV according to gaps quasiparticle calculations.

    Copyright © 2019 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.8b10407.

    • Experimental section of monomer building block 1, characterization by liquid-state NMR (1H-, 13C-, 2D-NMR) and high-resolution mass spectra (HR-MALDI-TOF, HR-ESI-MS), details of on-surface sample preparation, STM and noncontact AFM measurements as well as DFT and GW calculations (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 39 publications.

    1. Shane J. Goettl, Lotefa B. Tuli, Andrew M. Turner, Yahaira Reyes, A. Hasan Howlader, Stanislaw F. Wnuk, Patrick Hemberger, Alexander M. Mebel, Ralf I. Kaiser. Gas-Phase Synthesis of Coronene through Stepwise Directed Ring Annulation. Journal of the American Chemical Society 2023, 145 (28) , 15443-15455. https://doi.org/10.1021/jacs.3c03816
    2. Hiroaki Ooe, Kaede Ikeda, Takashi Yokoyama. Two-Step On-Surface Synthesis of One-Dimensional Nanographene Chains. The Journal of Physical Chemistry C 2023, 127 (16) , 7659-7665. https://doi.org/10.1021/acs.jpcc.3c00373
    3. Zhen-Feng Cai, Ting Chen, Dong Wang. Insights into the Polymerization Reactions on Solid Surfaces Provided by Scanning Tunneling Microscopy. The Journal of Physical Chemistry Letters 2023, 14 (10) , 2463-2472. https://doi.org/10.1021/acs.jpclett.2c03943
    4. Hao Luo, Gui Yu. Preparation, Bandgap Engineering, and Performance Control of Graphene Nanoribbons. Chemistry of Materials 2022, 34 (8) , 3588-3615. https://doi.org/10.1021/acs.chemmater.1c04215
    5. Linfei Li, Sayantan Mahapatra, Dairong Liu, Zhongyi Lu, Nan Jiang. On-Surface Synthesis and Molecular Engineering of Carbon-Based Nanoarchitectures. ACS Nano 2021, 15 (3) , 3578-3585. https://doi.org/10.1021/acsnano.0c08148
    6. Yan Zhao, Kaiyue Jiang, Can Li, Yufeng Liu, Chengyang Xu, Wenna Zheng, Dandan Guan, Yaoyi Li, Hao Zheng, Canhua Liu, Weidong Luo, Jinfeng Jia, Xiaodong Zhuang, Shiyong Wang. Precise Control of π-Electron Magnetism in Metal-Free Porphyrins. Journal of the American Chemical Society 2020, 142 (43) , 18532-18540. https://doi.org/10.1021/jacs.0c07791
    7. Yolanda L. Li, Chih-Te Zee, Janice B. Lin, Victoria M. Basile, Mit Muni, Maria D. Flores, Julen Munárriz, Richard B. Kaner, Anastassia N. Alexandrova, K. N. Houk, Sarah H. Tolbert, Yves Rubin. Fjord-Edge Graphene Nanoribbons with Site-Specific Nitrogen Substitution. Journal of the American Chemical Society 2020, 142 (42) , 18093-18102. https://doi.org/10.1021/jacs.0c07657
    8. Da Li, Yanchao Wang, Tian Cui, Yanming Ma, Feng Ding. Local Carbon Concentration Determines the Graphene Edge Structure. The Journal of Physical Chemistry Letters 2020, 11 (9) , 3451-3457. https://doi.org/10.1021/acs.jpclett.0c00525
    9. Dong Han, Qitang Fan, Jingya Dai, Tao Wang, Jianmin Huang, Qian Xu, Honghe Ding, Jun Hu, Lin Feng, Wenzhao Zhang, Zhiwen Zeng, J. Michael Gottfried, Junfa Zhu. On-Surface Synthesis of Armchair-Edged Graphene Nanoribbons with Zigzag Topology. The Journal of Physical Chemistry C 2020, 124 (9) , 5248-5256. https://doi.org/10.1021/acs.jpcc.0c00018
    10. Sonal Tripathi, Purnima Swarup Khare. Optoelectronic properties of various structures of 2D carbon nanomaterial graphene: A review. Journal of Optics 2024, 53 (4) , 3227-3237. https://doi.org/10.1007/s12596-023-01498-y
    11. Yong Zhang, Jianchen Lu, Yi Zhang, Shijie Sun, Wei Xiong, Linghui Chen, Boyu Fu, Jianqun Geng, Gefei Niu, Shicheng Li, Yuhang Yang, Li Sun, Jinming Cai. On-surface synthesis of Au–C4 and Au–O4 alternately arranged organometallic coordination networks via selective aromatic C–H bond activation. The Journal of Chemical Physics 2023, 159 (18) https://doi.org/10.1063/5.0176065
    12. Hazem Abdelsalam, Mahmoud A.S. Sakr, Vasil A. Saroka, Omar H. Abd-Elkader, Qinfang Zhang. Nanoporous graphene quantum dots constructed from nanoribbon superlattices with controllable pore morphology and size for wastewater treatment. Surfaces and Interfaces 2023, 40 , 103109. https://doi.org/10.1016/j.surfin.2023.103109
    13. Yan Zhao, Kaiyue Jiang, Can Li, Yufeng Liu, Gucheng Zhu, Michele Pizzochero, Efthimios Kaxiras, Dandan Guan, Yaoyi Li, Hao Zheng, Canhua Liu, Jinfeng Jia, Mingpu Qin, Xiaodong Zhuang, Shiyong Wang. Quantum nanomagnets in on-surface metal-free porphyrin chains. Nature Chemistry 2023, 15 (1) , 53-60. https://doi.org/10.1038/s41557-022-01061-5
    14. Raymond E. Blackwell, Fangzhou Zhao, Erin Brooks, Junmian Zhu, Ilya Piskun, Shenkai Wang, Aidan Delgado, Yea-Lee Lee, Steven G. Louie, Felix R. Fischer. Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons. Nature 2021, 600 (7890) , 647-652. https://doi.org/10.1038/s41586-021-04201-y
    15. Wenjing Miao, Li Wang, Xijiao Mu, Jingang Wang. The magical photoelectric and optoelectronic properties of graphene nanoribbons and their applications. Journal of Materials Chemistry C 2021, 9 (39) , 13600-13616. https://doi.org/10.1039/D1TC02976B
    16. Subrata Pandit, Mrinmoy De. One-pot bottom-up synthesis of a 2D graphene derivative: application in biomolecular recognition and nanozyme activity. Nanoscale Advances 2021, 3 (17) , 5102-5110. https://doi.org/10.1039/D1NA00226K
    17. Yan Gao, Dan Xu, Tian Cui, Da Li. Stability of hydrogen-terminated graphene edges. Physical Chemistry Chemical Physics 2021, 23 (23) , 13261-13266. https://doi.org/10.1039/D1CP01384J
    18. R. S. Koen Houtsma, Joris de la Rie, Meike Stöhr. Atomically precise graphene nanoribbons: interplay of structural and electronic properties. Chemical Society Reviews 2021, 50 (11) , 6541-6568. https://doi.org/10.1039/D0CS01541E
    19. Zhaopeng Li, Peifeng Yu, Weihao Zhong, Minglu Zhang, Zhenghui Li, Ao Cheng, Yeru Liang, Lei Miao, Xiaoqing Yang, Haiyan Zhang. Hydrothermal intercalation for the synthesis of novel three-dimensional hierarchically superstructured carbons composed of graphene-like ultrathin nanosheets. Carbon 2021, 176 , 1-10. https://doi.org/10.1016/j.carbon.2021.01.024
    20. Prashant P. Shinde, Jia Liu, Thomas Dienel, Oliver Gröning, Tim Dumslaff, Markus Mühlinghaus, Akimitsu Narita, Klaus Müllen, Carlo A. Pignedoli, Roman Fasel, Pascal Ruffieux, Daniele Passerone. Graphene nanoribbons with mixed cove-cape-zigzag edge structure. Carbon 2021, 175 , 50-59. https://doi.org/10.1016/j.carbon.2020.12.069
    21. Hazem Abdelsalam, Vasil A. Saroka, Mohamed M. Atta, Waleed Osman, Qinfang Zhang. Tunable electro-optical properties of doped chiral graphene nanoribbons. Chemical Physics 2021, 544 , 111116. https://doi.org/10.1016/j.chemphys.2021.111116
    22. Daniel G. Congrave, Bluebell H. Drummond, Victor Gray, Andrew D. Bond, Akshay Rao, Richard H. Friend, Hugo Bronstein. Suppressing aggregation induced quenching in anthracene based conjugated polymers. Polymer Chemistry 2021, 12 (12) , 1830-1836. https://doi.org/10.1039/D1PY00118C
    23. Shaotang Song, Jie Su, Mykola Telychko, Jing Li, Guangwu Li, Ying Li, Chenliang Su, Jishan Wu, Jiong Lu. On-surface synthesis of graphene nanostructures with π-magnetism. Chemical Society Reviews 2021, 50 (5) , 3238-3262. https://doi.org/10.1039/D0CS01060J
    24. H. Abdelsalam, V.A. Saroka, N.H. Teleb, M. Ali, W. Osman, Q. Zhang. Electronic and adsorption properties of extended chevron and cove-edged graphene nanoribbons. Physica E: Low-dimensional Systems and Nanostructures 2021, 126 , 114438. https://doi.org/10.1016/j.physe.2020.114438
    25. Junzhi Liu, Xinliang Feng. Maßgeschneiderte Synthese von Graphennanostrukturen mit Zickzack‐Rändern. Angewandte Chemie 2020, 132 (52) , 23591-23607. https://doi.org/10.1002/ange.202008838
    26. Junzhi Liu, Xinliang Feng. Synthetic Tailoring of Graphene Nanostructures with Zigzag‐Edged Topologies: Progress and Perspectives. Angewandte Chemie International Edition 2020, 59 (52) , 23386-23401. https://doi.org/10.1002/anie.202008838
    27. Renebeth B. Payod, Davide Grassano, Gil Nonato C. Santos, Dmitry I. Levshov, Olivia Pulci, Vasil A. Saroka. 2N+4-rule and an atlas of bulk optical resonances of zigzag graphene nanoribbons. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-019-13728-8
    28. Zongping Chen, Akimitsu Narita, Klaus Müllen. Graphene Nanoribbons: On‐Surface Synthesis and Integration into Electronic Devices. Advanced Materials 2020, 32 (45) https://doi.org/10.1002/adma.202001893
    29. Qigang Zhong, Xuechao Li, Haiming Zhang, Lifeng Chi. Noncontact atomic force microscopy: Bond imaging and beyond. Surface Science Reports 2020, 75 (4) , 100509. https://doi.org/10.1016/j.surfrep.2020.100509
    30. Yubin Fu, Huan Yang, Yixuan Gao, Li Huang, Reinhard Berger, Junzhi Liu, Hongliang Lu, Zhihai Cheng, Shixuan Du, Hong‐Jun Gao, Xinliang Feng. On‐Surface Synthesis of NBN‐Doped Zigzag‐Edged Graphene Nanoribbons. Angewandte Chemie 2020, 132 (23) , 8958-8964. https://doi.org/10.1002/ange.202000488
    31. Yubin Fu, Huan Yang, Yixuan Gao, Li Huang, Reinhard Berger, Junzhi Liu, Hongliang Lu, Zhihai Cheng, Shixuan Du, Hong‐Jun Gao, Xinliang Feng. On‐Surface Synthesis of NBN‐Doped Zigzag‐Edged Graphene Nanoribbons. Angewandte Chemie International Edition 2020, 59 (23) , 8873-8879. https://doi.org/10.1002/anie.202000488
    32. Thomas D. Kühne, Marcella Iannuzzi, Mauro Del Ben, Vladimir V. Rybkin, Patrick Seewald, Frederick Stein, Teodoro Laino, Rustam Z. Khaliullin, Ole Schütt, Florian Schiffmann, Dorothea Golze, Jan Wilhelm, Sergey Chulkov, Mohammad Hossein Bani-Hashemian, Valéry Weber, Urban Borštnik, Mathieu Taillefumier, Alice Shoshana Jakobovits, Alfio Lazzaro, Hans Pabst, Tiziano Müller, Robert Schade, Manuel Guidon, Samuel Andermatt, Nico Holmberg, Gregory K. Schenter, Anna Hehn, Augustin Bussy, Fabian Belleflamme, Gloria Tabacchi, Andreas Glöß, Michael Lass, Iain Bethune, Christopher J. Mundy, Christian Plessl, Matt Watkins, Joost VandeVondele, Matthias Krack, Jürg Hutter. CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations. The Journal of Chemical Physics 2020, 152 (19) https://doi.org/10.1063/5.0007045
    33. Jiawei Yan, Min Zhong, Chenglong Yu, Jiali Zhang, Mei Ma, Li Li, Qiaoe Hao, Feng Gao, Yafei Tian, Ye Huang, Wenzhuo Shen, Shouwu Guo. Multilayer graphene sheets converted directly from anthracite in the presence of molten iron and their applications as anode for lithium ion batteries. Synthetic Metals 2020, 263 , 116364. https://doi.org/10.1016/j.synthmet.2020.116364
    34. Yuqiang Zheng, Can Li, Yan Zhao, Doreen Beyer, Guanyong Wang, Chengyang Xu, Xinlei Yue, Yupeng Chen, Dan-Dan Guan, Yao-Yi Li, Hao Zheng, Canhua Liu, Weidong Luo, Xinliang Feng, Shiyong Wang, Jinfeng Jia. Engineering of Magnetic Coupling in Nanographene. Physical Review Letters 2020, 124 (14) https://doi.org/10.1103/PhysRevLett.124.147206
    35. Jingcheng Li, Sofia Sanz, Jesus Castro-Esteban, Manuel Vilas-Varela, Niklas Friedrich, Thomas Frederiksen, Diego Peña, Jose Ignacio Pascual. Uncovering the Triplet Ground State of Triangular Graphene Nanoflakes Engineered with Atomic Precision on a Metal Surface. Physical Review Letters 2020, 124 (17) https://doi.org/10.1103/PhysRevLett.124.177201
    36. Xiahong Zhou, Gui Yu. Modified Engineering of Graphene Nanoribbons Prepared via On‐Surface Synthesis. Advanced Materials 2020, 32 (6) https://doi.org/10.1002/adma.201905957
    37. Can Wang, Lifeng Chi, Artur Ciesielski, Paolo Samorì. Chemische Synthese an Oberflächen mit Präzision in atomarer Größenordnung: Beherrschung von Komplexität und Genauigkeit. Angewandte Chemie 2019, 131 (52) , 18932-18951. https://doi.org/10.1002/ange.201906645
    38. Can Wang, Lifeng Chi, Artur Ciesielski, Paolo Samorì. Chemical Synthesis at Surfaces with Atomic Precision: Taming Complexity and Perfection. Angewandte Chemie International Edition 2019, 58 (52) , 18758-18775. https://doi.org/10.1002/anie.201906645
    39. Yan Zhao, Bingkai Yuan, Can Li, Pengfei Zhang, Yiyong Mai, Dandan Guan, Yaoyi Li, Hao Zheng, Canhua Liu, Shiyong Wang, Jinfeng Jia. On‐Surface Synthesis of Iron Phthalocyanine Using Metal‐Organic Coordination Templates. ChemPhysChem 2019, 20 (18) , 2394-2397. https://doi.org/10.1002/cphc.201900238

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2019, 141, 7, 2843–2846
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.8b10407
    Published February 7, 2019
    Copyright © 2019 American Chemical Society

    Article Views

    5652

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.