ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Isotope Labeling Reveals Fast Atomic and Molecular Exchange in Mechanochemical Milling Reactions

  • Stipe Lukin
    Stipe Lukin
    Division of Physical Chemistry, Ruđ̵er Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
    More by Stipe Lukin
  • Martina Tireli
    Martina Tireli
    Division of Physical Chemistry, Ruđ̵er Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
  • Tomislav Stolar
    Tomislav Stolar
    Division of Physical Chemistry, Ruđ̵er Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
  • Dajana Barišić
    Dajana Barišić
    Division of Physical Chemistry, Ruđ̵er Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
  • Maria Valeria Blanco
    Maria Valeria Blanco
    ESRF - the European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
  • Marco di Michiel
    Marco di Michiel
    ESRF - the European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
  • Krunoslav Užarević
    Krunoslav Užarević
    Division of Physical Chemistry, Ruđ̵er Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
  • , and 
  • Ivan Halasz*
    Ivan Halasz
    Division of Physical Chemistry, Ruđ̵er Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
    *[email protected]
    More by Ivan Halasz
Cite this: J. Am. Chem. Soc. 2019, 141, 3, 1212–1216
Publication Date (Web):January 4, 2019
https://doi.org/10.1021/jacs.8b12149
Copyright © 2019 American Chemical Society

    Article Views

    3204

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (2)»

    Abstract

    Abstract Image

    Using tandem in situ monitoring and isotope-labeled solids, we reveal that mechanochemical ball-milling overcomes inherently slow solid-state diffusion through continuous comminution and growth of milled particles. This process occurs with or without a net chemical reaction and also occurs between solids and liquid additives that can be practically used for highly efficient deuterium labeling of solids. The presented findings reveal a fundamental aspect of milling reactions and also delineate a methodology that should be considered in the study of mechanochemical reaction mechanisms.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.8b12149.

    • Experimental, tandem in situ Raman and PXRD plots, Rietveld-extracted reaction profiles, temperature profiles, computational details (PDF)

    • Data for C7H6O2, C5H5NO (CIF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 37 publications.

    1. Bin Wang, Yang Shao, Ziren Chen, Yu Xia, Fei Xue, Weiwei Jin, Shaofeng Wu, Yonghong Zhang, Chenjiang Liu. Photoinduced Catalyst-Free Deuterodefunctionalization of Aryltriazenes with CDCl3. Organic Letters 2024, 26 (20) , 4329-4334. https://doi.org/10.1021/acs.orglett.4c01350
    2. Scott L. Carnahan, Kipper Riemersma, Ihor Z. Hlova, Oleksandr Dolotko, Steven J. Kmiec, Sujeewa N. S. Lamahewage, Steve W. Martin, James F. Wishart, Thierry Dubroca, Viktor P. Balema, Aaron J. Rossini. Formation of Stable Radicals by Mechanochemistry and Their Application for Magic Angle Spinning Dynamic Nuclear Polarization Solid-State NMR Spectroscopy. The Journal of Physical Chemistry A 2024, 128 (18) , 3635-3645. https://doi.org/10.1021/acs.jpca.4c00228
    3. Yuntian Xiao, Chuanhua Wu, Xingchen Hu, Kui Chen, Luguang Qi, Pingping Cui, Ling Zhou, Qiuxiang Yin. Mechanochemical Synthesis of Cocrystal: From Mechanism to Application. Crystal Growth & Design 2023, 23 (6) , 4680-4700. https://doi.org/10.1021/acs.cgd.3c00183
    4. Patrick A. Julien, Tomislav Friščić. Methods for Monitoring Milling Reactions and Mechanistic Studies of Mechanochemistry: A Primer. Crystal Growth & Design 2022, 22 (9) , 5726-5754. https://doi.org/10.1021/acs.cgd.2c00587
    5. Stipe Lukin, Luzia S. Germann, Tomislav Friščić, Ivan Halasz. Toward Mechanistic Understanding of Mechanochemical Reactions Using Real-Time In Situ Monitoring. Accounts of Chemical Research 2022, 55 (9) , 1262-1277. https://doi.org/10.1021/acs.accounts.2c00062
    6. César Leroy, Thomas-Xavier Métro, Ivan Hung, Zhehong Gan, Christel Gervais, Danielle Laurencin. From Operando Raman Mechanochemistry to “NMR Crystallography”: Understanding the Structures and Interconversion of Zn-Terephthalate Networks Using Selective 17O-Labeling. Chemistry of Materials 2022, 34 (5) , 2292-2312. https://doi.org/10.1021/acs.chemmater.1c04132
    7. Jesus Daniel Loya, Selena J. Li, Daniel K. Unruh, Kristin M. Hutchins. Mechanochemistry as a Tool for Crystallizing Inaccessible Solids from Viscous Liquid Components. Crystal Growth & Design 2022, 22 (1) , 285-292. https://doi.org/10.1021/acs.cgd.1c00929
    8. Magdalena Kralj, Stipe Lukin, Goran Miletić, Ivan Halasz. Using Desmotropes, Cocrystals, and Salts to Manipulate Reactivity in Mechanochemical Organic Reactions. The Journal of Organic Chemistry 2021, 86 (20) , 14160-14168. https://doi.org/10.1021/acs.joc.1c01817
    9. Valentina Martinez, Bahar Karadeniz, Nikola Biliškov, Ivor Lončarić, Senada Muratović, Dijana Žilić, Stanislav M. Avdoshenko, Maria Roslova, Alexey A. Popov, Krunoslav Užarević. Tunable Fulleretic Sodalite MOFs: Highly Efficient and Controllable Entrapment of C60 Fullerene via Mechanochemistry. Chemistry of Materials 2020, 32 (24) , 10628-10640. https://doi.org/10.1021/acs.chemmater.0c03796
    10. Stipe Lukin, Tomislav Stolar, Ivor Lončarić, Igor Milanović, Nikola Biliškov, Marco di Michiel, Tomislav Friščić, Ivan Halasz. Mechanochemical Metathesis between AgNO3 and NaX (X = Cl, Br, I) and Ag2XNO3 Double-Salt Formation. Inorganic Chemistry 2020, 59 (17) , 12200-12208. https://doi.org/10.1021/acs.inorgchem.0c01196
    11. Nikola Cindro, Martina Tireli, Bahar Karadeniz, Tomislav Mrla, Krunoslav Užarević. Investigations of Thermally Controlled Mechanochemical Milling Reactions. ACS Sustainable Chemistry & Engineering 2019, 7 (19) , 16301-16309. https://doi.org/10.1021/acssuschemeng.9b03319
    12. Yueyue Dong, Yanling Su, Lili Du, Ruifeng Wang, Li Zhang, Dongbing Zhao, Wei Xie. Plasmon-Enhanced Deuteration under Visible-Light Irradiation. ACS Nano 2019, 13 (9) , 10754-10760. https://doi.org/10.1021/acsnano.9b05523
    13. Marija Cvetnić, Robert Šplajt, Edi Topić, Mirta Rubčić, Nikola Bregović. Direct thermodynamic characterization of solid-state reactions by isothermal calorimetry. Physical Chemistry Chemical Physics 2024, 42 https://doi.org/10.1039/D3CP03933A
    14. Maria Carta, Stipe Lukin, Francesco Delogu, Ivan Halasz. A kinetic study of mechanically activated atom exchange: the effect of milling frequency and ball mass. Physical Chemistry Chemical Physics 2024, 40 https://doi.org/10.1039/D3CP06147G
    15. Alen Bjelopetrović, Dajana Barišić, Marina Juribašić Kulcsár, Ivan Halasz, Manda Ćurić, Stipe Lukin. Deuteration of Pd-activated C(sp 2 )–H bonds in the solid state. Inorganic Chemistry Frontiers 2023, 10 (20) , 6005-6014. https://doi.org/10.1039/D3QI00932G
    16. Lei‐Yang Zhang, Nai‐Xing Wang, Dumitra Lucan, William Cheung, Yalan Xing. Recent Advances in Aerobic Oxidative of C−H Bond by Molecular Oxygen Focus on Heterocycles. Chemistry – A European Journal 2023, 29 (51) https://doi.org/10.1002/chem.202301700
    17. Jiaxin Cai, Yanjun Li, Ziqi Ye, Wenqian Wang, Yu Mei Lin, Lei Gong. Transition metal-free photocatalytic reductive deuteration of ketone derivatives. Green Synthesis and Catalysis 2023, 4 (3) , 253-257. https://doi.org/10.1016/j.gresc.2022.05.004
    18. Ana M. Belenguer, Adam A.L. Michalchuk. Grinding the way to enantiopurification. Chem 2023, 9 (5) , 1076-1079. https://doi.org/10.1016/j.chempr.2023.04.018
    19. Leonarda Vugrin, Maria Carta, Francesco Delogu, Ivan Halasz. Extending the Hammett correlation to mechanochemical reactions. Chemical Communications 2023, 59 (12) , 1629-1632. https://doi.org/10.1039/D2CC06487A
    20. Leonarda Vugrin, Maria Carta, Stipe Lukin, Ernest Meštrović, Francesco Delogu, Ivan Halasz. Mechanochemical reaction kinetics scales linearly with impact energy. Faraday Discussions 2023, 241 , 217-229. https://doi.org/10.1039/D2FD00083K
    21. César Leroy, Thomas-Xavier Métro, Danielle Laurencin. The expanding frontier between mechanochemistry & solid state NMR: Special focus on inorganic components of materials. 2023, 514-533. https://doi.org/10.1016/B978-0-12-823144-9.00136-9
    22. Quentin Lemesre, Thomas Wiesner, Rainer Wiechert, Eduardo Rodrigo, Sonja Triebel, Hervé Geneste. Parallel mechanochemical optimization – Buchwald–Hartwig C–N coupling as a test case. Green Chemistry 2022, 24 (14) , 5502-5507. https://doi.org/10.1039/D2GC01460B
    23. Bin Liu, Guanyu Wang, Zhenhao Xu, Menglin Wang, Yangleiyu Nie, Zhibin Luo. Ionic liquid/boronic acid system enabled deuteration with D2O. Tetrahedron Letters 2022, 102 , 153968. https://doi.org/10.1016/j.tetlet.2022.153968
    24. Adam A. L. Michalchuk, Franziska Emmerling. Zeitaufgelöste In‐Situ‐Untersuchungen von mechanochemischen Reaktionen. Angewandte Chemie 2022, 134 (21) https://doi.org/10.1002/ange.202117270
    25. Adam A. L. Michalchuk, Franziska Emmerling. Time‐Resolved In Situ Monitoring of Mechanochemical Reactions. Angewandte Chemie International Edition 2022, 61 (21) https://doi.org/10.1002/anie.202117270
    26. Bin Liu, Guanyu Wang, Zhenhao Xu, Menglin Wang, Yangleiyu Nie, Zhibin Luo. Ionic Liquid/Boronic Acid System Enabled Deuteration with D2o. SSRN Electronic Journal 2022, 25 https://doi.org/10.2139/ssrn.4096978
    27. Yanjun Li, Ziqi Ye, Yu-Mei Lin, Yan Liu, Yumeng Zhang, Lei Gong. Organophotocatalytic selective deuterodehalogenation of aryl or alkyl chlorides. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-23255-0
    28. Bruna S. Pladevall, Adiran de Aguirre, Feliu Maseras. Understanding Ball Milling Mechanochemical Processes with DFT Calculations and Microkinetic Modeling. ChemSusChem 2021, 14 (13) , 2763-2768. https://doi.org/10.1002/cssc.202100497
    29. Stipe Lukin, Krunoslav Užarević, Ivan Halasz. Raman spectroscopy for real-time and in situ monitoring of mechanochemical milling reactions. Nature Protocols 2021, 16 (7) , 3492-3521. https://doi.org/10.1038/s41596-021-00545-x
    30. Karen J. Ardila‐Fierro, José G. Hernández. Sustainability Assessment of Mechanochemistry by Using the Twelve Principles of Green Chemistry. ChemSusChem 2021, 14 (10) , 2145-2162. https://doi.org/10.1002/cssc.202100478
    31. Adam A.L. Michalchuk, Anke Kabelitz, Franziska Emmerling. Monitoring mechanochemical processes in situ and in real time. 2021, 369-419. https://doi.org/10.1016/B978-0-12-819009-8.00004-9
    32. Wilm Pickhardt, Sven Grätz, Lars Borchardt. Direct Mechanocatalysis: Using Milling Balls as Catalysts. Chemistry – A European Journal 2020, 26 (57) , 12903-12911. https://doi.org/10.1002/chem.202001177
    33. Karen J. Ardila‐Fierro, Stipe Lukin, Martin Etter, Krunoslav Užarević, Ivan Halasz, Carsten Bolm, José G. Hernández. Direct Visualization of a Mechanochemically Induced Molecular Rearrangement. Angewandte Chemie 2020, 132 (32) , 13560-13564. https://doi.org/10.1002/ange.201914921
    34. Karen J. Ardila‐Fierro, Stipe Lukin, Martin Etter, Krunoslav Užarević, Ivan Halasz, Carsten Bolm, José G. Hernández. Direct Visualization of a Mechanochemically Induced Molecular Rearrangement. Angewandte Chemie International Edition 2020, 59 (32) , 13458-13462. https://doi.org/10.1002/anie.201914921
    35. Tomislav Friščić, Cristina Mottillo, Hatem M. Titi. Mechanochemistry for Synthesis. Angewandte Chemie 2020, 132 (3) , 1030-1041. https://doi.org/10.1002/ange.201906755
    36. Tomislav Friščić, Cristina Mottillo, Hatem M. Titi. Mechanochemistry for Synthesis. Angewandte Chemie International Edition 2020, 59 (3) , 1018-1029. https://doi.org/10.1002/anie.201906755
    37. Cong Wang, Malik Hill, Brandon Theard, James Mack. A solvent-free mechanochemical synthesis of polyaromatic hydrocarbon derivatives. RSC Advances 2019, 9 (48) , 27888-27891. https://doi.org/10.1039/C9RA04921E

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect