Graphene Nanoribbons Derived from Zigzag Edge-Encased Poly(para-2,9-dibenzo[bc,kl]coronenylene) Polymer ChainsClick to copy article linkArticle link copied!
- Doreen BeyerDoreen BeyerCenter for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Chair for Molecular Functional Materials, Dresden University of Technology, 01062 Dresden, GermanyMore by Doreen Beyer
- Shiyong WangShiyong WangEmpa, Swiss Federal Laboratories for Material Science and Technology, 8600 Dübendorf, SwitzerlandDepartment of Physics and Astronomy, Shanghai Jiao Tong University, 200240 Shanghai, ChinaMore by Shiyong Wang
- Carlo A. PignedoliCarlo A. PignedoliEmpa, Swiss Federal Laboratories for Material Science and Technology, 8600 Dübendorf, SwitzerlandMore by Carlo A. Pignedoli
- Jason MelidonieJason MelidonieCenter for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Chair for Molecular Functional Materials, Dresden University of Technology, 01062 Dresden, GermanyMore by Jason Melidonie
- Bingkai YuanBingkai YuanDepartment of Physics and Astronomy, Shanghai Jiao Tong University, 200240 Shanghai, ChinaMore by Bingkai Yuan
- Can LiCan LiDepartment of Physics and Astronomy, Shanghai Jiao Tong University, 200240 Shanghai, ChinaMore by Can Li
- Jan WilhelmJan WilhelmDepartment of Chemistry, University of Zürich, 8057 Zürich, SwitzerlandMore by Jan Wilhelm
- Pascal RuffieuxPascal RuffieuxEmpa, Swiss Federal Laboratories for Material Science and Technology, 8600 Dübendorf, SwitzerlandMore by Pascal Ruffieux
- Reinhard Berger*Reinhard Berger*[email protected]Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Chair for Molecular Functional Materials, Dresden University of Technology, 01062 Dresden, GermanyMore by Reinhard Berger
- Klaus MüllenKlaus MüllenMax Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, GermanyMore by Klaus Müllen
- Roman Fasel*Roman Fasel*[email protected]Empa, Swiss Federal Laboratories for Material Science and Technology, 8600 Dübendorf, SwitzerlandDepartment of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, SwitzerlandMore by Roman Fasel
- Xinliang Feng*Xinliang Feng*[email protected]Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Chair for Molecular Functional Materials, Dresden University of Technology, 01062 Dresden, GermanyMore by Xinliang Feng
Abstract
In this work, we demonstrate the bottom-up on-surface synthesis of poly(para-dibenzo[bc,kl]-coronenylene) (PPDBC), a zigzag edge-encased analog of poly(para-phenylene) (PPP), and its lateral fusion into zigzag edge-extended graphene nanoribbons (zeeGNRs). Toward this end, we designed a dihalogenated di(meta-xylyl)anthracene monomer displaying strategic methyl groups at the substituted phenyl ring and investigated its applicability as precursor in the thermally induced surface-assisted polymerization and cyclodehydrogenation. The structure of the resulting zigzag edge-rich (70%) polymer PPDBC was unambiguously confirmed by scanning tunneling microscopy (STM) and non-contact atomic force microscopy (nc-AFM). Remarkably, by further thermal treatment at 450 °C two and three aligned PPDBC chains can be laterally fused into expanded zeeGNRs, with a ribbon width of nine (N = 9) up to 17 (N = 17) carbon atoms. Moreover, the resulting zeeGNRs exhibit a high ratio of zigzag (67%) vs armchair (25%) edge segments and feature electronic band gaps as low as 0.9 eV according to gaps quasiparticle calculations.
Cited By
This article is cited by 39 publications.
- Shane J. Goettl, Lotefa B. Tuli, Andrew M. Turner, Yahaira Reyes, A. Hasan Howlader, Stanislaw F. Wnuk, Patrick Hemberger, Alexander M. Mebel, Ralf I. Kaiser. Gas-Phase Synthesis of Coronene through Stepwise Directed Ring Annulation. Journal of the American Chemical Society 2023, 145
(28)
, 15443-15455. https://doi.org/10.1021/jacs.3c03816
- Hiroaki Ooe, Kaede Ikeda, Takashi Yokoyama. Two-Step On-Surface Synthesis of One-Dimensional Nanographene Chains. The Journal of Physical Chemistry C 2023, 127
(16)
, 7659-7665. https://doi.org/10.1021/acs.jpcc.3c00373
- Zhen-Feng Cai, Ting Chen, Dong Wang. Insights into the Polymerization Reactions on Solid Surfaces Provided by Scanning Tunneling Microscopy. The Journal of Physical Chemistry Letters 2023, 14
(10)
, 2463-2472. https://doi.org/10.1021/acs.jpclett.2c03943
- Hao Luo, Gui Yu. Preparation, Bandgap Engineering, and Performance Control of Graphene Nanoribbons. Chemistry of Materials 2022, 34
(8)
, 3588-3615. https://doi.org/10.1021/acs.chemmater.1c04215
- Linfei Li, Sayantan Mahapatra, Dairong Liu, Zhongyi Lu, Nan Jiang. On-Surface Synthesis and Molecular Engineering of Carbon-Based Nanoarchitectures. ACS Nano 2021, 15
(3)
, 3578-3585. https://doi.org/10.1021/acsnano.0c08148
- Yan Zhao, Kaiyue Jiang, Can Li, Yufeng Liu, Chengyang Xu, Wenna Zheng, Dandan Guan, Yaoyi Li, Hao Zheng, Canhua Liu, Weidong Luo, Jinfeng Jia, Xiaodong Zhuang, Shiyong Wang. Precise Control of π-Electron Magnetism in Metal-Free Porphyrins. Journal of the American Chemical Society 2020, 142
(43)
, 18532-18540. https://doi.org/10.1021/jacs.0c07791
- Yolanda L. Li, Chih-Te Zee, Janice B. Lin, Victoria M. Basile, Mit Muni, Maria D. Flores, Julen Munárriz, Richard B. Kaner, Anastassia N. Alexandrova, K. N. Houk, Sarah H. Tolbert, Yves Rubin. Fjord-Edge Graphene Nanoribbons with Site-Specific Nitrogen Substitution. Journal of the American Chemical Society 2020, 142
(42)
, 18093-18102. https://doi.org/10.1021/jacs.0c07657
- Da Li, Yanchao Wang, Tian Cui, Yanming Ma, Feng Ding. Local Carbon Concentration Determines the Graphene Edge Structure. The Journal of Physical Chemistry Letters 2020, 11
(9)
, 3451-3457. https://doi.org/10.1021/acs.jpclett.0c00525
- Dong Han, Qitang Fan, Jingya Dai, Tao Wang, Jianmin Huang, Qian Xu, Honghe Ding, Jun Hu, Lin Feng, Wenzhao Zhang, Zhiwen Zeng, J. Michael Gottfried, Junfa Zhu. On-Surface Synthesis of Armchair-Edged Graphene Nanoribbons with Zigzag Topology. The Journal of Physical Chemistry C 2020, 124
(9)
, 5248-5256. https://doi.org/10.1021/acs.jpcc.0c00018
- Sonal Tripathi, Purnima Swarup Khare. Optoelectronic properties of various structures of 2D carbon nanomaterial graphene: A review. Journal of Optics 2024, 53
(4)
, 3227-3237. https://doi.org/10.1007/s12596-023-01498-y
- Yong Zhang, Jianchen Lu, Yi Zhang, Shijie Sun, Wei Xiong, Linghui Chen, Boyu Fu, Jianqun Geng, Gefei Niu, Shicheng Li, Yuhang Yang, Li Sun, Jinming Cai. On-surface synthesis of Au–C4 and Au–O4 alternately arranged organometallic coordination networks via selective aromatic C–H bond activation. The Journal of Chemical Physics 2023, 159
(18)
https://doi.org/10.1063/5.0176065
- Hazem Abdelsalam, Mahmoud A.S. Sakr, Vasil A. Saroka, Omar H. Abd-Elkader, Qinfang Zhang. Nanoporous graphene quantum dots constructed from nanoribbon superlattices with controllable pore morphology and size for wastewater treatment. Surfaces and Interfaces 2023, 40 , 103109. https://doi.org/10.1016/j.surfin.2023.103109
- Yan Zhao, Kaiyue Jiang, Can Li, Yufeng Liu, Gucheng Zhu, Michele Pizzochero, Efthimios Kaxiras, Dandan Guan, Yaoyi Li, Hao Zheng, Canhua Liu, Jinfeng Jia, Mingpu Qin, Xiaodong Zhuang, Shiyong Wang. Quantum nanomagnets in on-surface metal-free porphyrin chains. Nature Chemistry 2023, 15
(1)
, 53-60. https://doi.org/10.1038/s41557-022-01061-5
- Raymond E. Blackwell, Fangzhou Zhao, Erin Brooks, Junmian Zhu, Ilya Piskun, Shenkai Wang, Aidan Delgado, Yea-Lee Lee, Steven G. Louie, Felix R. Fischer. Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons. Nature 2021, 600
(7890)
, 647-652. https://doi.org/10.1038/s41586-021-04201-y
- Wenjing Miao, Li Wang, Xijiao Mu, Jingang Wang. The magical photoelectric and optoelectronic properties of graphene nanoribbons and their applications. Journal of Materials Chemistry C 2021, 9
(39)
, 13600-13616. https://doi.org/10.1039/D1TC02976B
- Subrata Pandit, Mrinmoy De. One-pot bottom-up synthesis of a 2D graphene derivative: application in biomolecular recognition and nanozyme activity. Nanoscale Advances 2021, 3
(17)
, 5102-5110. https://doi.org/10.1039/D1NA00226K
- Yan Gao, Dan Xu, Tian Cui, Da Li. Stability of hydrogen-terminated graphene edges. Physical Chemistry Chemical Physics 2021, 23
(23)
, 13261-13266. https://doi.org/10.1039/D1CP01384J
- R. S. Koen Houtsma, Joris de la Rie, Meike Stöhr. Atomically precise graphene nanoribbons: interplay of structural and electronic properties. Chemical Society Reviews 2021, 50
(11)
, 6541-6568. https://doi.org/10.1039/D0CS01541E
- Zhaopeng Li, Peifeng Yu, Weihao Zhong, Minglu Zhang, Zhenghui Li, Ao Cheng, Yeru Liang, Lei Miao, Xiaoqing Yang, Haiyan Zhang. Hydrothermal intercalation for the synthesis of novel three-dimensional hierarchically superstructured carbons composed of graphene-like ultrathin nanosheets. Carbon 2021, 176 , 1-10. https://doi.org/10.1016/j.carbon.2021.01.024
- Prashant P. Shinde, Jia Liu, Thomas Dienel, Oliver Gröning, Tim Dumslaff, Markus Mühlinghaus, Akimitsu Narita, Klaus Müllen, Carlo A. Pignedoli, Roman Fasel, Pascal Ruffieux, Daniele Passerone. Graphene nanoribbons with mixed cove-cape-zigzag edge structure. Carbon 2021, 175 , 50-59. https://doi.org/10.1016/j.carbon.2020.12.069
- Hazem Abdelsalam, Vasil A. Saroka, Mohamed M. Atta, Waleed Osman, Qinfang Zhang. Tunable electro-optical properties of doped chiral graphene nanoribbons. Chemical Physics 2021, 544 , 111116. https://doi.org/10.1016/j.chemphys.2021.111116
- Daniel G. Congrave, Bluebell H. Drummond, Victor Gray, Andrew D. Bond, Akshay Rao, Richard H. Friend, Hugo Bronstein. Suppressing aggregation induced quenching in anthracene based conjugated polymers. Polymer Chemistry 2021, 12
(12)
, 1830-1836. https://doi.org/10.1039/D1PY00118C
- Shaotang Song, Jie Su, Mykola Telychko, Jing Li, Guangwu Li, Ying Li, Chenliang Su, Jishan Wu, Jiong Lu. On-surface synthesis of graphene nanostructures with π-magnetism. Chemical Society Reviews 2021, 50
(5)
, 3238-3262. https://doi.org/10.1039/D0CS01060J
- H. Abdelsalam, V.A. Saroka, N.H. Teleb, M. Ali, W. Osman, Q. Zhang. Electronic and adsorption properties of extended chevron and cove-edged graphene nanoribbons. Physica E: Low-dimensional Systems and Nanostructures 2021, 126 , 114438. https://doi.org/10.1016/j.physe.2020.114438
- Junzhi Liu, Xinliang Feng. Maßgeschneiderte Synthese von Graphennanostrukturen mit Zickzack‐Rändern. Angewandte Chemie 2020, 132
(52)
, 23591-23607. https://doi.org/10.1002/ange.202008838
- Junzhi Liu, Xinliang Feng. Synthetic Tailoring of Graphene Nanostructures with Zigzag‐Edged Topologies: Progress and Perspectives. Angewandte Chemie International Edition 2020, 59
(52)
, 23386-23401. https://doi.org/10.1002/anie.202008838
- Renebeth B. Payod, Davide Grassano, Gil Nonato C. Santos, Dmitry I. Levshov, Olivia Pulci, Vasil A. Saroka. 2N+4-rule and an atlas of bulk optical resonances of zigzag graphene nanoribbons. Nature Communications 2020, 11
(1)
https://doi.org/10.1038/s41467-019-13728-8
- Zongping Chen, Akimitsu Narita, Klaus Müllen. Graphene Nanoribbons: On‐Surface Synthesis and Integration into Electronic Devices. Advanced Materials 2020, 32
(45)
https://doi.org/10.1002/adma.202001893
- Qigang Zhong, Xuechao Li, Haiming Zhang, Lifeng Chi. Noncontact atomic force microscopy: Bond imaging and beyond. Surface Science Reports 2020, 75
(4)
, 100509. https://doi.org/10.1016/j.surfrep.2020.100509
- Yubin Fu, Huan Yang, Yixuan Gao, Li Huang, Reinhard Berger, Junzhi Liu, Hongliang Lu, Zhihai Cheng, Shixuan Du, Hong‐Jun Gao, Xinliang Feng. On‐Surface Synthesis of NBN‐Doped Zigzag‐Edged Graphene Nanoribbons. Angewandte Chemie 2020, 132
(23)
, 8958-8964. https://doi.org/10.1002/ange.202000488
- Yubin Fu, Huan Yang, Yixuan Gao, Li Huang, Reinhard Berger, Junzhi Liu, Hongliang Lu, Zhihai Cheng, Shixuan Du, Hong‐Jun Gao, Xinliang Feng. On‐Surface Synthesis of NBN‐Doped Zigzag‐Edged Graphene Nanoribbons. Angewandte Chemie International Edition 2020, 59
(23)
, 8873-8879. https://doi.org/10.1002/anie.202000488
- Thomas D. Kühne, Marcella Iannuzzi, Mauro Del Ben, Vladimir V. Rybkin, Patrick Seewald, Frederick Stein, Teodoro Laino, Rustam Z. Khaliullin, Ole Schütt, Florian Schiffmann, Dorothea Golze, Jan Wilhelm, Sergey Chulkov, Mohammad Hossein Bani-Hashemian, Valéry Weber, Urban Borštnik, Mathieu Taillefumier, Alice Shoshana Jakobovits, Alfio Lazzaro, Hans Pabst, Tiziano Müller, Robert Schade, Manuel Guidon, Samuel Andermatt, Nico Holmberg, Gregory K. Schenter, Anna Hehn, Augustin Bussy, Fabian Belleflamme, Gloria Tabacchi, Andreas Glöß, Michael Lass, Iain Bethune, Christopher J. Mundy, Christian Plessl, Matt Watkins, Joost VandeVondele, Matthias Krack, Jürg Hutter. CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations. The Journal of Chemical Physics 2020, 152
(19)
https://doi.org/10.1063/5.0007045
- Jiawei Yan, Min Zhong, Chenglong Yu, Jiali Zhang, Mei Ma, Li Li, Qiaoe Hao, Feng Gao, Yafei Tian, Ye Huang, Wenzhuo Shen, Shouwu Guo. Multilayer graphene sheets converted directly from anthracite in the presence of molten iron and their applications as anode for lithium ion batteries. Synthetic Metals 2020, 263 , 116364. https://doi.org/10.1016/j.synthmet.2020.116364
- Yuqiang Zheng, Can Li, Yan Zhao, Doreen Beyer, Guanyong Wang, Chengyang Xu, Xinlei Yue, Yupeng Chen, Dan-Dan Guan, Yao-Yi Li, Hao Zheng, Canhua Liu, Weidong Luo, Xinliang Feng, Shiyong Wang, Jinfeng Jia. Engineering of Magnetic Coupling in Nanographene. Physical Review Letters 2020, 124
(14)
https://doi.org/10.1103/PhysRevLett.124.147206
- Jingcheng Li, Sofia Sanz, Jesus Castro-Esteban, Manuel Vilas-Varela, Niklas Friedrich, Thomas Frederiksen, Diego Peña, Jose Ignacio Pascual. Uncovering the Triplet Ground State of Triangular Graphene Nanoflakes Engineered with Atomic Precision on a Metal Surface. Physical Review Letters 2020, 124
(17)
https://doi.org/10.1103/PhysRevLett.124.177201
- Xiahong Zhou, Gui Yu. Modified Engineering of Graphene Nanoribbons Prepared via On‐Surface Synthesis. Advanced Materials 2020, 32
(6)
https://doi.org/10.1002/adma.201905957
- Can Wang, Lifeng Chi, Artur Ciesielski, Paolo Samorì. Chemische Synthese an Oberflächen mit Präzision in atomarer Größenordnung: Beherrschung von Komplexität und Genauigkeit. Angewandte Chemie 2019, 131
(52)
, 18932-18951. https://doi.org/10.1002/ange.201906645
- Can Wang, Lifeng Chi, Artur Ciesielski, Paolo Samorì. Chemical Synthesis at Surfaces with Atomic Precision: Taming Complexity and Perfection. Angewandte Chemie International Edition 2019, 58
(52)
, 18758-18775. https://doi.org/10.1002/anie.201906645
- Yan Zhao, Bingkai Yuan, Can Li, Pengfei Zhang, Yiyong Mai, Dandan Guan, Yaoyi Li, Hao Zheng, Canhua Liu, Shiyong Wang, Jinfeng Jia. On‐Surface Synthesis of Iron Phthalocyanine Using Metal‐Organic Coordination Templates. ChemPhysChem 2019, 20
(18)
, 2394-2397. https://doi.org/10.1002/cphc.201900238
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.