ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Photon-Only Molecular Motor with Reverse Temperature-Dependent Efficiency

Cite this: J. Am. Chem. Soc. 2018, 140, 48, 16442–16445
Publication Date (Web):November 18, 2018
https://doi.org/10.1021/jacs.8b10660
Copyright © 2018 American Chemical Society

    Article Views

    4220

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (2)»

    Abstract

    Abstract Image

    Light-driven molecular motors are archetypal molecular machines and enable fast and efficient unidirectional motions under photoirradiation. Their common working mechanism contains thermal ratcheting steps leading to slowed-down and even halted directional movement at lower temperatures. In this work, an alternative type of molecular motor is presented, which operates without thermal ratcheting in the ground state. Instead, three consecutive and different photoreactions lead to a directional stepwise rotation of one molecular fragment with respect to the other. This motion is increased in speed and directionality at lower temperatures and at the same time allows a considerably larger fraction of the supplied photon energy to be used for performing work.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.8b10660.

    • Synthetic procedures for 1, characterization including m.p., 1H NMR, 13C NMR, IR, (HR)MS, elemental analysis, X-ray crystallography, conformational analysis, photophysical data including molar absorption coefficients, isomer compositions in the pss, quantum yields, kinetic analyses of the interconversion of isomers at different temperatures, and computational details (PDF)

    • Data for C20H20O3S (CIF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 65 publications.

    1. Libo Wang, Yuanyuan Zhang, Lili Zong. Asymmetric and Sustainable Synthesis of Cyclic Sulfoxides with Low Loading of Bisguanidinium Peroxomolybdate Ion-Pairing Catalyst. ACS Sustainable Chemistry & Engineering 2024, 12 (8) , 2962-2968. https://doi.org/10.1021/acssuschemeng.3c05747
    2. Laura Köttner, Friederike Wolff, Peter Mayer, Esther Zanin, Henry Dube. Rhodanine-Based Chromophores: Fast Access to Capable Photoswitches and Application in Light-Induced Apoptosis. Journal of the American Chemical Society 2024, 146 (3) , 1894-1903. https://doi.org/10.1021/jacs.3c07710
    3. Haoyang Xu, Boyuan Zhang, Yuanda Tao, Weijia Xu, Bo Hu, Feng Yan, Jin Wen. Ultrafast Photocontrolled Rotation in a Molecular Motor Investigated by Machine Learning-Based Nonadiabatic Dynamics Simulations. The Journal of Physical Chemistry A 2023, 127 (37) , 7682-7693. https://doi.org/10.1021/acs.jpca.3c01036
    4. Tobias Fischer, Jonas Leitner, Aaron Gerwien, Peter Mayer, Andreas Dreuw, Henry Dube, Josef Wachtveitl. Mechanistic Elucidation of the Hula-Twist Photoreaction in Hemithioindigo. Journal of the American Chemical Society 2023, 145 (27) , 14811-14822. https://doi.org/10.1021/jacs.3c03536
    5. Stefano Corra, Massimiliano Curcio, Alberto Credi. Photoactivated Artificial Molecular Motors. JACS Au 2023, 3 (5) , 1301-1313. https://doi.org/10.1021/jacsau.3c00089
    6. Lihong Liu, Wei-Hai Fang, Todd J. Martinez. A Nitrogen Out-of-Plane (NOOP) Mechanism for Imine-Based Light-Driven Molecular Motors. Journal of the American Chemical Society 2023, 145 (12) , 6888-6898. https://doi.org/10.1021/jacs.3c00275
    7. Alexis van Venrooy, Aaron M. Wyderka, Víctor García-López, Lawrence B. Alemany, Angel A. Martí, James M. Tour. Probing the Rotary Cycle of Amine-Substituted Molecular Motors. The Journal of Organic Chemistry 2023, 88 (2) , 762-770. https://doi.org/10.1021/acs.joc.2c01457
    8. Ivan N. Unksov, Chapin S. Korosec, Pradheebha Surendiran, Damiano Verardo, Roman Lyttleton, Nancy R. Forde, Heiner Linke. Through the Eyes of Creators: Observing Artificial Molecular Motors. ACS Nanoscience Au 2022, 2 (3) , 140-159. https://doi.org/10.1021/acsnanoscienceau.1c00041
    9. Aaron Gerwien, Benjamin Jehle, Marvin Irmler, Peter Mayer, Henry Dube. An Eight-State Molecular Sequential Switch Featuring a Dual Single-Bond Rotation Photoreaction. Journal of the American Chemical Society 2022, 144 (7) , 3029-3038. https://doi.org/10.1021/jacs.1c11183
    10. Romain Costil, Mira Holzheimer, Stefano Crespi, Nadja A. Simeth, Ben L. Feringa. Directing Coupled Motion with Light: A Key Step Toward Machine-Like Function. Chemical Reviews 2021, 121 (21) , 13213-13237. https://doi.org/10.1021/acs.chemrev.1c00340
    11. Stefan Thumser, Laura Köttner, Nadine Hoffmann, Peter Mayer, Henry Dube. All-Red-Light Photoswitching of Indirubin Controlled by Supramolecular Interactions. Journal of the American Chemical Society 2021, 143 (43) , 18251-18260. https://doi.org/10.1021/jacs.1c08206
    12. Kerstin Grill, Henry Dube. Supramolecular Relay-Control of Organocatalysis with a Hemithioindigo-Based Molecular Motor. Journal of the American Chemical Society 2020, 142 (45) , 19300-19307. https://doi.org/10.1021/jacs.0c09519
    13. Gregory B. Boursalian, Eise R. Nijboer, Ruth Dorel, Lukas Pfeifer, Omer Markovitch, Alex Blokhuis, Ben L. Feringa. All-Photochemical Rotation of Molecular Motors with a Phosphorus Stereoelement. Journal of the American Chemical Society 2020, 142 (39) , 16868-16876. https://doi.org/10.1021/jacs.0c08249
    14. José Augusto Berrocal, Lukas Pfeifer, Dorus Heijnen, Ben L. Feringa. Synthesis of Core-Modified Third-Generation Light-Driven Molecular Motors. The Journal of Organic Chemistry 2020, 85 (16) , 10670-10680. https://doi.org/10.1021/acs.joc.0c01235
    15. Víctor García-López, Dongdong Liu, James M. Tour. Light-Activated Organic Molecular Motors and Their Applications. Chemical Reviews 2020, 120 (1) , 79-124. https://doi.org/10.1021/acs.chemrev.9b00221
    16. Massimo Baroncini, Serena Silvi, Alberto Credi. Photo- and Redox-Driven Artificial Molecular Motors. Chemical Reviews 2020, 120 (1) , 200-268. https://doi.org/10.1021/acs.chemrev.9b00291
    17. Diederik Roke, Metin Sen, Wojciech Danowski, Sander J. Wezenberg, Ben L. Feringa. Visible-Light-Driven Tunable Molecular Motors Based on Oxindole. Journal of the American Chemical Society 2019, 141 (18) , 7622-7627. https://doi.org/10.1021/jacs.9b03237
    18. Ainoa Guinart, Daniel Doellerer, Daisy R.S. Pooler, John Y. de Boer, Sandra Doria, Laura Bussotti, Mariangela Di Donato, Ben L. Feringa. Two-photon absorption of oxindole-based push–pull molecular motors. Journal of Photochemistry and Photobiology A: Chemistry 2024, 453 , 115649. https://doi.org/10.1016/j.jphotochem.2024.115649
    19. Monika Schied. Concepts of Molecular Motors in Solution and on Surfaces. 2024, 105-145. https://doi.org/10.1002/9783527828975.ch4
    20. Syed Jehanger Shah, Ajitesh Singh, Debabrata Goswami, Masatoshi Ishida, Sankar Prasad Rath. Reversible open–closed conformational switching of nano-size metalloporphyrin dimers triggered by light and temperature. Dalton Transactions 2024, 53 (15) , 6758-6765. https://doi.org/10.1039/D4DT00223G
    21. Shotaro Nagami, Rintaro Kaguchi, Taichi Akahane, Yu Harabuchi, Tohru Taniguchi, Kenji Monde, Satoshi Maeda, Satoshi Ichikawa, Akira Katsuyama. Photoinduced dual bond rotation of a nitrogen-containing system realized by chalcogen substitution. Nature Chemistry 2024, 31 https://doi.org/10.1038/s41557-024-01461-9
    22. Weijia Xu, Yuanda Tao, Haoyang Xu, Jin Wen. Theoretical trends in the dynamics simulations of molecular machines across multiple scales. Physical Chemistry Chemical Physics 2024, 26 (6) , 4828-4839. https://doi.org/10.1039/D3CP05201J
    23. Maximilian Sacherer, Frank Hampel, Henry Dube. Diaryl-hemiindigos as visible light, pH, and heat responsive four-state switches and application in photochromic transparent polymers. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-39944-x
    24. Charlotte N. Stindt, Stefano Crespi, Ryojun Toyoda, Michiel F. Hilbers, Johan Kemmink, Pieter van der Meulen, Wybren Jan Buma, Ben L. Feringa. Activating a light-driven molecular motor by metal complexation. Chem 2023, 9 (8) , 2337-2348. https://doi.org/10.1016/j.chempr.2023.06.006
    25. Anup Singhania, Sudeshna Kalita, Prerna Chettri, Subrata Ghosh. Accounts of applied molecular rotors and rotary motors: recent advances. Nanoscale Advances 2023, 5 (12) , 3177-3208. https://doi.org/10.1039/D3NA00010A
    26. Max Zitzmann, Frank Hampel, Henry Dube. A cross-conjugation approach for high-performance diaryl-hemithioindigo photoswitches. Chemical Science 2023, 14 (21) , 5734-5742. https://doi.org/10.1039/D2SC06939C
    27. Jianzheng Ma, Di Zhao, Le Yu, Chenwei Jiang, Zhenggang Lan, Fuli Li. Simultaneously improving the efficiencies of photo- and thermal isomerization of an oxindole-based light-driven molecular rotary motor by a structural redesign. Physical Chemistry Chemical Physics 2023, 25 (18) , 12800-12809. https://doi.org/10.1039/D3CP00559C
    28. C. Zhang, Z. Jiang, Y. Qin, Y. Fu, Q. Li, Y. Zhang, M.-H. Zeng. Visiblelight-driven benzofuranone-based molecular motors: tuning rotary performance from solution phase to solid state. Materials Today Chemistry 2022, 26 , 101036. https://doi.org/10.1016/j.mtchem.2022.101036
    29. Zichen Wang, Xiaoyi Li, Fenglei Sun, Wenze Wu, Rui Huang. Making the second generation of molecular motors operate unidirectionally in response to electricity. Materials Today Chemistry 2022, 26 , 101111. https://doi.org/10.1016/j.mtchem.2022.101111
    30. L. Pfeifer, S. Crespi, P. van der Meulen, J. Kemmink, R. M. Scheek, M. F. Hilbers, W. J. Buma, B. L. Feringa. Controlling forward and backward rotary molecular motion on demand. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-29820-5
    31. Michael Filatov, Marco Paolino, Robin Pierron, Andrea Cappelli, Gianluca Giorgi, Jérémie Léonard, Miquel Huix-Rotllant, Nicolas Ferré, Xuchun Yang, Danil Kaliakin, Alejandro Blanco-González, Massimo Olivucci. Towards the engineering of a photon-only two-stroke rotary molecular motor. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-33695-x
    32. Verena Josef, Frank Hampel, Henry Dube. Heterocyclic Hemithioindigos: Highly Advantageous Properties as Molecular Photoswitches**. Angewandte Chemie 2022, 134 (43) https://doi.org/10.1002/ange.202210855
    33. Verena Josef, Frank Hampel, Henry Dube. Heterocyclic Hemithioindigos: Highly Advantageous Properties as Molecular Photoswitches**. Angewandte Chemie International Edition 2022, 61 (43) https://doi.org/10.1002/anie.202210855
    34. Jianzheng Ma, Di Zhao, Chenwei Jiang, Zhenggang Lan, Fuli Li. Effect of Temperature on Photoisomerization Dynamics of a Newly Designed Two-Stroke Light-Driven Molecular Rotary Motor. International Journal of Molecular Sciences 2022, 23 (17) , 9694. https://doi.org/10.3390/ijms23179694
    35. Brian P. Corbet, Anouk S. Lubbe, Stefano Crespi, Ben L. Feringa. Chiroptical Molecular Switches and Motors. 2022, 213-251. https://doi.org/10.1002/9783527827626.ch11
    36. Thomas Bartelmann, Henry Dube. Indigoid Photoswitches. 2022, 283-302. https://doi.org/10.1002/9783527827626.ch13
    37. Aaron Gerwien, Frederik Gnannt, Peter Mayer, Henry Dube. Photogearing as a concept for translation of precise motions at the nanoscale. Nature Chemistry 2022, 14 (6) , 670-676. https://doi.org/10.1038/s41557-022-00917-0
    38. Anna‐Lena Leistner, Zbigniew L. Pianowski. Smart Photochromic Materials Triggered with Visible Light. European Journal of Organic Chemistry 2022, 2022 (19) https://doi.org/10.1002/ejoc.202101271
    39. Nicolai N. Bach, Verena Josef, Harald Maid, Henry Dube. Active Mechanical Threading by a Molecular Motor**. Angewandte Chemie 2022, 134 (19) https://doi.org/10.1002/ange.202201882
    40. Nicolai N. Bach, Verena Josef, Harald Maid, Henry Dube. Active Mechanical Threading by a Molecular Motor**. Angewandte Chemie International Edition 2022, 61 (19) https://doi.org/10.1002/anie.202201882
    41. M. L. Dekhtyar. Brownian Photomotors Based on Organic Compounds: A Review. Theoretical and Experimental Chemistry 2022, 58 (2) , 90-104. https://doi.org/10.1007/s11237-022-09726-5
    42. Daisy R. S. Pooler, Daniel Doellerer, Stefano Crespi, Ben L. Feringa. Controlling rotary motion of molecular motors based on oxindole. Organic Chemistry Frontiers 2022, 9 (8) , 2084-2092. https://doi.org/10.1039/D2QO00129B
    43. Jianzheng Ma, Sujie Yang, Di Zhao, Chenwei Jiang, Zhenggang Lan, Fuli Li. Design and Nonadiabatic Photoisomerization Dynamics Study of a Three-Stroke Light-Driven Molecular Rotary Motor. International Journal of Molecular Sciences 2022, 23 (7) , 3908. https://doi.org/10.3390/ijms23073908
    44. Roland Wilcken, Aaron Gerwien, Ludwig Alexander Huber, Henry Dube, Eberhard Riedle. Quantitative In‐Situ NMR Illumination for Excitation and Kinetic Analysis of Molecular Motor Intermediates. ChemPhotoChem 2022, 6 (2) https://doi.org/10.1002/cptc.202100232
    45. Daisy R. S. Pooler, Anouk S. Lubbe, Stefano Crespi, Ben L. Feringa. Designing light-driven rotary molecular motors. Chemical Science 2021, 12 (45) , 14964-14986. https://doi.org/10.1039/D1SC04781G
    46. Jana Volarić, Wiktor Szymanski, Nadja A. Simeth, Ben L. Feringa. Molecular photoswitches in aqueous environments. Chemical Society Reviews 2021, 50 (22) , 12377-12449. https://doi.org/10.1039/D0CS00547A
    47. Ludwig A. Huber, Stefan Thumser, Kerstin Grill, David Voßiek, Nicolai N. Bach, Peter Mayer, Henry Dube. Steric Effects on the Thermal Processes of Hemithioindigo Based Molecular Motor Rotation. Chemistry – A European Journal 2021, 27 (41) , 10758-10765. https://doi.org/10.1002/chem.202100950
    48. Anna‐Lena Leistner, Susanne Kirchner, Johannes Karcher, Tobias Bantle, Mariam L. Schulte, Peter Gödtel, Christian Fengler, Zbigniew L. Pianowski. Fluorinated Azobenzenes Switchable with Red Light. Chemistry – A European Journal 2021, 27 (31) , 8094-8099. https://doi.org/10.1002/chem.202005486
    49. Thomas Bartelmann, Frederik Gnannt, Max Zitzmann, Peter Mayer, Henry Dube. Sulfoxide hemithioindigo tweezers – visible light addressable capture and release. Chemical Science 2021, 12 (10) , 3651-3659. https://doi.org/10.1039/D0SC04981F
    50. Roland Wilcken, Ludwig Huber, Kerstin Grill, Manuel Guentner, Monika Schildhauer, Stefan Thumser, Eberhard Riedle, Henry Dube. Tuning the Ground and Excited State Dynamics of Hemithioindigo Molecular Motors by Changing Substituents. Chemistry – A European Journal 2020, 26 (59) , 13507-13512. https://doi.org/10.1002/chem.202003096
    51. Laura Köttner, Monika Schildhauer, Sandra Wiedbrauk, Peter Mayer, Henry Dube. Oxidized Hemithioindigo Photoswitches—Influence of Oxidation State on (Photo)physical and Photochemical Properties. Chemistry – A European Journal 2020, 26 (47) , 10712-10718. https://doi.org/10.1002/chem.202002176
    52. Eduardo Carrascosa, Christian Petermayer, Michael S. Scholz, James N. Bull, Henry Dube, Evan J. Bieske. Reversible Photoswitching of Isolated Ionic Hemiindigos with Visible Light. ChemPhysChem 2020, 21 (7) , 680-685. https://doi.org/10.1002/cphc.201900963
    53. Baihao Shao, Ivan Aprahamian. Planarization‐Induced Activation Wavelength Red‐Shift and Thermal Half‐Life Acceleration in Hydrazone Photoswitches. ChemistryOpen 2020, 9 (2) , 191-194. https://doi.org/10.1002/open.201900340
    54. Aaron Gerwien, Peter Mayer, Henry Dube. Green light powered molecular state motor enabling eight-shaped unidirectional rotation. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-12463-4
    55. Jessica Groppi, Massimo Baroncini, Margherita Venturi, Serena Silvi, Alberto Credi. Design of photo-activated molecular machines: highlights from the past ten years. Chemical Communications 2019, 55 (84) , 12595-12602. https://doi.org/10.1039/C9CC06516D
    56. Lukas Pfeifer, Maximilian Scherübl, Maximilian Fellert, Wojciech Danowski, Jinling Cheng, Jasper Pol, Ben L. Feringa. Photoefficient 2 nd generation molecular motors responsive to visible light. Chemical Science 2019, 10 (38) , 8768-8773. https://doi.org/10.1039/C9SC02150G
    57. Igor Schapiro, Moussa Gueye, Marco Paolino, Stefania Fusi, Gabriel Marchand, Stefan Haacke, M. Elena Martin, Mark Huntress, Victor P. Vysotskiy, Valera Veryazov, Jérémie Léonard, Massimo Olivucci. Synthesis, spectroscopy and QM/MM simulations of a biomimetic ultrafast light-driven molecular motor. Photochemical & Photobiological Sciences 2019, 18 (9) , 2259-2269. https://doi.org/10.1039/c9pp00223e
    58. Rui-Kang Huang, Zhi-Feng Xiao, De-Xuan Liu, Wei-Xiong Zhang, Xiao-Ming Chen. Unprecedented water-controlled rotator–stator conversion of supramolecular rotors in crystals. Chemical Communications 2019, 55 (50) , 7159-7162. https://doi.org/10.1039/C9CC03267C
    59. Baihao Shao, Ivan Aprahamian. pH‐Induced Fluorescence and Thermal Relaxation Rate Modulation in a Hydrazone Photoswitch. ChemPhotoChem 2019, 3 (6) , 361-364. https://doi.org/10.1002/cptc.201900119
    60. Michael Filatov, Marco Paolino, Seung Kyu Min, Cheol Ho Choi. Design and photoisomerization dynamics of a new family of synthetic 2-stroke light driven molecular rotary motors. Chemical Communications 2019, 55 (36) , 5247-5250. https://doi.org/10.1039/C9CC01955C
    61. Kerstin Hoffmann, Manuel Guentner, Peter Mayer, Henry Dube. Symmetric and nonsymmetric bis-hemithioindigos – precise visible light controlled shape-shifters. Organic Chemistry Frontiers 2019, 6 (8) , 1244-1252. https://doi.org/10.1039/C9QO00202B
    62. Zbigniew L. Pianowski. Recent Implementations of Molecular Photoswitches into Smart Materials and Biological Systems. Chemistry – A European Journal 2019, 25 (20) , 5128-5144. https://doi.org/10.1002/chem.201805814
    63. Sumit Kumar Panja, Suvajit Koley, Haddad Boumediene. Selective photodissociation of highly photoactive Bis-2-benzylidenemalononitrile in solution. Journal of Photochemistry and Photobiology A: Chemistry 2019, 375 , 18-23. https://doi.org/10.1016/j.jphotochem.2019.01.034
    64. Werner Fuß. Previtamin D: Z – E photoisomerization via a Hula-twist conical intersection. Physical Chemistry Chemical Physics 2019, 21 (13) , 6776-6789. https://doi.org/10.1039/C9CP00500E
    65. Jennifer N. Andexer, Uwe Beifuss, Florian Beuerle, Malte Brasholz, Rolf Breinbauer, Martin Ernst, Tobias A. M. Gulder, Stephanie Kath‐Schorr, Markus Kordes, Matthias Lehmann, Thomas Lindel, Steffen Lüdeke, Burkhard Luy, Marvin Mantel, Christian Mück‐Lichtenfeld, Claudia Muhle‐Goll, Arun Narine, Jochen Niemeyer, Roland Pfau, Jörg Pietruszka, Norbert Schaschke, Mathias O. Senge, Bernd F. Straub, Thomas Werner, Daniel B. Werz, Christian Winter. Trendbericht Organische Chemie. Nachrichten aus der Chemie 2019, 67 (3) , 46-78. https://doi.org/10.1002/nadc.20194085243

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect